Skip to main content
Log in

Stability and Inhibitory Activity of Pediocin PA-1 Against Listeria sp. in Simulated Physiological Conditions of the Human Terminal Ileum

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Listeria monocytogenes is responsible for severe foodborne infections, which can be life-threatening especially for infants and elderly populations. The emergence of antibiotic-resistant pathogens has stimulated the search for new strategies, such as the use of bacteriocins, to prevent or cure foodborne infectious diseases in the intestine. In this study, we evaluated the efficacy of the bacteriocin pediocin PA-1 from Pediococcus acidilactici UL5 to inhibit Listeria ivanovii, used as a surrogate for L. monocytogenes, under physiological conditions of the terminal ileum, simulated in a continuous in vitro fermentation model. A fecal sample from a healthy adult was immobilized and propagated for 30 days in a continuous stirred tank reactor, fed with a nutritive medium simulating the ileal chime (pH 7.5). After reaching a pseudo-steady state, the reactor was inoculated five times with L. ivanovii to reach a final concentration of 107 CFU/ml within the reactor. Two spikes of L. ivanovii without adjunction of pediocin PA-1 served as control assays, and three other spikes were done to test the effects of three concentrations of pediocin PA-1 corresponding to 2, 3, and 5× the minimum inhibitory concentration (MIC) active against L. ivanovii. The concentration of L. ivanovii in the reactor was followed for 8 h using the PALCAM selective medium. The different groups of commensal bacteria were enumerated on selective medium or using fluorescence in situ hybridization. Our data showed that pediocin PA-1 is stable in the ileum conditions and that it is able to exert its inhibition activity against L. ivanovii in a dose-dependent manner. The addition of pediocin PA-1 at 5 × MIC induced a complete disappearance of L. ivanovii (5 log reduction) within 5 h, compared to a reduction of 2 logs, corresponding to the washout phenomenon, when no pediocin PA-1 was added. Reduction of 0.8 and 1.3 logs within 8 h was also obtained with the addition of 2 and 3 × MIC, respectively. The same experiment has shown that addition of pediocin-PA1 in the reactor had a negligible effect on the balance of commensal bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abee T, Krockel L, Hill C (1995) Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. Int J Food Microbiol 28:169–185

    Article  CAS  Google Scholar 

  2. Ahmed S, Macfarlane GT, Fite A, McBain AJ, Gilbert P, Macfarlane S (2007) Mucosa-associated bacterial diversity in relation to human terminal ileum and colonic biopsy samples. Appl Environ Microbiol 73:7435–7442

    Article  CAS  Google Scholar 

  3. Allende A, Martínez B, Selma V, Gil MI, Suárez JE, Rodríguez A (2007) Growth and bacteriocin production by lactic acid bacteria in vegetable broth and their effectiveness at reducing Listeria monocytogenes in vitro and in fresh-cut lettuce. Food Microbiol 24:759–766

    Article  CAS  Google Scholar 

  4. Altenhoefer A, Oswald S, Sonnenborn U, Enders C, Schulze J, Hacker J, Oelschlaeger TA (2004) The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens. FEMS Immunol Med Microbiol 40:223–229

    Article  CAS  Google Scholar 

  5. Bambirra FH, Lima KG, Franco BD, Cara DC, Nardi RM, Barbosa FH, Nicoli JR (2007) Protective effect of Lactobacillus sakei 2a against experimental challenge with Listeria monocytogenes in gnotobiotic mice. Lett Appl Microbiol 45:663–667

    Article  CAS  Google Scholar 

  6. Beerens H (1990) An elective and selective isolation medium for Bifidobacterium spp. Lett Appl Microbiol 11:155–157

    Article  Google Scholar 

  7. Benech R-O, Kheadr EE, Lacroix C, Fliss I (2002) Antibacterial activities of nisin Z encapsulated in liposomes or produced in situ by mixed culture during cheddar cheese ripening. Appl Environ Microbiol 68:5607–5619

    Article  CAS  Google Scholar 

  8. Cinquin C, Le Blay G, Fliss I, Lacroix C (2006) New three-stage in vitro model for infant colonic fermentation with immobilized fecal microbiota. FEMS Microbiol Ecol 57:324–336

    Article  CAS  Google Scholar 

  9. Cintas LM, Casaus MP, Herranz C, Nes IF, Hernandez PE (2001) Review: bacteriocins of lactic acid bacteria. Food Sci Technol Int 7:281–305

    CAS  Google Scholar 

  10. Cleusix V, Lacroix C, Vollenweider S, Le Blay G (2008) Glycerol induces reuterin production and decreases Escherichia coli population in an in vitro model of colonic fermentation with immobilized human feces. FEMS Microbiol Ecol 63:56–64

    Article  CAS  Google Scholar 

  11. Conlan JW (1997) Neutrophils and tumour necrosis factor-α are important for controlling early gastrointestinal stages of experimental murine listeriosis. J Med Microbiol 46:239–250

    Article  CAS  Google Scholar 

  12. Corr SC, Gahan CGM, Hill C (2007) Impact of selected Lactobacillus and Bifidobacterium species on Listeria monocytogenes infection and the mucosal immune response. FEMS Immunol Med Microbiol 50:380–388

    Article  CAS  Google Scholar 

  13. Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CGM (2007) Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci 104:7617–7621

    Article  CAS  Google Scholar 

  14. Cutter CN, Siragusa GR (1998) Incorporation of nisin into a meat binding system to inhibit bacteria on beef surfaces. Lett Appl Microbiol 27:19–23

    Article  CAS  Google Scholar 

  15. Daba H, Lacroix C, Huang J, Simard RE, Lemieux L (1994) Simple method of purification and sequencing of a bacteriocin produced by Pediococcus acidilactici UL5. J Appl Bacteriol 77:682–688

    Article  CAS  Google Scholar 

  16. Dabour N, Zihler A, Kheadr E, Lacroix C, Fliss I (2009) In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting Listeria monocytogenes. Int J Food Microbiol 133:225–233

    Article  CAS  Google Scholar 

  17. Dabour N, Zihler A, Kheadr E, Lacroix C, Fliss I (2009) In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting Listeria monocytogenes. Int J Food Microbiol 133:225–233

    Article  CAS  Google Scholar 

  18. Dobson A, Crispie F, Rea MC, O’Sullivan O, Casey PG, Lawlor PG, Cotter PD, Ross P, Gardiner GE, Hill C (2011) Fate and efficacy of lacticin 3147-producing Lactococcus lactis in the mammalian gastrointestinal tract. FEMS Microbiol Ecol 76:602–614

    Article  CAS  Google Scholar 

  19. Drider D, Fimland G, Hechard Y, McMullen LM, Prevost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582

    Article  CAS  Google Scholar 

  20. Drouault S, Corthier G, Ehrlich SD, Renault P (1999) Survival, physiology, and lysis of Lactococcus lactis in the digestive tract. Appl Environ Microbiol 65:4881–4886

    CAS  Google Scholar 

  21. Fallingborg J (1999) Intraluminal pH of the human gastrointestinal tract. Dan Med Bull 46:183–196

    CAS  Google Scholar 

  22. Franks AH, Harmsen HJ, Raangs GC, Jansen GJ, Schut F, Welling GW (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64:3336–3345

    CAS  Google Scholar 

  23. Gibson GR, Wang X (1994) Enrichment of bifidobacteria from human gut contents by oligofructose using continuous culture. FEMS Microbiol Lett 118:121–127

    Article  CAS  Google Scholar 

  24. Gordon DM, Oliver E, Littlefield-Wyer J (2007) The diversity of bacteriocins in Gram-negative bacteria. In: Riley MA, Chavan M (eds) Bacteriocins: ecology and evolution. Springer, Berlin, pp 5–18

    Chapter  Google Scholar 

  25. Hammami R, Zouhir A, Le Lay C, Ben Hamida J, Fliss I (2010) BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol 10:22

    Article  Google Scholar 

  26. Hammami R, Zouhir A, Le Lay C, Ben Hamida J, Fliss I (2011) Database mining for bacteriocin discovery. In: Rai M, Chikindas M (eds) Natural antimicrobials in food safety and quality. C.A.B International, Oxfordshire, pp 349–358

    Chapter  Google Scholar 

  27. Harmsen HJM, Elfferich P, Schut F, Welling GW (1999) A 16S rRNA-targeted probe for detection of Lactobacilli and Enterococci in faecal samples by fluorescent in situ hybridization. Microb Ecol Health Dis 11:3–12

    Article  Google Scholar 

  28. Hatakka K, Saxelin M (2008) Probiotics in intestinal and non-intestinal infectious diseases—clinical evidence. Curr Pharm Des 14:1351–1367

    Article  CAS  Google Scholar 

  29. Hayashi H, Takahashi R, Nishi T, Sakamoto M, Benno Y (2005) Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol 54:1093–1101

    Article  CAS  Google Scholar 

  30. Heng NCK, Wescombe PA, Burton JP, Jack RW, Tagg JR (2007) The diversity of bacteriocins in gram-positive bacteria. In: Riley MA, Chavan M (eds) Bacteriocins: ecology and evolution. Springer, Berlin, pp 45–92

    Chapter  Google Scholar 

  31. Ingham A, Ford M, Moore RJ, Tizard M (2003) The bacteriocin piscicolin 126 retains antilisterial activity in vivo. J Antimicrob Chemother 51:1365–1371

    Article  CAS  Google Scholar 

  32. Kheadr E, Zihler A, Dabour N, Lacroix C, Le Blay G, Fliss I (2010) Study of the physicochemical and biological stability of pediocin PA-1 in the upper gastrointestinal tract conditions using a dynamic in vitro model. J Appl Microbiol 109:54–64

    CAS  Google Scholar 

  33. Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR, Wilkinson MH, Welling GW (1995) Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61:3069–3075

    CAS  Google Scholar 

  34. Le Blay G, Lacroix C, Zihler A, Fliss I (2007) In vitro inhibition activity of nisin A, nisin Z, pediocin PA-1 and antibiotics against common intestinal bacteria. Lett Appl Microbiol 45:252–257

    Article  Google Scholar 

  35. Macfarlane GT, Cummings JH, Macfarlane S, Gibson GR (1989) Influence of retention time on degradation of pancreatic enzymes by human colonic bacteria grown in a 3-stage continuous culture system. J Appl Bacteriol 67:520–527

    CAS  Google Scholar 

  36. Macfarlane GT, Hay S, Macfarlane S, Gibson GR (1990) Effect of different carbohydrates on growth, polysaccharidase and glycosidase production by Bacteroides ovatus, in batch and continuous culture. J Appl Microbiol 68:179–187

    Article  CAS  Google Scholar 

  37. Macfarlane GT, Macfarlane S, Gibson GR (1998) Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb Ecol 35:180–187

    Article  CAS  Google Scholar 

  38. Mallory A, Kern F Jr, Smith J, Savage D (1973) Patterns of bile acids and microflora in the human small intestine. I. Bile acids. Gastroenterology 64:26–33

    CAS  Google Scholar 

  39. Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer K-H (1996) Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142:1097–1106

    Article  CAS  Google Scholar 

  40. Marteau P, Pochart P, Doré J, Béra-Maillet C, Bernalier A, Corthier G (2001) Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 67:4939–4942

    Article  CAS  Google Scholar 

  41. Montalban-Lopez M, Sanchez-Hidalgo M, Valdivia E, Martinez-Bueno M, Maqueda M (2011) Are bacteriocins underexploited? NOVEL applications for OLD antimicrobials. Curr Pharm Biotechnol 12:1205–1220

    Article  CAS  Google Scholar 

  42. Naghmouchi K, Drider D, Kheadr E, Lacroix C, Prévost H, Fliss I (2006) Multiple characterizations of Listeria monocytogenes sensitive and insensitive variants to divergicin M35, a new pediocin-like bacteriocin. J Appl Microbiol 100:29–39

    Article  CAS  Google Scholar 

  43. Naghmouchi K, Fliss I, Drider D, Lacroix C (2008) Pediocin PA-1 production during repeated-cycle batch culture of immobilized Pediococcus acidilactici UL5 cells. J Biosci Bioeng 105:513–517

    Article  CAS  Google Scholar 

  44. Naghmouchi K, Kheadr E, Lacroix C, Fliss I (2007) Class I/Class IIa bacteriocin cross-resistance phenomenon in Listeria monocytogenes. Food Microbiol 24:718–727

    Article  CAS  Google Scholar 

  45. Nilsson L, Nielsen MK, Ng Y, Gram L (2002) Role of acetate in production of an autoinducible class IIa bacteriocin in Carnobacterium piscicola A9b. Appl Environ Microbiol 68:2251–2260

    Article  CAS  Google Scholar 

  46. Patzer SI, Baquero MR, Bravo D, Moreno F, Hantke K (2003) The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology 149:2557–2570

    Article  CAS  Google Scholar 

  47. Poulsen LK, Licht TR, Rang C, Krogfelt KA, Molin S (1995) Physiological state of Escherichia coli BJ4 growing in the large intestines of streptomycin-treated mice. J Bacteriol 177:5840–5845

    CAS  Google Scholar 

  48. Riboulet-Bisson E, Sturme MHJ, Jeffery IB, O’Donnell MM, Neville BA, Forde BM, Claesson MJ, Harris H, Gardiner GE, Casey PG, Lawlor PG, O’Toole PW, Ross RP (2012) Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota. PLoS One 7:e31113

    Article  CAS  Google Scholar 

  49. Riley MA, Wertz JE (2002) BACTERIOCINS: evolution, ecology, and application. Annu Rev Microbiol 56:117–137

    Article  CAS  Google Scholar 

  50. Rodriguez JM, Martinez MI, Kok J (2002) Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit Rev Food Sci Nutr 42:91–121

    Article  CAS  Google Scholar 

  51. Salvucci E, Saavedra L, Hebert EM, Haro C, Sesma F (2012) Enterocin CRL35 inhibits Listeria monocytogenes in a murine model. Foodborne Pathog Dis 9:68–74

    Article  CAS  Google Scholar 

  52. Schultz M (2008) Clinical use of E. coli Nissle 1917 in inflammatory bowel disease. Inflamm Bowel Dis 14:1012–1018

    Article  Google Scholar 

  53. Shand R, Leyva K (2008) Archaeal antimicrobials: an undiscovered country. In: Norfolk BP (ed) Archaea: new models for prokaryotic biology. Caister Academic, Norfolk, pp 233–242

    Google Scholar 

  54. van der Waaij LA, Harmsen HJM, Madjipour M, Kroese FGM, Zwiers M, van Dullemen HM, de Boer NK, Welling GW, Jansen PLM (2005) Bacterial population analysis of human colon and terminal ileum biopsies with 16S rRNA-based fluorescent probes: commensal bacteria live in suspension and have no direct contact with epithelial cells. Inflamm Bowel Dis 11:865–871

    Article  Google Scholar 

  55. Vieira LQ, dos Santos LM, Neumann E, da Silva AP, Moura LN, Nicoli JR (2008) Probiotics protect mice against experimental infections. J Clin Gastroenterol 42(Suppl 3, Pt 2):S168–S169

    Article  Google Scholar 

  56. Vriezen JAC, Valliere M, Riley MA (2009) The evolution of reduced microbial killing. Genome Biol Evol 2009:400–408

    Google Scholar 

  57. Wang M, Ahrné S, Jeppsson B, Molin G (2005) Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 54:219–231

    Article  CAS  Google Scholar 

  58. Willey JM, van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol 61:477–501

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by a research grant from The Swiss National Foundation (project no. 3100A0-114028) and the National Science and engineering Research Council of Canada (NSERC) and Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismaïl Fliss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Blay, G., Hammami, R., Lacroix, C. et al. Stability and Inhibitory Activity of Pediocin PA-1 Against Listeria sp. in Simulated Physiological Conditions of the Human Terminal Ileum. Probiotics & Antimicro. Prot. 4, 250–258 (2012). https://doi.org/10.1007/s12602-012-9111-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-012-9111-1

Keywords

Navigation