Skip to main content
Erschienen in: Canadian Journal of Anesthesia/Journal canadien d'anesthésie 2/2011

01.02.2011 | Theme Issue: Mechanisms of Anesthesia

Sleep and general anesthesia

verfasst von: Nicholas P. Franks, FMedSci, Anna Y. Zecharia, PhD

Erschienen in: Canadian Journal of Anesthesia/Journal canadien d'anesthésie | Ausgabe 2/2011

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The mechanisms through which general anesthetics cause reversible loss of consciousness are characterized poorly. In this review, we examine the evidence that anesthetic-induced loss of consciousness may be caused by actions on the neuronal pathways that produce natural sleep.

Principal findings

It is clear that many general anesthetics produce effects in the brain (detected on electroencephalogram recordings) that are similar to those seen during non-rapid eye movement non-(REM) sleep. Gamma aminobutyric acid (GABA)ergic hypnogenic neurons are thought to be critical for generating non-REM sleep through their inhibitory projections to wake-active regions of the brain. The postsynaptic GABAA receptor is a major molecular target of many anesthetics and thus may be a point of convergence between natural sleep and anesthesia. Furthermore, we also present growing evidence in this review that modulating wake-active neurotransmitter (e.g., acetylcholine, histamine) release can impact on anesthesia, supporting the idea that this point of convergence is at the level of the brain arousal systems.

Conclusions

While it is clear that general anesthetics can have effects at various points in the sleep-wake circuitry, it remains to be seen which points are true anesthetic targets. It will be challenging to separate non-specific effects on baseline arousal from a causal mechanism. Sophisticated experimental approaches are necessary to address basic mechanisms of sleep and anesthesia and should advance our understanding in both of these fields.
Literatur
1.
Zurück zum Zitat von Economo C. Sleep as a problem of localization. J Nerv Ment Dis 1930; 71: 249-59.CrossRef von Economo C. Sleep as a problem of localization. J Nerv Ment Dis 1930; 71: 249-59.CrossRef
3.
Zurück zum Zitat Jouvet M. Research on the neural structures and responsible mechanisms in different phases of physiological sleep (French). Arch Ital Biol 1962; 100: 125-206.PubMed Jouvet M. Research on the neural structures and responsible mechanisms in different phases of physiological sleep (French). Arch Ital Biol 1962; 100: 125-206.PubMed
4.
Zurück zum Zitat Aserinsky E, Kleitman N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 1953; 118: 273-4.CrossRefPubMed Aserinsky E, Kleitman N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 1953; 118: 273-4.CrossRefPubMed
5.
Zurück zum Zitat Dement W, Kleitman N. Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroencephalogr Clin Neurophysiol 1957; 9: 673-90.CrossRefPubMed Dement W, Kleitman N. Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroencephalogr Clin Neurophysiol 1957; 9: 673-90.CrossRefPubMed
6.
Zurück zum Zitat Eguchi K, Satoh T. Convergence of sleep-wakefulness subsystems onto single neurons in the region of cat’s solitary tract nucleus. Arch Ital Biol 1980; 118: 331-45.PubMed Eguchi K, Satoh T. Convergence of sleep-wakefulness subsystems onto single neurons in the region of cat’s solitary tract nucleus. Arch Ital Biol 1980; 118: 331-45.PubMed
7.
Zurück zum Zitat Sterman MB, Clemente CD. Forebrain inhibitory mechanisms: sleep patterns induced by basal forebrain stimulation in the behaving cat. Exp Neurol 1962; 6: 103-17.CrossRefPubMed Sterman MB, Clemente CD. Forebrain inhibitory mechanisms: sleep patterns induced by basal forebrain stimulation in the behaving cat. Exp Neurol 1962; 6: 103-17.CrossRefPubMed
8.
Zurück zum Zitat Sterman MB, Clemente CD. Forebrain inhibitory mechanisms: cortical synchronization induced by basal forebrain stimulation. Exp Neurol 1962; 6: 91-102.CrossRefPubMed Sterman MB, Clemente CD. Forebrain inhibitory mechanisms: cortical synchronization induced by basal forebrain stimulation. Exp Neurol 1962; 6: 91-102.CrossRefPubMed
9.
Zurück zum Zitat Lucas EA, Sterman MB. Effect of a forebrain lesion on the polycyclic sleep-wake cycle and sleep-wake patterns in the cat. Exp Neurol 1975; 46: 368-88.CrossRefPubMed Lucas EA, Sterman MB. Effect of a forebrain lesion on the polycyclic sleep-wake cycle and sleep-wake patterns in the cat. Exp Neurol 1975; 46: 368-88.CrossRefPubMed
10.
Zurück zum Zitat McGinty D, Gong H, Suntsova N, et al. Sleep-promoting functions of the hypothalamic median preoptic nucleus: inhibition of arousal systems. Arch Ital Biol 2004; 142: 501-9.PubMed McGinty D, Gong H, Suntsova N, et al. Sleep-promoting functions of the hypothalamic median preoptic nucleus: inhibition of arousal systems. Arch Ital Biol 2004; 142: 501-9.PubMed
11.
Zurück zum Zitat Modirrousta M, Mainville L, Jones BE. Gabaergic neurons with alpha2-adrenergic receptors in basal forebrain and preoptic area express c-Fos during sleep. Neuroscience 2004; 129: 803-10.CrossRefPubMed Modirrousta M, Mainville L, Jones BE. Gabaergic neurons with alpha2-adrenergic receptors in basal forebrain and preoptic area express c-Fos during sleep. Neuroscience 2004; 129: 803-10.CrossRefPubMed
12.
Zurück zum Zitat Sherin JE, Shiromani PJ, McCarley RW, Saper CB. Activation of ventrolateral preoptic neurons during sleep. Science 1996; 271: 216-9.CrossRefPubMed Sherin JE, Shiromani PJ, McCarley RW, Saper CB. Activation of ventrolateral preoptic neurons during sleep. Science 1996; 271: 216-9.CrossRefPubMed
13.
Zurück zum Zitat Szymusiak R, Alam N, Steininger TL, McGinty D. Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res 1998; 803: 178-88.CrossRefPubMed Szymusiak R, Alam N, Steininger TL, McGinty D. Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res 1998; 803: 178-88.CrossRefPubMed
14.
Zurück zum Zitat Lu J, Bjorkum AA, Xu M, Gaus SE, Shiromani PJ, Saper CB. Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosci 2002; 22: 4568-76.PubMed Lu J, Bjorkum AA, Xu M, Gaus SE, Shiromani PJ, Saper CB. Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosci 2002; 22: 4568-76.PubMed
15.
Zurück zum Zitat Lu J, Greco MA, Shiromani P, Saper CB. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci 2000; 20: 3830-42.PubMed Lu J, Greco MA, Shiromani P, Saper CB. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci 2000; 20: 3830-42.PubMed
16.
Zurück zum Zitat Szymusiak R, McGinty D. Sleep-related neuronal discharge in the basal forebrain of cats. Brain Res 1986; 370: 82-92.CrossRefPubMed Szymusiak R, McGinty D. Sleep-related neuronal discharge in the basal forebrain of cats. Brain Res 1986; 370: 82-92.CrossRefPubMed
17.
Zurück zum Zitat Suntsova N, Szymusiak R, Alam MN, Guzman-Marin R, McGinty D. Sleep-waking discharge patterns of median preoptic nucleus neurons in rats. J Physiol 2002; 543: 665-77.CrossRefPubMed Suntsova N, Szymusiak R, Alam MN, Guzman-Marin R, McGinty D. Sleep-waking discharge patterns of median preoptic nucleus neurons in rats. J Physiol 2002; 543: 665-77.CrossRefPubMed
18.
Zurück zum Zitat Steininger TL, Gong H, McGinty D, Szymusiak R. Subregional organization of preoptic area/anterior hypothalamic projections to arousal-related monoaminergic cell groups. J Comp Neurol 2001; 429: 638-53.CrossRefPubMed Steininger TL, Gong H, McGinty D, Szymusiak R. Subregional organization of preoptic area/anterior hypothalamic projections to arousal-related monoaminergic cell groups. J Comp Neurol 2001; 429: 638-53.CrossRefPubMed
19.
Zurück zum Zitat Ericson H, Blomqvist A, Kohler C. Origin of neuronal inputs to the region of the tuberomammillary nucleus of the rat brain. J Comp Neurol 1991; 311: 45-64.CrossRefPubMed Ericson H, Blomqvist A, Kohler C. Origin of neuronal inputs to the region of the tuberomammillary nucleus of the rat brain. J Comp Neurol 1991; 311: 45-64.CrossRefPubMed
20.
Zurück zum Zitat Methippara MM, Alam MN, Szymusiak R, McGinty D. Preoptic area warming inhibits wake-active neurons in the perifornical lateral hypothalamus. Brain Res 2003; 960: 165-73.CrossRefPubMed Methippara MM, Alam MN, Szymusiak R, McGinty D. Preoptic area warming inhibits wake-active neurons in the perifornical lateral hypothalamus. Brain Res 2003; 960: 165-73.CrossRefPubMed
21.
Zurück zum Zitat Lin JS, Sakai K, Vanni-Mercier G, Jouvet M. A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats. Brain Res 1989; 479: 225-40.CrossRefPubMed Lin JS, Sakai K, Vanni-Mercier G, Jouvet M. A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats. Brain Res 1989; 479: 225-40.CrossRefPubMed
22.
Zurück zum Zitat Nelson LE, Guo TZ, Lu J, Saper CB, Franks NP, Maze M. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci 2002; 5: 979-84.CrossRefPubMed Nelson LE, Guo TZ, Lu J, Saper CB, Franks NP, Maze M. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci 2002; 5: 979-84.CrossRefPubMed
23.
Zurück zum Zitat Strecker RE, Nalwalk J, Dauphin LJ, et al. Extracellular histamine levels in the feline preoptic/anterior hypothalamic area during natural sleep-wakefulness and prolonged wakefulness: an in vivo microdialysis study. Neuroscience 2002; 113: 663-70.CrossRefPubMed Strecker RE, Nalwalk J, Dauphin LJ, et al. Extracellular histamine levels in the feline preoptic/anterior hypothalamic area during natural sleep-wakefulness and prolonged wakefulness: an in vivo microdialysis study. Neuroscience 2002; 113: 663-70.CrossRefPubMed
24.
Zurück zum Zitat Ko EM, Estabrooke IV, McCarthy M, Scammell TE. Wake-related activity of tuberomammillary neurons in rats. Brain Res 2003; 992: 220-6.CrossRefPubMed Ko EM, Estabrooke IV, McCarthy M, Scammell TE. Wake-related activity of tuberomammillary neurons in rats. Brain Res 2003; 992: 220-6.CrossRefPubMed
25.
Zurück zum Zitat Takahashi K, Lin JS, Sakai K. Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci 2006; 26: 10292-8.CrossRefPubMed Takahashi K, Lin JS, Sakai K. Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci 2006; 26: 10292-8.CrossRefPubMed
26.
Zurück zum Zitat Gerashchenko D, Chou TC, Blanco-Centurion CA, Saper CB, Shiromani PJ. Effects of lesions of the histaminergic tuberomammillary nucleus on spontaneous sleep in rats. Sleep 2004; 27: 1275-81.PubMed Gerashchenko D, Chou TC, Blanco-Centurion CA, Saper CB, Shiromani PJ. Effects of lesions of the histaminergic tuberomammillary nucleus on spontaneous sleep in rats. Sleep 2004; 27: 1275-81.PubMed
27.
Zurück zum Zitat Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx JL, Watanabe T, Lin JS. Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J Neurosci 2002; 22: 7695-711.PubMed Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx JL, Watanabe T, Lin JS. Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J Neurosci 2002; 22: 7695-711.PubMed
28.
Zurück zum Zitat Eriksson KS, Sergeeva O, Brown RE, Haas HL. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci 2001; 21: 9273-9.PubMed Eriksson KS, Sergeeva O, Brown RE, Haas HL. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci 2001; 21: 9273-9.PubMed
29.
Zurück zum Zitat Eriksson KS, Sergeeva OA, Selbach O, Haas HL. Orexin (hypocretin)/dynorphin neurons control GABAergic inputs to tuberomammillary neurons. Eur J Neurosci 2004; 19: 1278-84.CrossRefPubMed Eriksson KS, Sergeeva OA, Selbach O, Haas HL. Orexin (hypocretin)/dynorphin neurons control GABAergic inputs to tuberomammillary neurons. Eur J Neurosci 2004; 19: 1278-84.CrossRefPubMed
30.
Zurück zum Zitat Mignot E, Lammers GJ, Ripley B, et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol 2002; 59: 1553-62.CrossRefPubMed Mignot E, Lammers GJ, Ripley B, et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol 2002; 59: 1553-62.CrossRefPubMed
31.
Zurück zum Zitat Crocker A, Espana RA, Papadopoulou M, et al. Concomitant loss of dynorphin, NARP, and orexin in narcolepsy. Neurology 2005; 65: 1184-8.CrossRefPubMed Crocker A, Espana RA, Papadopoulou M, et al. Concomitant loss of dynorphin, NARP, and orexin in narcolepsy. Neurology 2005; 65: 1184-8.CrossRefPubMed
32.
Zurück zum Zitat Lin L, Faraco J, Li R, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 1999; 98: 365-76.CrossRefPubMed Lin L, Faraco J, Li R, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 1999; 98: 365-76.CrossRefPubMed
33.
Zurück zum Zitat Estabrooke IV, McCarthy MT, Ko E, et al. Fos expression in orexin neurons varies with behavioral state. J Neurosci 2001; 21: 1656-62.PubMed Estabrooke IV, McCarthy MT, Ko E, et al. Fos expression in orexin neurons varies with behavioral state. J Neurosci 2001; 21: 1656-62.PubMed
34.
Zurück zum Zitat Lee MG, Hassani OK, Jones BE. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 2005; 25: 6716-20.CrossRefPubMed Lee MG, Hassani OK, Jones BE. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 2005; 25: 6716-20.CrossRefPubMed
35.
Zurück zum Zitat Kiyashchenko LI, Mileykovskiy BY, Maidment N, et al. Release of hypocretin (orexin) during waking and sleep states. J Neurosci 2002; 22: 5282-6.PubMed Kiyashchenko LI, Mileykovskiy BY, Maidment N, et al. Release of hypocretin (orexin) during waking and sleep states. J Neurosci 2002; 22: 5282-6.PubMed
36.
Zurück zum Zitat Hagan JJ, Leslie RA, Patel S, et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci U S A 1999; 96: 10911-6.CrossRefPubMed Hagan JJ, Leslie RA, Patel S, et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci U S A 1999; 96: 10911-6.CrossRefPubMed
37.
Zurück zum Zitat Bourgin P, Huitron-Resendiz S, Spier AD, et al. Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J Neurosci 2000; 20: 7760-5.PubMed Bourgin P, Huitron-Resendiz S, Spier AD, et al. Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J Neurosci 2000; 20: 7760-5.PubMed
38.
Zurück zum Zitat Huang ZL, Qu WM, Li WD, et al. Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci U S A 2001; 98: 9965-70.CrossRefPubMed Huang ZL, Qu WM, Li WD, et al. Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci U S A 2001; 98: 9965-70.CrossRefPubMed
39.
Zurück zum Zitat Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 2001; 24: 726-31.CrossRefPubMed Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 2001; 24: 726-31.CrossRefPubMed
40.
Zurück zum Zitat Gallopin T, Fort P, Eggermann E, et al. Identification of sleep-promoting neurons in vitro. Nature 2000; 404: 992-5.CrossRefPubMed Gallopin T, Fort P, Eggermann E, et al. Identification of sleep-promoting neurons in vitro. Nature 2000; 404: 992-5.CrossRefPubMed
41.
Zurück zum Zitat Kukko-Lukjanov TK, Panula P. Subcellular distribution of histamine, GABA and galanin in tuberomamillary neurons in vitro. J Chem Neuroanat 2003; 25: 279-92.CrossRefPubMed Kukko-Lukjanov TK, Panula P. Subcellular distribution of histamine, GABA and galanin in tuberomamillary neurons in vitro. J Chem Neuroanat 2003; 25: 279-92.CrossRefPubMed
42.
Zurück zum Zitat Airaksinen MS, Alanen S, Szabat E, Visser TJ, Panula P. Multiple neurotransmitters in the tuberomammillary nucleus: comparison of rat, mouse, and guinea pig. J Comp Neurol 1992; 323: 103-16.CrossRefPubMed Airaksinen MS, Alanen S, Szabat E, Visser TJ, Panula P. Multiple neurotransmitters in the tuberomammillary nucleus: comparison of rat, mouse, and guinea pig. J Comp Neurol 1992; 323: 103-16.CrossRefPubMed
43.
Zurück zum Zitat Destexhe A, Sejnowski TJ. Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol Rev 2003; 83: 1401-53.PubMed Destexhe A, Sejnowski TJ. Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol Rev 2003; 83: 1401-53.PubMed
44.
Zurück zum Zitat McCormick DA, Bal T. Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 1997; 20: 185-215.CrossRefPubMed McCormick DA, Bal T. Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 1997; 20: 185-215.CrossRefPubMed
45.
Zurück zum Zitat Bal T, von Krosigk M, McCormick DA. Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro. J Physiol 1995; 483(Pt 3): 641-63.PubMed Bal T, von Krosigk M, McCormick DA. Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro. J Physiol 1995; 483(Pt 3): 641-63.PubMed
46.
Zurück zum Zitat Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science 1993; 262: 679-85.CrossRefPubMed Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science 1993; 262: 679-85.CrossRefPubMed
47.
Zurück zum Zitat Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 2008; 9: 370-86.CrossRefPubMed Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 2008; 9: 370-86.CrossRefPubMed
48.
Zurück zum Zitat Clark DL, Rosner BS. Neurophysiologic effects of general anesthetics. I. The electroencephalogram and sensory evoked responses in man. Anesthesiology 1973; 38: 564-82.CrossRefPubMed Clark DL, Rosner BS. Neurophysiologic effects of general anesthetics. I. The electroencephalogram and sensory evoked responses in man. Anesthesiology 1973; 38: 564-82.CrossRefPubMed
49.
Zurück zum Zitat Gugino LD, Chabot RJ, Prichep LS, John ER, Formanek V, Aglio LS. Quantitative EEG changes associated with loss and return of consciousness in healthy adult volunteers anaesthetized with propofol or sevoflurane. Br J Anaesth 2001; 87: 421-8.CrossRefPubMed Gugino LD, Chabot RJ, Prichep LS, John ER, Formanek V, Aglio LS. Quantitative EEG changes associated with loss and return of consciousness in healthy adult volunteers anaesthetized with propofol or sevoflurane. Br J Anaesth 2001; 87: 421-8.CrossRefPubMed
50.
Zurück zum Zitat Keifer JC, Baghdoyan HA, Lydic R. Pontine cholinergic mechanisms modulate the cortical electroencephalographic spindles of halothane anesthesia. Anesthesiology 1996; 84: 945-54.CrossRefPubMed Keifer JC, Baghdoyan HA, Lydic R. Pontine cholinergic mechanisms modulate the cortical electroencephalographic spindles of halothane anesthesia. Anesthesiology 1996; 84: 945-54.CrossRefPubMed
51.
Zurück zum Zitat Sloan TB. Anesthetic effects on electrophysiologic recordings. J Clin Neurophysiol 1998; 15: 217-26.CrossRefPubMed Sloan TB. Anesthetic effects on electrophysiologic recordings. J Clin Neurophysiol 1998; 15: 217-26.CrossRefPubMed
52.
Zurück zum Zitat Voss L, Sleigh J. Monitoring consciousness: the current status of EEG-based depth of anaesthesia monitors. Best Pract Res Clin Anaesthesiol 2007; 21: 313-25.CrossRefPubMed Voss L, Sleigh J. Monitoring consciousness: the current status of EEG-based depth of anaesthesia monitors. Best Pract Res Clin Anaesthesiol 2007; 21: 313-25.CrossRefPubMed
53.
Zurück zum Zitat Ferrarelli F, Massimini M, Sarasso S, et al. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc Natl Acad Sci U S A 2010; 107: 2681-6.CrossRefPubMed Ferrarelli F, Massimini M, Sarasso S, et al. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc Natl Acad Sci U S A 2010; 107: 2681-6.CrossRefPubMed
54.
Zurück zum Zitat Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G. Breakdown of cortical effective connectivity during sleep. Science 2005; 309: 2228-32.CrossRefPubMed Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G. Breakdown of cortical effective connectivity during sleep. Science 2005; 309: 2228-32.CrossRefPubMed
55.
Zurück zum Zitat Braun AR, Balkin TJ, Wesenten NJ, et al. Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain 1997; 120(Pt 7): 1173-97.CrossRefPubMed Braun AR, Balkin TJ, Wesenten NJ, et al. Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain 1997; 120(Pt 7): 1173-97.CrossRefPubMed
56.
Zurück zum Zitat Kajimura N, Uchiyama M, Takayama Y, et al. Activity of midbrain reticular formation and neocortex during the progression of human non-rapid eye movement sleep. J Neurosci 1999; 19: 10065-73.PubMed Kajimura N, Uchiyama M, Takayama Y, et al. Activity of midbrain reticular formation and neocortex during the progression of human non-rapid eye movement sleep. J Neurosci 1999; 19: 10065-73.PubMed
57.
Zurück zum Zitat Bonhomme V, Fiset P, Meuret P, et al. Propofol anesthesia and cerebral blood flow changes elicited by vibrotactile stimulation: a positron emission tomography study. J Neurophysiol 2001; 85: 1299-308.PubMed Bonhomme V, Fiset P, Meuret P, et al. Propofol anesthesia and cerebral blood flow changes elicited by vibrotactile stimulation: a positron emission tomography study. J Neurophysiol 2001; 85: 1299-308.PubMed
58.
Zurück zum Zitat Fiset P, Paus T, Daloze T, et al. Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J Neurosci 1999; 19: 5506-13.PubMed Fiset P, Paus T, Daloze T, et al. Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J Neurosci 1999; 19: 5506-13.PubMed
59.
Zurück zum Zitat Kaisti KK, Langsjo JW, Aalto S, et al. Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology 2003; 99: 603-13.CrossRefPubMed Kaisti KK, Langsjo JW, Aalto S, et al. Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology 2003; 99: 603-13.CrossRefPubMed
60.
Zurück zum Zitat Laitio RM, Kaisti KK, Laangsjo JW, et al. Effects of xenon anesthesia on cerebral blood flow in humans: a positron emission tomography study. Anesthesiology 2007; 106: 1128-33.CrossRefPubMed Laitio RM, Kaisti KK, Laangsjo JW, et al. Effects of xenon anesthesia on cerebral blood flow in humans: a positron emission tomography study. Anesthesiology 2007; 106: 1128-33.CrossRefPubMed
61.
Zurück zum Zitat Hudetz AG, Imas OA. Burst activation of the cerebral cortex by flash stimuli during isoflurane anesthesia in rats. Anesthesiology 2007; 107: 983-91.CrossRefPubMed Hudetz AG, Imas OA. Burst activation of the cerebral cortex by flash stimuli during isoflurane anesthesia in rats. Anesthesiology 2007; 107: 983-91.CrossRefPubMed
62.
Zurück zum Zitat Lukatch HS, MacIver MB. Synaptic mechanisms of thiopental-induced alterations in synchronized cortical activity. Anesthesiology 1996; 84: 1425-34.CrossRefPubMed Lukatch HS, MacIver MB. Synaptic mechanisms of thiopental-induced alterations in synchronized cortical activity. Anesthesiology 1996; 84: 1425-34.CrossRefPubMed
63.
Zurück zum Zitat Hentschke H, Schwarz C, Antkowiak B. Neocortex is the major target of sedative concentrations of volatile anaesthetics: strong depression of firing rates and increase of GABAA receptor-mediated inhibition. Eur J Neurosci 2005; 21: 93-102.CrossRefPubMed Hentschke H, Schwarz C, Antkowiak B. Neocortex is the major target of sedative concentrations of volatile anaesthetics: strong depression of firing rates and increase of GABAA receptor-mediated inhibition. Eur J Neurosci 2005; 21: 93-102.CrossRefPubMed
64.
Zurück zum Zitat Cudeiro J, Sillito AM. Looking back: corticothalamic feedback and early visual processing. Trends Neurosci 2006; 29: 298-306.CrossRefPubMed Cudeiro J, Sillito AM. Looking back: corticothalamic feedback and early visual processing. Trends Neurosci 2006; 29: 298-306.CrossRefPubMed
65.
Zurück zum Zitat Pang DS, Robledo CJ, Carr DR, et al. An unexpected role for TASK-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action. Proc Natl Acad Sci U S A 2009; 106: 17546-51.CrossRefPubMed Pang DS, Robledo CJ, Carr DR, et al. An unexpected role for TASK-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action. Proc Natl Acad Sci U S A 2009; 106: 17546-51.CrossRefPubMed
66.
Zurück zum Zitat Belelli D, Peden DR, Rosahl TW, Wafford KA, Lambert JJ. Extrasynaptic GABAA receptors of thalamocortical neurons: a molecular target for hypnotics. J Neurosci 2005; 25: 11513-20.CrossRefPubMed Belelli D, Peden DR, Rosahl TW, Wafford KA, Lambert JJ. Extrasynaptic GABAA receptors of thalamocortical neurons: a molecular target for hypnotics. J Neurosci 2005; 25: 11513-20.CrossRefPubMed
67.
Zurück zum Zitat Jia F, Pignataro L, Schofield CM, Yue M, Harrison NL, Goldstein PA. An extrasynaptic GABAA receptor mediates tonic inhibition in thalamic VB neurons. J Neurophysiol 2005; 94: 4491-501.CrossRefPubMed Jia F, Pignataro L, Schofield CM, Yue M, Harrison NL, Goldstein PA. An extrasynaptic GABAA receptor mediates tonic inhibition in thalamic VB neurons. J Neurophysiol 2005; 94: 4491-501.CrossRefPubMed
68.
Zurück zum Zitat Meuth SG, Budde T, Kanyshkova T, Broicher T, Munsch T, Pape HC. Contribution of TWIK-related acid-sensitive K + channel 1 (TASK1) and TASK3 channels to the control of activity modes in thalamocortical neurons. J Neurosci 2003; 23: 6460-9.PubMed Meuth SG, Budde T, Kanyshkova T, Broicher T, Munsch T, Pape HC. Contribution of TWIK-related acid-sensitive K + channel 1 (TASK1) and TASK3 channels to the control of activity modes in thalamocortical neurons. J Neurosci 2003; 23: 6460-9.PubMed
69.
Zurück zum Zitat Ries CR, Puil E. Mechanism of anesthesia revealed by shunting actions of isoflurane on thalamocortical neurons. J Neurophysiol 1999; 81: 1795-801.PubMed Ries CR, Puil E. Mechanism of anesthesia revealed by shunting actions of isoflurane on thalamocortical neurons. J Neurophysiol 1999; 81: 1795-801.PubMed
70.
Zurück zum Zitat Sugiyama K, Muteki T, Shimoji K. Halothane-induced hyperpolarization and depression of postsynaptic potentials of guinea pig thalamic neurons in vitro. Brain Res 1992; 576: 97-103.CrossRefPubMed Sugiyama K, Muteki T, Shimoji K. Halothane-induced hyperpolarization and depression of postsynaptic potentials of guinea pig thalamic neurons in vitro. Brain Res 1992; 576: 97-103.CrossRefPubMed
71.
Zurück zum Zitat Alkire MT, McReynolds JR, Hahn EL, Trivedi AN. Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat. Anesthesiology 2007; 107: 264-72.CrossRefPubMed Alkire MT, McReynolds JR, Hahn EL, Trivedi AN. Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat. Anesthesiology 2007; 107: 264-72.CrossRefPubMed
72.
Zurück zum Zitat Luo T, Leung LS. Basal forebrain histaminergic transmission modulates electroencephalographic activity and emergence from isoflurane anesthesia. Anesthesiology 2009; 111: 725-33.CrossRefPubMed Luo T, Leung LS. Basal forebrain histaminergic transmission modulates electroencephalographic activity and emergence from isoflurane anesthesia. Anesthesiology 2009; 111: 725-33.CrossRefPubMed
73.
Zurück zum Zitat Devor M, Zalkind V. Reversible analgesia, atonia, and loss of consciousness on bilateral intracerebral microinjection of pentobarbital. Pain 2001; 94: 101-12.CrossRefPubMed Devor M, Zalkind V. Reversible analgesia, atonia, and loss of consciousness on bilateral intracerebral microinjection of pentobarbital. Pain 2001; 94: 101-12.CrossRefPubMed
74.
Zurück zum Zitat Nelson LE, Lu J, Guo T, Saper CB, Franks NP, Maze M. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 2003; 98: 428-36.CrossRefPubMed Nelson LE, Lu J, Guo T, Saper CB, Franks NP, Maze M. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 2003; 98: 428-36.CrossRefPubMed
75.
Zurück zum Zitat Kelz MB, Sun Y, Chen J, et al. An essential role for orexins in emergence from general anesthesia. Proc Natl Acad Sci U S A 2008; 105: 1309-14.CrossRefPubMed Kelz MB, Sun Y, Chen J, et al. An essential role for orexins in emergence from general anesthesia. Proc Natl Acad Sci U S A 2008; 105: 1309-14.CrossRefPubMed
76.
Zurück zum Zitat Gompf H, Chen J, Sun Y, Yanagisawa M, Aston-Jones G, Kelz MB. Halothane-induced hypnosis is not accompanied by inactivation of orexinergic output in rodents. Anesthesiology 2009; 111: 1001-9.CrossRefPubMed Gompf H, Chen J, Sun Y, Yanagisawa M, Aston-Jones G, Kelz MB. Halothane-induced hypnosis is not accompanied by inactivation of orexinergic output in rodents. Anesthesiology 2009; 111: 1001-9.CrossRefPubMed
77.
Zurück zum Zitat Zecharia AY, Nelson LE, Gent TC, et al. The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor beta3N265 M knock-in mouse. J Neurosci 2009; 29: 2177-87.CrossRefPubMed Zecharia AY, Nelson LE, Gent TC, et al. The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor beta3N265 M knock-in mouse. J Neurosci 2009; 29: 2177-87.CrossRefPubMed
78.
Zurück zum Zitat Zecharia AY, Franks NP. General anesthesia and ascending arousal pathways. Anesthesiology 2009; 111: 695-6.CrossRefPubMed Zecharia AY, Franks NP. General anesthesia and ascending arousal pathways. Anesthesiology 2009; 111: 695-6.CrossRefPubMed
79.
Zurück zum Zitat Mammoto T, Yamamoto Y, Kagawa K, et al. Interactions between neuronal histamine and halothane anesthesia in rats. J Neurochem 1997; 69: 406-11.CrossRefPubMed Mammoto T, Yamamoto Y, Kagawa K, et al. Interactions between neuronal histamine and halothane anesthesia in rats. J Neurochem 1997; 69: 406-11.CrossRefPubMed
80.
Zurück zum Zitat Wang Y, Kikuchi T, Sakai M, Wu JL, Sato K, Okumura F. Age-related modifications of effects of ketamine and propofol on rat hippocampal acetylcholine release studied by in vivo brain microdialysis. Acta Anaesthesiol Scand 2000; 44: 112-7.CrossRefPubMed Wang Y, Kikuchi T, Sakai M, Wu JL, Sato K, Okumura F. Age-related modifications of effects of ketamine and propofol on rat hippocampal acetylcholine release studied by in vivo brain microdialysis. Acta Anaesthesiol Scand 2000; 44: 112-7.CrossRefPubMed
81.
Zurück zum Zitat Jurd R, Arras M, Lambert S, et al. General anesthetic actions in vivo strongly attenuated by a point mutation in the GABA(A) receptor beta3 subunit. FASEB J 2003; 17: 250-2.PubMed Jurd R, Arras M, Lambert S, et al. General anesthetic actions in vivo strongly attenuated by a point mutation in the GABA(A) receptor beta3 subunit. FASEB J 2003; 17: 250-2.PubMed
82.
Zurück zum Zitat Reynolds DS, Rosahl TW, Cirone J, et al. Sedation and anesthesia mediated by distinct GABA(A) receptor isoforms. J Neurosci 2003; 23: 8608-17.PubMed Reynolds DS, Rosahl TW, Cirone J, et al. Sedation and anesthesia mediated by distinct GABA(A) receptor isoforms. J Neurosci 2003; 23: 8608-17.PubMed
83.
Zurück zum Zitat McGinty D, Szymusiak R. Brain structures and mechanisms involved in the generation of NREM sleep: focus on the preoptic hypothalamus. Sleep Med Rev 2001; 5: 323-42.CrossRefPubMed McGinty D, Szymusiak R. Brain structures and mechanisms involved in the generation of NREM sleep: focus on the preoptic hypothalamus. Sleep Med Rev 2001; 5: 323-42.CrossRefPubMed
Metadaten
Titel
Sleep and general anesthesia
verfasst von
Nicholas P. Franks, FMedSci
Anna Y. Zecharia, PhD
Publikationsdatum
01.02.2011
Verlag
Springer-Verlag
Erschienen in
Canadian Journal of Anesthesia/Journal canadien d'anesthésie / Ausgabe 2/2011
Print ISSN: 0832-610X
Elektronische ISSN: 1496-8975
DOI
https://doi.org/10.1007/s12630-010-9420-3

Weitere Artikel der Ausgabe 2/2011

Canadian Journal of Anesthesia/Journal canadien d'anesthésie 2/2011 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.