Skip to main content
Erschienen in: Translational Stroke Research 1/2013

01.02.2013 | Review Article

Preconditioning Strategy in Stem Cell Transplantation Therapy

verfasst von: Shan Ping Yu, Zheng Wei, Ling Wei

Erschienen in: Translational Stroke Research | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

Stem cell transplantation therapy has emerged as a promising regenerative medicine for ischemic stroke and other neurodegenerative disorders. However, many issues and problems remain to be resolved before successful clinical applications of cell-based therapy. To this end, some recent investigations have sought to benefit from well-known mechanisms of ischemic/hypoxic preconditioning. Ischemic/hypoxic preconditioning activates endogenous defense mechanisms that show marked protective effects against multiple insults found in ischemic stroke and other acute attacks. As in many other cell types, a sublethal hypoxic exposure significantly increases the tolerance and regenerative properties of stem cells and progenitor cells. So far, a variety of preconditioning triggers have been tested on different stem cells and progenitor cells. Preconditioned stem cells and progenitors generally show much better cell survival, increased neuronal differentiation, enhanced paracrine effects leading to increased trophic support, and improved homing to the lesion site. Transplantation of preconditioned cells helps to suppress inflammatory factors and immune responses, and promote functional recovery. Although the preconditioning strategy in stem cell therapy is still an emerging research area, accumulating information from reports over the last few years already indicates it as an attractive, if not essential, prerequisite for transplanted cells. It is expected that stem cell preconditioning and its clinical applications will attract more attention in both the basic research field of preconditioning as well as in the field of stem cell translational research. This review summarizes the most important findings in this active research area, covering the preconditioning triggers, potential mechanisms, mediators, and functional benefits for stem cell transplant therapy.
Literatur
1.
Zurück zum Zitat Deveau T, Yu SP, Wei L. Cellular therapy for ischemic stroke. In: Lapchak PA, Zhang JH, editors. Translational stroke research: from target selection to clinical trials. New York: Springer; 2012. p. 777–814.CrossRef Deveau T, Yu SP, Wei L. Cellular therapy for ischemic stroke. In: Lapchak PA, Zhang JH, editors. Translational stroke research: from target selection to clinical trials. New York: Springer; 2012. p. 777–814.CrossRef
2.
Zurück zum Zitat Doorn J, Moll G, Le Blanc K, van Blitterswijk C, de Boer J. Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng Part B Rev. 2012;18:101–15.PubMedCrossRef Doorn J, Moll G, Le Blanc K, van Blitterswijk C, de Boer J. Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng Part B Rev. 2012;18:101–15.PubMedCrossRef
3.
Zurück zum Zitat Haider KH, Ashraf M. Preconditioning approach in stem cell therapy for the treatment of infarcted heart. Prog Mol Biol Transl Sci. 2012;111:323–56.PubMedCrossRef Haider KH, Ashraf M. Preconditioning approach in stem cell therapy for the treatment of infarcted heart. Prog Mol Biol Transl Sci. 2012;111:323–56.PubMedCrossRef
4.
Zurück zum Zitat Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: underlying mechanisms and clinical application. Atherosclerosis. 2009;204:334–41.PubMedCrossRef Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: underlying mechanisms and clinical application. Atherosclerosis. 2009;204:334–41.PubMedCrossRef
5.
Zurück zum Zitat Perez-Pinzon MA. Mechanisms of neuroprotection during ischemic preconditioning: lessons from anoxic tolerance. Comp Biochem Physiol Mol Integr Physiol. 2007;147:291–9.CrossRef Perez-Pinzon MA. Mechanisms of neuroprotection during ischemic preconditioning: lessons from anoxic tolerance. Comp Biochem Physiol Mol Integr Physiol. 2007;147:291–9.CrossRef
6.
Zurück zum Zitat Grimm C, Wenzel A, Groszer M, Mayser H, Seeliger M, Samardzija M, et al. HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med. 2002;8:718–24.PubMedCrossRef Grimm C, Wenzel A, Groszer M, Mayser H, Seeliger M, Samardzija M, et al. HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med. 2002;8:718–24.PubMedCrossRef
7.
Zurück zum Zitat Trendelenburg G, Dirnagl U. Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia. 2005;50:307–20.PubMedCrossRef Trendelenburg G, Dirnagl U. Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia. 2005;50:307–20.PubMedCrossRef
8.
Zurück zum Zitat Ran R, Xu H, Lu A, Bernaudin M, Sharp FR. Hypoxia preconditioning in the brain. Dev Neurosci. 2005;27:87–92.PubMedCrossRef Ran R, Xu H, Lu A, Bernaudin M, Sharp FR. Hypoxia preconditioning in the brain. Dev Neurosci. 2005;27:87–92.PubMedCrossRef
9.
Zurück zum Zitat Li, Y, Yu, SP, Mohamad, O, Genetta, T, Wei, L, Sublethal Transient Global Ischemia Stimulates Migration of Neuroblasts and Neurogenesis in Mice. In: Translational stroke research. New York: Springer; 2010. p. 184–196 Li, Y, Yu, SP, Mohamad, O, Genetta, T, Wei, L, Sublethal Transient Global Ischemia Stimulates Migration of Neuroblasts and Neurogenesis in Mice. In: Translational stroke research. New York: Springer; 2010. p. 184–196
10.
Zurück zum Zitat Przyklenk K, Whittaker P. Remote ischemic preconditioning: current knowledge, unresolved questions, and future priorities. J Cardiovasc Pharmacol Ther. 2011;16:255–9.PubMedCrossRef Przyklenk K, Whittaker P. Remote ischemic preconditioning: current knowledge, unresolved questions, and future priorities. J Cardiovasc Pharmacol Ther. 2011;16:255–9.PubMedCrossRef
11.
Zurück zum Zitat Fairbanks SL, Brambrink AM. Preconditioning and postconditioning for neuroprotection: the most recent evidence. Best Pract Res Clin Anaesthesiol. 2010;24:521–34.PubMedCrossRef Fairbanks SL, Brambrink AM. Preconditioning and postconditioning for neuroprotection: the most recent evidence. Best Pract Res Clin Anaesthesiol. 2010;24:521–34.PubMedCrossRef
12.
Zurück zum Zitat Koch S, Katsnelson M, Dong CH, Perez-Pinzon M. Remote ischemic limb preconditioning after subarachnoid hemorrhage a phase Ib study of safety and feasibility. Stroke. 2011;42:1387–91.PubMedCrossRef Koch S, Katsnelson M, Dong CH, Perez-Pinzon M. Remote ischemic limb preconditioning after subarachnoid hemorrhage a phase Ib study of safety and feasibility. Stroke. 2011;42:1387–91.PubMedCrossRef
13.
Zurück zum Zitat Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 2009;8:398–412.PubMedCrossRef Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 2009;8:398–412.PubMedCrossRef
14.
Zurück zum Zitat Hu XY, Yu SP, Fraser JL, Lu ZY, Ogle ME, Wang JA, et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg. 2008;135:799–808.PubMedCrossRef Hu XY, Yu SP, Fraser JL, Lu ZY, Ogle ME, Wang JA, et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg. 2008;135:799–808.PubMedCrossRef
15.
Zurück zum Zitat Wei L, Fraser JL, Lu ZY, Hu XY, Yu SP. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis. 2012;46:635–45.PubMedCrossRef Wei L, Fraser JL, Lu ZY, Hu XY, Yu SP. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis. 2012;46:635–45.PubMedCrossRef
16.
Zurück zum Zitat Theus MH, Wei L, Cui L, Francis K, Hu XY, Keogh C, et al. In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol. 2008;210:656–70.PubMedCrossRef Theus MH, Wei L, Cui L, Francis K, Hu XY, Keogh C, et al. In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol. 2008;210:656–70.PubMedCrossRef
17.
Zurück zum Zitat Ogle ME, Yu SP, Wei L. Primed for lethal battle: a step forward to enhance the efficacy and efficiency of stem cell transplantation therapy. J Thorac Cardiovasc Surg. 2009;138:527–7.PubMedCrossRef Ogle ME, Yu SP, Wei L. Primed for lethal battle: a step forward to enhance the efficacy and efficiency of stem cell transplantation therapy. J Thorac Cardiovasc Surg. 2009;138:527–7.PubMedCrossRef
18.
Zurück zum Zitat Ii M, Nishimura H, Iwakura A, Wecker A, Eaton E, Asahara T, et al. Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via “imported” nitric oxide synthase activity. Circulation. 2005;111:1114–20.PubMedCrossRef Ii M, Nishimura H, Iwakura A, Wecker A, Eaton E, Asahara T, et al. Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via “imported” nitric oxide synthase activity. Circulation. 2005;111:1114–20.PubMedCrossRef
19.
Zurück zum Zitat Yan FD, Yao YY, Chen LJ, Li YF, Sheng ZL, Ma GS. Hypoxic preconditioning improves survival of cardiac progenitor cells: role of stromal cell derived factor-1 alpha-CXCR4 axis. PLoS One. 2012;7:9.CrossRef Yan FD, Yao YY, Chen LJ, Li YF, Sheng ZL, Ma GS. Hypoxic preconditioning improves survival of cardiac progenitor cells: role of stromal cell derived factor-1 alpha-CXCR4 axis. PLoS One. 2012;7:9.CrossRef
20.
Zurück zum Zitat Stubbs SL, Hsiao STF, Peshavariya HM, Lim SY, Dusting GJ, Dilley RJ. Hypoxic preconditioning enhances survival of human adipose-derived stem cells and conditions endothelial cells in vitro. Stem Cells Dev. 2012;21:1887–96.PubMedCrossRef Stubbs SL, Hsiao STF, Peshavariya HM, Lim SY, Dusting GJ, Dilley RJ. Hypoxic preconditioning enhances survival of human adipose-derived stem cells and conditions endothelial cells in vitro. Stem Cells Dev. 2012;21:1887–96.PubMedCrossRef
21.
Zurück zum Zitat Aly A, Peterson KM, Lerman A, Lerman LO, Rodriguez-Porcel M. Role of oxidative stress in hypoxia preconditioning of cells transplanted to the myocardium: a molecular imaging study. J Cardiovasc Surg. 2011;52:579–85. Aly A, Peterson KM, Lerman A, Lerman LO, Rodriguez-Porcel M. Role of oxidative stress in hypoxia preconditioning of cells transplanted to the myocardium: a molecular imaging study. J Cardiovasc Surg. 2011;52:579–85.
22.
Zurück zum Zitat Peterson KM, Aly A, Lerman A, Lerman LO, Rodriguez-Porcel M. Improved survival of mesenchymal stromal cell after hypoxia preconditioning: role of oxidative stress. Life Sci. 2011;88:65–73.PubMedCrossRef Peterson KM, Aly A, Lerman A, Lerman LO, Rodriguez-Porcel M. Improved survival of mesenchymal stromal cell after hypoxia preconditioning: role of oxidative stress. Life Sci. 2011;88:65–73.PubMedCrossRef
23.
Zurück zum Zitat Das R, Jahr H, van Osch G, Farrell E. The role of hypoxia in bone marrow-derived mesenchymal stem cells: considerations for regenerative medicine approaches. Tissue Eng Part B Rev. 2010;16:159–68.PubMedCrossRef Das R, Jahr H, van Osch G, Farrell E. The role of hypoxia in bone marrow-derived mesenchymal stem cells: considerations for regenerative medicine approaches. Tissue Eng Part B Rev. 2010;16:159–68.PubMedCrossRef
24.
Zurück zum Zitat Wang JA, He A, Hu XY, Jiang Y, Sun Y, Jiang J, et al. Anoxic preconditioning: a way to enhance the cardioprotection of mesenchymal stem cells. Int J Cardiol. 2009;133:410–2.PubMedCrossRef Wang JA, He A, Hu XY, Jiang Y, Sun Y, Jiang J, et al. Anoxic preconditioning: a way to enhance the cardioprotection of mesenchymal stem cells. Int J Cardiol. 2009;133:410–2.PubMedCrossRef
25.
Zurück zum Zitat Li JH, Zhang N, Wang JA. Improved anti-apoptotic and anti-remodeling potency of bone marrow mesenchyma stem cells by anoxic pre-conditioning in diabetic cardiomyopathy. J Endocrinol Investig. 2008;31:103–10. Li JH, Zhang N, Wang JA. Improved anti-apoptotic and anti-remodeling potency of bone marrow mesenchyma stem cells by anoxic pre-conditioning in diabetic cardiomyopathy. J Endocrinol Investig. 2008;31:103–10.
26.
Zurück zum Zitat He AN, Jiang Y, Gui C, Sun Y, Li JH, Wang JA. The antiapoptotic effect of mesenchymal stem cell transplantation on ischemic myocardium is enhanced by anoxic preconditioning. Can J Cardiol. 2009;25:353–8.PubMedCrossRef He AN, Jiang Y, Gui C, Sun Y, Li JH, Wang JA. The antiapoptotic effect of mesenchymal stem cell transplantation on ischemic myocardium is enhanced by anoxic preconditioning. Can J Cardiol. 2009;25:353–8.PubMedCrossRef
27.
Zurück zum Zitat Xie XX, Sun AJ, Zhu WQ, Huang ZY, Hu XY, Jia JG, et al. Transplantation of mesenchymal stem cells preconditioned with hydrogen sulfide enhances repair of myocardial infarction in rats. Tohoku J Exp Med. 2012;226:29–36.PubMedCrossRef Xie XX, Sun AJ, Zhu WQ, Huang ZY, Hu XY, Jia JG, et al. Transplantation of mesenchymal stem cells preconditioned with hydrogen sulfide enhances repair of myocardial infarction in rats. Tohoku J Exp Med. 2012;226:29–36.PubMedCrossRef
28.
Zurück zum Zitat Zhang J, Chen G-H, Wang Y-W, Zhao J, Duan H-F, Liao L-M, et al. Hydrogen peroxide preconditioning enhances the therapeutic efficacy of Wharton’s jelly mesenchymal stem cells after myocardial infarction. Chin Med J. 2012;125:3472–8.PubMed Zhang J, Chen G-H, Wang Y-W, Zhao J, Duan H-F, Liao L-M, et al. Hydrogen peroxide preconditioning enhances the therapeutic efficacy of Wharton’s jelly mesenchymal stem cells after myocardial infarction. Chin Med J. 2012;125:3472–8.PubMed
29.
Zurück zum Zitat Kondo-Nakamura M, Shintani-Ishida K, Uemura K, Yoshida K. Brief exposure to carbon monoxide preconditions cardiomyogenic cells against apoptosis in ischemia-reperfusion. Biochem Biophys Res Commun. 2010;393:449–54.PubMedCrossRef Kondo-Nakamura M, Shintani-Ishida K, Uemura K, Yoshida K. Brief exposure to carbon monoxide preconditions cardiomyogenic cells against apoptosis in ischemia-reperfusion. Biochem Biophys Res Commun. 2010;393:449–54.PubMedCrossRef
30.
Zurück zum Zitat Li Y, Lu ZY, Keogh CL, Yu SP, Wei L. Erythropoietin-induced neurovascular protection, angiogenesis, and cerebral blood flow restoration after focal ischemia in mice. J Cereb Blood Flow Metab. 2007;27:1043–54.PubMed Li Y, Lu ZY, Keogh CL, Yu SP, Wei L. Erythropoietin-induced neurovascular protection, angiogenesis, and cerebral blood flow restoration after focal ischemia in mice. J Cereb Blood Flow Metab. 2007;27:1043–54.PubMed
31.
Zurück zum Zitat Pasha Z, Wang Y, Sheikh R, Zhang D, Zhao T, Ashraf M. Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res. 2008;77:134–42.PubMedCrossRef Pasha Z, Wang Y, Sheikh R, Zhang D, Zhao T, Ashraf M. Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res. 2008;77:134–42.PubMedCrossRef
32.
Zurück zum Zitat Zemani F, Silvestre JS, Fauvel-Lafeve F, Bruel A, Vilar J, Bieche I, et al. Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their proangiogenic potential. Arterioscler Thromb Vasc Biol. 2008;28:644–50.PubMedCrossRef Zemani F, Silvestre JS, Fauvel-Lafeve F, Bruel A, Vilar J, Bieche I, et al. Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their proangiogenic potential. Arterioscler Thromb Vasc Biol. 2008;28:644–50.PubMedCrossRef
33.
Zurück zum Zitat Chen J, Du XL, Zhang KL. Effects of stromal-derived factor 1 preconditioning on apoptosis of rat bone mesenchymal stem cells. J Huazhong Univ Sci Tech-Med Sci. 2009;29:423–6.CrossRef Chen J, Du XL, Zhang KL. Effects of stromal-derived factor 1 preconditioning on apoptosis of rat bone mesenchymal stem cells. J Huazhong Univ Sci Tech-Med Sci. 2009;29:423–6.CrossRef
34.
Zurück zum Zitat Lu G, Ashraf M, Haider KH. Insulin-like growth factor-1 preconditioning accentuates intrinsic survival mechanism in stem cells to resist ischemic injury by orchestrating protein kinase C alpha-Erk1/2 activation. Antioxid Redox Signal. 2012;16:217–27.PubMedCrossRef Lu G, Ashraf M, Haider KH. Insulin-like growth factor-1 preconditioning accentuates intrinsic survival mechanism in stem cells to resist ischemic injury by orchestrating protein kinase C alpha-Erk1/2 activation. Antioxid Redox Signal. 2012;16:217–27.PubMedCrossRef
35.
Zurück zum Zitat Tilkorn DJ, Davies EM, Keramidaris E, Dingle AM, Gerrand YW, Taylor CJ, et al. The in vitro preconditioning of myoblasts to enhance subsequent survival in an in vivo tissue engineering chamber model. Biomaterials. 2012;33:3868–79.PubMedCrossRef Tilkorn DJ, Davies EM, Keramidaris E, Dingle AM, Gerrand YW, Taylor CJ, et al. The in vitro preconditioning of myoblasts to enhance subsequent survival in an in vivo tissue engineering chamber model. Biomaterials. 2012;33:3868–79.PubMedCrossRef
36.
Zurück zum Zitat Jiang BM, Xiao WM, Shi YZ, Liu MD, Xiao XZ. Heat shock pretreatment inhibited the release of Smac/DIABLO from mitochondria and apoptosis induced by hydrogen peroxide in cardiomyocytes and C2C12 myogenic cells. Cell Stress Chaperones. 2005;10:252–62.PubMedCrossRef Jiang BM, Xiao WM, Shi YZ, Liu MD, Xiao XZ. Heat shock pretreatment inhibited the release of Smac/DIABLO from mitochondria and apoptosis induced by hydrogen peroxide in cardiomyocytes and C2C12 myogenic cells. Cell Stress Chaperones. 2005;10:252–62.PubMedCrossRef
37.
Zurück zum Zitat Cui XJ, Wang HJ, Guo HD, Wang C, Ao H, Liu XQ, et al. Transplantation of mesenchymal stem cells preconditioned with diazoxide, a mitochondrial ATP-sensitive potassium channel opener promotes repair of myocardial infarction in rats. Tohoku J Exp Med. 2010;220:139–47.PubMedCrossRef Cui XJ, Wang HJ, Guo HD, Wang C, Ao H, Liu XQ, et al. Transplantation of mesenchymal stem cells preconditioned with diazoxide, a mitochondrial ATP-sensitive potassium channel opener promotes repair of myocardial infarction in rats. Tohoku J Exp Med. 2010;220:139–47.PubMedCrossRef
38.
Zurück zum Zitat Niagara MI, Haider HK, Jiang SJ, Ashraf M. Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circ Res. 2007;100:545–55.PubMedCrossRef Niagara MI, Haider HK, Jiang SJ, Ashraf M. Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circ Res. 2007;100:545–55.PubMedCrossRef
39.
Zurück zum Zitat Idris NM, Ashraf M, Ahmed RPH, Jiang SJ, Haider KH. Activation of IL-11/STAT3 pathway in preconditioned human skeletal myoblasts blocks apoptotic cascade under oxidant stress. Regen Med. 2012;7:47–57.PubMedCrossRef Idris NM, Ashraf M, Ahmed RPH, Jiang SJ, Haider KH. Activation of IL-11/STAT3 pathway in preconditioned human skeletal myoblasts blocks apoptotic cascade under oxidant stress. Regen Med. 2012;7:47–57.PubMedCrossRef
40.
Zurück zum Zitat Afzal MR, Haider HK, Idris NM, Jiang SJ, Ahmed RPH, Ashraf M. Preconditioning promotes survival and angiomyogenic potential of mesenchymal stem cells in the infarcted heart via NF-kappa B signaling. Antioxid Redox Signal. 2010;12:693–702.PubMedCrossRef Afzal MR, Haider HK, Idris NM, Jiang SJ, Ahmed RPH, Ashraf M. Preconditioning promotes survival and angiomyogenic potential of mesenchymal stem cells in the infarcted heart via NF-kappa B signaling. Antioxid Redox Signal. 2010;12:693–702.PubMedCrossRef
41.
Zurück zum Zitat Li LF, Zeng H, Chen JX. Apelin-13 increases myocardial progenitor cells and improves repair postmyocardial infarction. Am J Physiol Heart Circ Physiol. 2012;303:605–18.CrossRef Li LF, Zeng H, Chen JX. Apelin-13 increases myocardial progenitor cells and improves repair postmyocardial infarction. Am J Physiol Heart Circ Physiol. 2012;303:605–18.CrossRef
42.
Zurück zum Zitat Kim JH, Oh AY, Choi YM, Ku SY, Kim YY, Lee NJ, et al. Isoflurane decreases death of human embryonic stem cell-derived, transcriptional marker Nkx2.5(+) cardiac progenitor cells. Acta Anaesthesiol Scand. 2011;55:1124–31.PubMedCrossRef Kim JH, Oh AY, Choi YM, Ku SY, Kim YY, Lee NJ, et al. Isoflurane decreases death of human embryonic stem cell-derived, transcriptional marker Nkx2.5(+) cardiac progenitor cells. Acta Anaesthesiol Scand. 2011;55:1124–31.PubMedCrossRef
43.
Zurück zum Zitat Yao YW, Zhang FM, Wang LS, Zhang GH, Wang ZJ, Chen JM, et al. Lipopolysaccharide preconditioning enhances the efficacy of mesenchymal stem cells transplantation in a rat model of acute myocardial infarction. J Biomed Sci. 2009;16:11.CrossRef Yao YW, Zhang FM, Wang LS, Zhang GH, Wang ZJ, Chen JM, et al. Lipopolysaccharide preconditioning enhances the efficacy of mesenchymal stem cells transplantation in a rat model of acute myocardial infarction. J Biomed Sci. 2009;16:11.CrossRef
44.
Zurück zum Zitat Cai C, Teng L, Vu D, He J-Q, Guo Y, Li Q, et al. The heme oxygenase 1 inducer (CoPP) protects human cardiac stem cells against apoptosis through activation of the extracellular signal-regulated kinase (ERK)/NRF2 signaling pathway and cytokine release. J Biol Chem. 2012;287:33720–32.PubMedCrossRef Cai C, Teng L, Vu D, He J-Q, Guo Y, Li Q, et al. The heme oxygenase 1 inducer (CoPP) protects human cardiac stem cells against apoptosis through activation of the extracellular signal-regulated kinase (ERK)/NRF2 signaling pathway and cytokine release. J Biol Chem. 2012;287:33720–32.PubMedCrossRef
45.
Zurück zum Zitat Haider HK, Ashraf M. Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J Mol Cell Cardiol. 2008;45:554–66.PubMedCrossRef Haider HK, Ashraf M. Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J Mol Cell Cardiol. 2008;45:554–66.PubMedCrossRef
46.
Zurück zum Zitat Haider HK, Ashraf M. Preconditioning and stem cell survival. J Cardiovasc Transl Res. 2010;3:89–102.PubMedCrossRef Haider HK, Ashraf M. Preconditioning and stem cell survival. J Cardiovasc Transl Res. 2010;3:89–102.PubMedCrossRef
47.
Zurück zum Zitat Liu HB, Xue WJ, Ge GQ, Luo XH, Li Y, Xiang HL, et al. Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1 alpha in MSCs. Biochem Biophys Res Commun. 2010;401:509–15.PubMedCrossRef Liu HB, Xue WJ, Ge GQ, Luo XH, Li Y, Xiang HL, et al. Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1 alpha in MSCs. Biochem Biophys Res Commun. 2010;401:509–15.PubMedCrossRef
48.
Zurück zum Zitat Zeng XJ, Yu SP, Taylor T, Ogle M, Wei L. Protective effect of apelin on cultured rat bone marrow mesenchymal stem cells against apoptosis. Stem Cell Res. 2012;8:357–67.PubMedCrossRef Zeng XJ, Yu SP, Taylor T, Ogle M, Wei L. Protective effect of apelin on cultured rat bone marrow mesenchymal stem cells against apoptosis. Stem Cell Res. 2012;8:357–67.PubMedCrossRef
49.
Zurück zum Zitat Wisel S, Khan M, Kuppusamy ML, Mohan IK, Chacko SM, Rivera BK, et al. Pharmacological preconditioning of mesenchymal stem cells with trimetazidine (1–2,3,4-trimethoxybenzyl piperazine) protects hypoxic cells against oxidative stress and enhances recovery of myocardial function in infarcted heart through Bcl-2 expression. J Pharmacol Exp Ther. 2009;329:543–50.PubMedCrossRef Wisel S, Khan M, Kuppusamy ML, Mohan IK, Chacko SM, Rivera BK, et al. Pharmacological preconditioning of mesenchymal stem cells with trimetazidine (1–2,3,4-trimethoxybenzyl piperazine) protects hypoxic cells against oxidative stress and enhances recovery of myocardial function in infarcted heart through Bcl-2 expression. J Pharmacol Exp Ther. 2009;329:543–50.PubMedCrossRef
50.
Zurück zum Zitat Choi KE, Hall CL, Sun JM, Wei L, Mohamad O, Dix TA, et al. A novel stroke therapy of pharmacologically induced hypothermia after focal cerebral ischemia in mice. FASEB J. 2012;26:2799–810.PubMedCrossRef Choi KE, Hall CL, Sun JM, Wei L, Mohamad O, Dix TA, et al. A novel stroke therapy of pharmacologically induced hypothermia after focal cerebral ischemia in mice. FASEB J. 2012;26:2799–810.PubMedCrossRef
51.
Zurück zum Zitat Ogle ME, Gu XH, Espinera AR, Wei L. Inhibition of prolyl hydroxylases by dimethyloxaloylglycine after stroke reduces ischemic brain injury and requires hypoxia inducible factor-1 alpha. Neurobiol Dis. 2012;45:733–42.PubMedCrossRef Ogle ME, Gu XH, Espinera AR, Wei L. Inhibition of prolyl hydroxylases by dimethyloxaloylglycine after stroke reduces ischemic brain injury and requires hypoxia inducible factor-1 alpha. Neurobiol Dis. 2012;45:733–42.PubMedCrossRef
52.
Zurück zum Zitat Semenza GL. Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta-Mol Cell Res. 2011;1813:1263–8.CrossRef Semenza GL. Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta-Mol Cell Res. 2011;1813:1263–8.CrossRef
53.
Zurück zum Zitat Dehne N, Brune B. HIF-1 in the inflammatory microenvironment. Exp Cell Res. 2009;315:1791–7.PubMedCrossRef Dehne N, Brune B. HIF-1 in the inflammatory microenvironment. Exp Cell Res. 2009;315:1791–7.PubMedCrossRef
54.
Zurück zum Zitat Greer SN, Metcalf JL, Wang Y, Ohh M. The updated biology of hypoxia-inducible factor. EMBO J. 2012;31:2448–60.PubMedCrossRef Greer SN, Metcalf JL, Wang Y, Ohh M. The updated biology of hypoxia-inducible factor. EMBO J. 2012;31:2448–60.PubMedCrossRef
55.
Zurück zum Zitat Valsecchi V, Pignataro G, Del Prete A, Sirabella R, Matrone C, Boscia F, et al. NCX1 is a novel target gene for hypoxia-inducible factor-1 in ischemic brain preconditioning. Stroke. 2011;42:754–63.PubMedCrossRef Valsecchi V, Pignataro G, Del Prete A, Sirabella R, Matrone C, Boscia F, et al. NCX1 is a novel target gene for hypoxia-inducible factor-1 in ischemic brain preconditioning. Stroke. 2011;42:754–63.PubMedCrossRef
56.
Zurück zum Zitat Keogh CL, Yu SP, Wei L. The effect of recombinant human erythropoietin on neurovasculature repair after focal ischemic stroke in neonatal rats. J Pharmacol Exp Ther. 2007;322:521–8.PubMedCrossRef Keogh CL, Yu SP, Wei L. The effect of recombinant human erythropoietin on neurovasculature repair after focal ischemic stroke in neonatal rats. J Pharmacol Exp Ther. 2007;322:521–8.PubMedCrossRef
57.
Zurück zum Zitat Li WL, Fraser JL, Yu SP, Zhu J, Jiang YJ, Wei L. The role of VEGF/VEGFR2 signaling in peripheral stimulation-induced cerebral neurovascular regeneration after ischemic stroke in mice. Exp Brain Res. 2011;214:503–13.PubMedCrossRef Li WL, Fraser JL, Yu SP, Zhu J, Jiang YJ, Wei L. The role of VEGF/VEGFR2 signaling in peripheral stimulation-induced cerebral neurovascular regeneration after ischemic stroke in mice. Exp Brain Res. 2011;214:503–13.PubMedCrossRef
58.
Zurück zum Zitat Li WL, Yu SP, Ogle ME, Ding XS, Wei L. Enhanced neurogenesis and cell migration following focal ischemia and peripheral stimulation in mice. Dev Neurobiol. 2008;68:1474–86.PubMedCrossRef Li WL, Yu SP, Ogle ME, Ding XS, Wei L. Enhanced neurogenesis and cell migration following focal ischemia and peripheral stimulation in mice. Dev Neurobiol. 2008;68:1474–86.PubMedCrossRef
59.
Zurück zum Zitat Whitaker VR, Cui L, Miller S, Yu SP, Wei L. Whisker stimulation enhances angiogenesis in the barrel cortex following focal ischemia in mice. J Cereb Blood Flow Metab. 2007;27:57–68.PubMedCrossRef Whitaker VR, Cui L, Miller S, Yu SP, Wei L. Whisker stimulation enhances angiogenesis in the barrel cortex following focal ischemia in mice. J Cereb Blood Flow Metab. 2007;27:57–68.PubMedCrossRef
60.
Zurück zum Zitat Peng H, Wu Y, Duan Z, Ciborowski P, Zheng JC. Proteolytic processing of SDF-1alpha by matrix metalloproteinase-2 impairs CXCR4 signaling and reduces neural progenitor cell migration. Protein Cell. 2012;3:875–82.PubMedCrossRef Peng H, Wu Y, Duan Z, Ciborowski P, Zheng JC. Proteolytic processing of SDF-1alpha by matrix metalloproteinase-2 impairs CXCR4 signaling and reduces neural progenitor cell migration. Protein Cell. 2012;3:875–82.PubMedCrossRef
61.
Zurück zum Zitat Mahfoudh-Boussaid A, Zaouali MA, Hadj-Ayed K, Miled AH, Saidane-Mosbahi D, Rosello-Catafau J, et al. Ischemic preconditioning reduces endoplasmic reticulum stress and upregulates hypoxia inducible factor-1 alpha in ischemic kidney: the role of nitric oxide. J Biomed Sci. 2011;19:8. Mahfoudh-Boussaid A, Zaouali MA, Hadj-Ayed K, Miled AH, Saidane-Mosbahi D, Rosello-Catafau J, et al. Ischemic preconditioning reduces endoplasmic reticulum stress and upregulates hypoxia inducible factor-1 alpha in ischemic kidney: the role of nitric oxide. J Biomed Sci. 2011;19:8.
62.
Zurück zum Zitat Robinson MA, Baumgardner JE, Otto CM. Oxygen-dependent regulation of nitric oxide production by inducible nitric oxide synthase. Free Radic Biol Med. 2011;51:1952–65.PubMedCrossRef Robinson MA, Baumgardner JE, Otto CM. Oxygen-dependent regulation of nitric oxide production by inducible nitric oxide synthase. Free Radic Biol Med. 2011;51:1952–65.PubMedCrossRef
63.
Zurück zum Zitat Liu XB, Wang JA, Ogle ME, Wei L. Prolyl hydroxylase inhibitor dimethyloxalylglycine enhances mesenchymal stem cell survival. J Cell Biochem. 2009;106:903–11.PubMedCrossRef Liu XB, Wang JA, Ogle ME, Wei L. Prolyl hydroxylase inhibitor dimethyloxalylglycine enhances mesenchymal stem cell survival. J Cell Biochem. 2009;106:903–11.PubMedCrossRef
64.
Zurück zum Zitat Sims B, Clarke M, Francillion L, Kindred E, Hopkins ES, Sontheimer H. Hypoxic preconditioning involves system Xc(−) regulation in mouse neural stem cells. Stem Cell Res. 2012;8:285–91.PubMedCrossRef Sims B, Clarke M, Francillion L, Kindred E, Hopkins ES, Sontheimer H. Hypoxic preconditioning involves system Xc(−) regulation in mouse neural stem cells. Stem Cell Res. 2012;8:285–91.PubMedCrossRef
65.
Zurück zum Zitat Shih AY, Erb H, Sun X, Toda S, Kalivas PW, Murphy TH. Cystine/glutamate exchange modulates glutathione supply for neuroprotection from oxidative stress and cell proliferation. J Neurosci. 2006;26:10514–23.PubMedCrossRef Shih AY, Erb H, Sun X, Toda S, Kalivas PW, Murphy TH. Cystine/glutamate exchange modulates glutathione supply for neuroprotection from oxidative stress and cell proliferation. J Neurosci. 2006;26:10514–23.PubMedCrossRef
66.
Zurück zum Zitat Cerrada, I, Ruiz-Sauri, A, Carrero, R, Trigueros, C, Dorronsoro, A, Sanchez-Puelles, JM, Diez-Juan, A, Montero, JA, Sepulveda, P. Hypoxia-inducible factor 1 alpha contributes to cardiac healing in mesenchymal stem cells-mediated cardiac repair. Stem Cells Dev. 2012; (in press) Cerrada, I, Ruiz-Sauri, A, Carrero, R, Trigueros, C, Dorronsoro, A, Sanchez-Puelles, JM, Diez-Juan, A, Montero, JA, Sepulveda, P. Hypoxia-inducible factor 1 alpha contributes to cardiac healing in mesenchymal stem cells-mediated cardiac repair. Stem Cells Dev. 2012; (in press)
67.
Zurück zum Zitat Park J, Park H-H, Choi H, Seo Kim Y, Yu H-J, Lee K-Y, et al. Coenzyme Q10 protects neural stem cells against hypoxia by enhancing survival signals. Brain Res. 2012;1478:64–73.PubMedCrossRef Park J, Park H-H, Choi H, Seo Kim Y, Yu H-J, Lee K-Y, et al. Coenzyme Q10 protects neural stem cells against hypoxia by enhancing survival signals. Brain Res. 2012;1478:64–73.PubMedCrossRef
68.
Zurück zum Zitat Dirnagl U, Meisel A. Endogenous neuroprotection: mitochondria as gateways to cerebral preconditioning. Neuropharmacology. 2008;55:334–44.PubMedCrossRef Dirnagl U, Meisel A. Endogenous neuroprotection: mitochondria as gateways to cerebral preconditioning. Neuropharmacology. 2008;55:334–44.PubMedCrossRef
69.
Zurück zum Zitat Ravati A, Ahlemeyer B, Becker A, Klumpp S, Krieglstein J. Preconditioning-induced neuroprotection is mediated by reactive oxygen species and activation of the transcription factor nuclear factor-kappa B. J Neurochem. 2001;78:909–19.PubMedCrossRef Ravati A, Ahlemeyer B, Becker A, Klumpp S, Krieglstein J. Preconditioning-induced neuroprotection is mediated by reactive oxygen species and activation of the transcription factor nuclear factor-kappa B. J Neurochem. 2001;78:909–19.PubMedCrossRef
70.
Zurück zum Zitat Jou MJ. Pathophysiological and pharmacological implications of mitochondria-targeted reactive oxygen species generation in astrocytes. Adv Drug Deliv Rev. 2008;60:1512–26.PubMedCrossRef Jou MJ. Pathophysiological and pharmacological implications of mitochondria-targeted reactive oxygen species generation in astrocytes. Adv Drug Deliv Rev. 2008;60:1512–26.PubMedCrossRef
71.
Zurück zum Zitat Tang XQ, Feng JQ, Chen J, Chen PX, Zhi JL, Cui Y, et al. Protection of oxidative preconditioning against apoptosis induced by H2O2 in PC12 cells: mechanisms via MMP, ROS, and Bcl-2. Brain Res. 2005;1057:57–64.PubMedCrossRef Tang XQ, Feng JQ, Chen J, Chen PX, Zhi JL, Cui Y, et al. Protection of oxidative preconditioning against apoptosis induced by H2O2 in PC12 cells: mechanisms via MMP, ROS, and Bcl-2. Brain Res. 2005;1057:57–64.PubMedCrossRef
72.
Zurück zum Zitat Xiao L, Lan A, Mo L, Xu W, Jiang N, Hu F, et al. Hydrogen sulfide protects PC12 cells against reactive oxygen species and extracellular signal-regulated kinase 1/2-mediated downregulation of glutamate transporter-1 expression induced by chemical hypoxia. Int J Mol Med. 2012;30:1126–32.PubMed Xiao L, Lan A, Mo L, Xu W, Jiang N, Hu F, et al. Hydrogen sulfide protects PC12 cells against reactive oxygen species and extracellular signal-regulated kinase 1/2-mediated downregulation of glutamate transporter-1 expression induced by chemical hypoxia. Int J Mol Med. 2012;30:1126–32.PubMed
73.
Zurück zum Zitat Waszak P, Alphonse R, Vadivel A, Ionescu L, Eaton F, Thebaud B. Preconditioning enhances the paracrine effect of mesenchymal stem cells in preventing oxygen-induced neonatal lung injury in rats. Stem Cells Dev. 2012;21:2789–97.PubMedCrossRef Waszak P, Alphonse R, Vadivel A, Ionescu L, Eaton F, Thebaud B. Preconditioning enhances the paracrine effect of mesenchymal stem cells in preventing oxygen-induced neonatal lung injury in rats. Stem Cells Dev. 2012;21:2789–97.PubMedCrossRef
74.
Zurück zum Zitat Furuichi T, Liu WL, Shi HL, Miyake M, Liu KJ. Generation of hydrogen peroxide during brief oxygen-glucose deprivation induces preconditioning neuronal protection in primary cultured neurons. J Neurosci Res. 2005;79:816–24.PubMedCrossRef Furuichi T, Liu WL, Shi HL, Miyake M, Liu KJ. Generation of hydrogen peroxide during brief oxygen-glucose deprivation induces preconditioning neuronal protection in primary cultured neurons. J Neurosci Res. 2005;79:816–24.PubMedCrossRef
75.
Zurück zum Zitat Sakata H, Niizuma K, Yoshioka H, Kim GS, Jung JE, Katsu M, et al. Minocycline-preconditioned neural stem cells enhance neuroprotection after ischemic stroke in rats. J Neurosci. 2012;32:3462–73.PubMedCrossRef Sakata H, Niizuma K, Yoshioka H, Kim GS, Jung JE, Katsu M, et al. Minocycline-preconditioned neural stem cells enhance neuroprotection after ischemic stroke in rats. J Neurosci. 2012;32:3462–73.PubMedCrossRef
76.
Zurück zum Zitat Seidlmayer LK, Gomez-Garcia MR, Blatter LA, Pavlov E, Dedkova EN. Inorganic polyphosphate is a potent activator of the mitochondrial permeability transition pore in cardiac myocytes. J Gen Physiol. 2012;139:321–31.PubMedCrossRef Seidlmayer LK, Gomez-Garcia MR, Blatter LA, Pavlov E, Dedkova EN. Inorganic polyphosphate is a potent activator of the mitochondrial permeability transition pore in cardiac myocytes. J Gen Physiol. 2012;139:321–31.PubMedCrossRef
77.
Zurück zum Zitat Abramov AY, Fraley C, Diao CT, Winkfein R, Colicos MA, Duchen MR, et al. Targeted polyphosphatase expression alters mitochondrial metabolism and inhibits calcium-dependent cell death. Proc Natl Acad Sci U S A. 2007;104:18091–6.PubMedCrossRef Abramov AY, Fraley C, Diao CT, Winkfein R, Colicos MA, Duchen MR, et al. Targeted polyphosphatase expression alters mitochondrial metabolism and inhibits calcium-dependent cell death. Proc Natl Acad Sci U S A. 2007;104:18091–6.PubMedCrossRef
78.
Zurück zum Zitat Wang JA, Chen TL, Jiang J, Shi H, Gui C, Luo RH, et al. Hypoxic preconditioning attenuates hypoxia/reoxygenation-induced apoptosis in mesenchymal stem cells. Acta Pharmacol Sin. 2008;29:74–82.PubMedCrossRef Wang JA, Chen TL, Jiang J, Shi H, Gui C, Luo RH, et al. Hypoxic preconditioning attenuates hypoxia/reoxygenation-induced apoptosis in mesenchymal stem cells. Acta Pharmacol Sin. 2008;29:74–82.PubMedCrossRef
79.
Zurück zum Zitat Sepac A, Sedlic F, Si-Tayeb K, Lough J, Duncan SA, Bienengraeber M, et al. Isoflurane preconditioning elicits competent endogenous mechanisms of protection from oxidative stress in cardiomyocytes derived from human embryonic stem cells. Anesthesiology. 2010;113:906–16.PubMedCrossRef Sepac A, Sedlic F, Si-Tayeb K, Lough J, Duncan SA, Bienengraeber M, et al. Isoflurane preconditioning elicits competent endogenous mechanisms of protection from oxidative stress in cardiomyocytes derived from human embryonic stem cells. Anesthesiology. 2010;113:906–16.PubMedCrossRef
80.
Zurück zum Zitat Fretwell L, Dickenson JM. Role of large-conductance Ca2+ −activated potassium channels in adenosine A(1) receptor-mediated pharmacological preconditioning in H9c2 cells. Eur J Pharmacol. 2009;618:37–44.PubMedCrossRef Fretwell L, Dickenson JM. Role of large-conductance Ca2+ −activated potassium channels in adenosine A(1) receptor-mediated pharmacological preconditioning in H9c2 cells. Eur J Pharmacol. 2009;618:37–44.PubMedCrossRef
81.
Zurück zum Zitat Simerabet M, Robin E, Aristi I, Adamczyk S, Tavernier B, Vallet B, et al. Preconditioning by an in situ administration of hydrogen peroxide: involvement of reactive oxygen species and mitochondrial ATP-dependent potassium channel in a cerebral ischemia-reperfusion model. Brain Res. 2008;1240:177–84.PubMedCrossRef Simerabet M, Robin E, Aristi I, Adamczyk S, Tavernier B, Vallet B, et al. Preconditioning by an in situ administration of hydrogen peroxide: involvement of reactive oxygen species and mitochondrial ATP-dependent potassium channel in a cerebral ischemia-reperfusion model. Brain Res. 2008;1240:177–84.PubMedCrossRef
82.
Zurück zum Zitat Sheng R, Liu XQ, Zhang LS, Gao B, Han R, Wu YQ, et al. Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. Autophagy. 2012;8:310–25.PubMedCrossRef Sheng R, Liu XQ, Zhang LS, Gao B, Han R, Wu YQ, et al. Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. Autophagy. 2012;8:310–25.PubMedCrossRef
83.
Zurück zum Zitat Park HK, Chu K, Jung KH, Lee ST, Bahn JJ, Kim M, et al. Autophagy is involved in the ischemic preconditioning. Neurosci Lett. 2009;451:16–9.PubMedCrossRef Park HK, Chu K, Jung KH, Lee ST, Bahn JJ, Kim M, et al. Autophagy is involved in the ischemic preconditioning. Neurosci Lett. 2009;451:16–9.PubMedCrossRef
84.
Zurück zum Zitat Yeh CH, Hsu SP, Yang CC, Chien CT, Wang NP. Hypoxic preconditioning reinforces HIF-alpha-dependent HSP70 signaling to reduce ischemic renal failure-induced renal tubular apoptosis and autophagy. Life Sci. 2010;86:115–23.PubMedCrossRef Yeh CH, Hsu SP, Yang CC, Chien CT, Wang NP. Hypoxic preconditioning reinforces HIF-alpha-dependent HSP70 signaling to reduce ischemic renal failure-induced renal tubular apoptosis and autophagy. Life Sci. 2010;86:115–23.PubMedCrossRef
85.
Zurück zum Zitat Rodriguez-Sinovas A, Boengler K, Cabestrero A, Gres P, Morente M, Ruiz-Meana M, et al. Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection. Circ Res. 2006;99:93–101.PubMedCrossRef Rodriguez-Sinovas A, Boengler K, Cabestrero A, Gres P, Morente M, Ruiz-Meana M, et al. Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection. Circ Res. 2006;99:93–101.PubMedCrossRef
86.
Zurück zum Zitat Fontes MSC, van Veen LAB, de Bakker JMT, van Rijen HVM. Functional consequences of abnormal Cx43 expression in the heart. Biochim Biophys Acta-Biomembr. 2012;1818:2020–9.CrossRef Fontes MSC, van Veen LAB, de Bakker JMT, van Rijen HVM. Functional consequences of abnormal Cx43 expression in the heart. Biochim Biophys Acta-Biomembr. 2012;1818:2020–9.CrossRef
87.
Zurück zum Zitat Axelsen LN, Stahlhut M, Mohammed S, Larsen BD, Nielsen MS, Holstein-Rathlou NH, et al. Identification of ischemia-regulated phosphorylation sites in connexin43: a possible target for the antiarrhythmic peptide analogue rotigaptide (ZP123). J Mol Cell Cardiol. 2006;40:790–8.PubMedCrossRef Axelsen LN, Stahlhut M, Mohammed S, Larsen BD, Nielsen MS, Holstein-Rathlou NH, et al. Identification of ischemia-regulated phosphorylation sites in connexin43: a possible target for the antiarrhythmic peptide analogue rotigaptide (ZP123). J Mol Cell Cardiol. 2006;40:790–8.PubMedCrossRef
88.
Zurück zum Zitat Lu G, Haider HK, Jiang SJ, Ashraf M. Sca-1(+) stem cell survival and engraftment in the infarcted heart dual role for preconditioning-induced connexin-43. Circulation. 2009;119:2587–96.PubMedCrossRef Lu G, Haider HK, Jiang SJ, Ashraf M. Sca-1(+) stem cell survival and engraftment in the infarcted heart dual role for preconditioning-induced connexin-43. Circulation. 2009;119:2587–96.PubMedCrossRef
89.
Zurück zum Zitat Orellana JA, Froger N, Ezan P, Jiang JX, Bennett MVL, Naus CC, et al. ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J Neurochem. 2011;118:826–40.PubMedCrossRef Orellana JA, Froger N, Ezan P, Jiang JX, Bennett MVL, Naus CC, et al. ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J Neurochem. 2011;118:826–40.PubMedCrossRef
90.
Zurück zum Zitat Lin JHC, Lou N, Kang N, Takano T, Hu F, Han XN, et al. A central role of connexin 43 in hypoxic preconditioning. J Neurosci. 2008;28:681–95.PubMedCrossRef Lin JHC, Lou N, Kang N, Takano T, Hu F, Han XN, et al. A central role of connexin 43 in hypoxic preconditioning. J Neurosci. 2008;28:681–95.PubMedCrossRef
91.
Zurück zum Zitat Jaderstad J, Brismar H, Herlenius E. Hypoxic preconditioning increases gap-junctional graft and host communication. Neuroreport. 2010;21:1126–32.PubMedCrossRef Jaderstad J, Brismar H, Herlenius E. Hypoxic preconditioning increases gap-junctional graft and host communication. Neuroreport. 2010;21:1126–32.PubMedCrossRef
92.
Zurück zum Zitat Lu G, Jiang SJ, Ashraf M, Haider KH. Subcellular preconditioning of stem cells: mito-Cx43 gene targeting is cytoprotective via shift of mitochondrial Bak and Bcl-xL balance. Regen Med. 2012;7:323–34.PubMedCrossRef Lu G, Jiang SJ, Ashraf M, Haider KH. Subcellular preconditioning of stem cells: mito-Cx43 gene targeting is cytoprotective via shift of mitochondrial Bak and Bcl-xL balance. Regen Med. 2012;7:323–34.PubMedCrossRef
93.
Zurück zum Zitat Lu G, Haider HK, Porollo A, Ashraf M. Mitochondria-specific transgenic overexpression of connexin-43 simulates preconditioning-induced cytoprotection of stem cells. Cardiovasc Res. 2010;88:277–86.PubMedCrossRef Lu G, Haider HK, Porollo A, Ashraf M. Mitochondria-specific transgenic overexpression of connexin-43 simulates preconditioning-induced cytoprotection of stem cells. Cardiovasc Res. 2010;88:277–86.PubMedCrossRef
94.
Zurück zum Zitat Wang DG, Shen WZ, Zhang FX, Chen ML, Chen HW, Cao KJ. Connexin43 promotes survival of mesenchymal stem cells in ischaemic heart. Cell Biol Int. 2010;34:415–23.PubMedCrossRef Wang DG, Shen WZ, Zhang FX, Chen ML, Chen HW, Cao KJ. Connexin43 promotes survival of mesenchymal stem cells in ischaemic heart. Cell Biol Int. 2010;34:415–23.PubMedCrossRef
95.
Zurück zum Zitat Ahmad Waza A, Andrabi K, Ul Hussain M. Adenosine-triphosphate-sensitive K(+)channel (Kir6.1): a novel phosphospecific interaction partner of connexin 43 (Cx43). Exp Cell Res. 2012;318:2559–66.PubMedCrossRef Ahmad Waza A, Andrabi K, Ul Hussain M. Adenosine-triphosphate-sensitive K(+)channel (Kir6.1): a novel phosphospecific interaction partner of connexin 43 (Cx43). Exp Cell Res. 2012;318:2559–66.PubMedCrossRef
96.
Zurück zum Zitat Rottlaender D, Boengler K, Wolny M, Michels G, Endres-Becker J, Motloch LJ, et al. Connexin 43 acts as a cytoprotective mediator of signal transduction by stimulating mitochondrial K-ATP channels in mouse cardiomyocytes. J Clin Investig. 2010;120:1441–53.PubMedCrossRef Rottlaender D, Boengler K, Wolny M, Michels G, Endres-Becker J, Motloch LJ, et al. Connexin 43 acts as a cytoprotective mediator of signal transduction by stimulating mitochondrial K-ATP channels in mouse cardiomyocytes. J Clin Investig. 2010;120:1441–53.PubMedCrossRef
97.
Zurück zum Zitat Du WJ, Li JK, Wang QY, Hou JB, Yu B. Lithium chloride preconditioning optimizes skeletal myoblast functions for cellular cardiomyoplasty in vitro via glycogen synthase kinase-3 beta/beta-catenin signaling. Cells Tissues Organs. 2009;190:11–9.PubMedCrossRef Du WJ, Li JK, Wang QY, Hou JB, Yu B. Lithium chloride preconditioning optimizes skeletal myoblast functions for cellular cardiomyoplasty in vitro via glycogen synthase kinase-3 beta/beta-catenin signaling. Cells Tissues Organs. 2009;190:11–9.PubMedCrossRef
98.
Zurück zum Zitat Sierra MD, Yang FQ, Narazaki M, Salvucci O, Davis D, Yarchoan R, et al. Differential processing of strornal-derived factor-1 alpha and stromal-derived factor-1 beta explains functional diversity. Blood. 2004;103:2452–9.CrossRef Sierra MD, Yang FQ, Narazaki M, Salvucci O, Davis D, Yarchoan R, et al. Differential processing of strornal-derived factor-1 alpha and stromal-derived factor-1 beta explains functional diversity. Blood. 2004;103:2452–9.CrossRef
99.
Zurück zum Zitat Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol. 2002;3:687–94.PubMedCrossRef Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol. 2002;3:687–94.PubMedCrossRef
100.
Zurück zum Zitat Sharma M, Afrin F, Satija N, Tripathi RP, Gangenahalli GU. Stromal-derived factor-1/CXCR4 signaling: indispensable role in homing and engraftment of hematopoietic stem cells in bone marrow. Stem Cells Dev. 2011;20:933–46.PubMedCrossRef Sharma M, Afrin F, Satija N, Tripathi RP, Gangenahalli GU. Stromal-derived factor-1/CXCR4 signaling: indispensable role in homing and engraftment of hematopoietic stem cells in bone marrow. Stem Cells Dev. 2011;20:933–46.PubMedCrossRef
101.
Zurück zum Zitat Zhao DH, Najbauer J, Garcia E, Metz MZ, Gutova M, Glackin CA, et al. Neural stem cell tropism to glioma: critical role of tumor hypoxia. Mol Cancer Res. 2008;6:1819–29.PubMedCrossRef Zhao DH, Najbauer J, Garcia E, Metz MZ, Gutova M, Glackin CA, et al. Neural stem cell tropism to glioma: critical role of tumor hypoxia. Mol Cancer Res. 2008;6:1819–29.PubMedCrossRef
102.
Zurück zum Zitat Hung SC, Pochampally RR, Hsu SC, Sanchez C, Chen SC, Spees J, et al. Short-term exposure of multipotent stromal cells to low oxygen increases their expression of cx3cr1 and cxcr4 and their engraftment in vivo. PLoS One. 2007;2:11.CrossRef Hung SC, Pochampally RR, Hsu SC, Sanchez C, Chen SC, Spees J, et al. Short-term exposure of multipotent stromal cells to low oxygen increases their expression of cx3cr1 and cxcr4 and their engraftment in vivo. PLoS One. 2007;2:11.CrossRef
103.
Zurück zum Zitat Kubo M, Li TS, Kamota T, Ohshima M, Qin SL, Hamano K. Increased expression of CXCR4 and integrin alpha m in hypoxia-preconditioned cells contributes to improved cell retention and angiogenic potency. J Cell Physiol. 2009;220:508–14.PubMedCrossRef Kubo M, Li TS, Kamota T, Ohshima M, Qin SL, Hamano K. Increased expression of CXCR4 and integrin alpha m in hypoxia-preconditioned cells contributes to improved cell retention and angiogenic potency. J Cell Physiol. 2009;220:508–14.PubMedCrossRef
104.
Zurück zum Zitat Tang YL, Zhu WQ, Cheng M, Chen LJ, Zhang J, Sun T, et al. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res. 2009;104:1209–U218.PubMedCrossRef Tang YL, Zhu WQ, Cheng M, Chen LJ, Zhang J, Sun T, et al. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res. 2009;104:1209–U218.PubMedCrossRef
105.
Zurück zum Zitat Cencioni C, Capogrossi MC, Napolitano M. The SDF-1/CXCR4 axis in stem cell preconditioning. Cardiovasc Res. 2012;94:400–7.PubMedCrossRef Cencioni C, Capogrossi MC, Napolitano M. The SDF-1/CXCR4 axis in stem cell preconditioning. Cardiovasc Res. 2012;94:400–7.PubMedCrossRef
106.
Zurück zum Zitat Ong LL, Li WZ, Oldigs JK, Kaminski A, Gerstmayer B, Piechaczek C, et al. Hypoxic/normoxic preconditioning increases endothelial differentiation potential of human bone marrow cd133+ cells. Tissue Eng Part C Methods. 2010;16:1069–81.PubMedCrossRef Ong LL, Li WZ, Oldigs JK, Kaminski A, Gerstmayer B, Piechaczek C, et al. Hypoxic/normoxic preconditioning increases endothelial differentiation potential of human bone marrow cd133+ cells. Tissue Eng Part C Methods. 2010;16:1069–81.PubMedCrossRef
107.
Zurück zum Zitat Lin JS, Chen YS, Chiang HS, Ma MC. Hypoxic preconditioning protects rat hearts against ischaemia-reperfusion injury: role of erythropoietin on progenitor cell mobilization. J Physiol-Lond. 2008;586:5757–69.PubMedCrossRef Lin JS, Chen YS, Chiang HS, Ma MC. Hypoxic preconditioning protects rat hearts against ischaemia-reperfusion injury: role of erythropoietin on progenitor cell mobilization. J Physiol-Lond. 2008;586:5757–69.PubMedCrossRef
108.
Zurück zum Zitat Miller JT, Bartley JH, Wimborne HJC, Walker AL, Hess DC, Hill WD, et al. The neuroblast and angioblast chemotaxic factor SDF-1 (CXCL12) expression is briefly up regulated by reactive astrocytes in brain following neonatal hypoxic–ischemic injury. BMC Neurosci. 2005;6:11.CrossRef Miller JT, Bartley JH, Wimborne HJC, Walker AL, Hess DC, Hill WD, et al. The neuroblast and angioblast chemotaxic factor SDF-1 (CXCL12) expression is briefly up regulated by reactive astrocytes in brain following neonatal hypoxic–ischemic injury. BMC Neurosci. 2005;6:11.CrossRef
109.
Zurück zum Zitat Gao H, Priebe W, Glod J, Banerjee D. Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium. Stem Cells. 2009;27:857–65.PubMedCrossRef Gao H, Priebe W, Glod J, Banerjee D. Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium. Stem Cells. 2009;27:857–65.PubMedCrossRef
110.
Zurück zum Zitat Zheng H, Fu GS, Dai T, Huang H. Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1 alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway. J Cardiovasc Pharmacol. 2007;50:274–80.PubMedCrossRef Zheng H, Fu GS, Dai T, Huang H. Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1 alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway. J Cardiovasc Pharmacol. 2007;50:274–80.PubMedCrossRef
111.
Zurück zum Zitat Kim HW, Mallick F, Durrani S, Ashraf M, Jiang SJ, Haider KH. Concomitant activation of mir-107/pdcd10 and hypoxamir-210/casp8ap2 and their role in cytoprotection during ischemic preconditioning of stem cells. Antioxid Redox Signal. 2012;17:1053–65.PubMedCrossRef Kim HW, Mallick F, Durrani S, Ashraf M, Jiang SJ, Haider KH. Concomitant activation of mir-107/pdcd10 and hypoxamir-210/casp8ap2 and their role in cytoprotection during ischemic preconditioning of stem cells. Antioxid Redox Signal. 2012;17:1053–65.PubMedCrossRef
112.
Zurück zum Zitat Meng S, Cao JT, Wang LS, Zhou Q, Li YG, Shen CX, et al. Microrna 107 partly inhibits endothelial progenitor cells differentiation via hif-1 beta. PLoS One. 2012;7:7. Meng S, Cao JT, Wang LS, Zhou Q, Li YG, Shen CX, et al. Microrna 107 partly inhibits endothelial progenitor cells differentiation via hif-1 beta. PLoS One. 2012;7:7.
113.
Zurück zum Zitat Suzuki Y, Kim HW, Ashraf M, Haider HK. Diazoxide potentiates mesenchymal stem cell survival via NF-kappa B-dependent miR-146a expression by targeting fas. Am J Physiol Heart Circ Physiol. 2010;299:H1077–82.PubMedCrossRef Suzuki Y, Kim HW, Ashraf M, Haider HK. Diazoxide potentiates mesenchymal stem cell survival via NF-kappa B-dependent miR-146a expression by targeting fas. Am J Physiol Heart Circ Physiol. 2010;299:H1077–82.PubMedCrossRef
114.
Zurück zum Zitat Kostjuk S, Loseva P, Chvartatskaya O, Ershova E, Smirnova T, Malinovskaya E, et al. Extracellular GC-rich DNA activates TLR9-and NF-kB-dependent signaling pathways in human adipose-derived mesenchymal stem cells (haMSCs). Expert Opin Biol Ther. 2012;12:S99–111.PubMedCrossRef Kostjuk S, Loseva P, Chvartatskaya O, Ershova E, Smirnova T, Malinovskaya E, et al. Extracellular GC-rich DNA activates TLR9-and NF-kB-dependent signaling pathways in human adipose-derived mesenchymal stem cells (haMSCs). Expert Opin Biol Ther. 2012;12:S99–111.PubMedCrossRef
115.
Zurück zum Zitat Francis KR, Wei L. Human embryonic stem cell neural differentiation and enhanced cell survival promoted by hypoxic preconditioning. Cell Death Dis. 2010;1:11.CrossRef Francis KR, Wei L. Human embryonic stem cell neural differentiation and enhanced cell survival promoted by hypoxic preconditioning. Cell Death Dis. 2010;1:11.CrossRef
116.
Zurück zum Zitat Lin C, Jun J, Ling W, Xin Z, Fraser JL, Snider BJ, et al. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells. 2008;26:1356–65.CrossRef Lin C, Jun J, Ling W, Xin Z, Fraser JL, Snider BJ, et al. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells. 2008;26:1356–65.CrossRef
117.
Zurück zum Zitat Khan M, Akhtar S, Mohsin S, Khan SN, Riazuddin S. Growth factor preconditioning increases the function of diabetes-impaired mesenchymal stem cells. Stem Cells Dev. 2011;20:67–75.PubMedCrossRef Khan M, Akhtar S, Mohsin S, Khan SN, Riazuddin S. Growth factor preconditioning increases the function of diabetes-impaired mesenchymal stem cells. Stem Cells Dev. 2011;20:67–75.PubMedCrossRef
118.
Zurück zum Zitat Hoke NN, Salloum FN, Kass DA, Das A, Kukreja RC. Preconditioning by phosphodiesterase-5 inhibition improves therapeutic efficacy of adipose-derived stem cells following myocardial infarction in mice. Stem Cells. 2012;30:326–35.PubMedCrossRef Hoke NN, Salloum FN, Kass DA, Das A, Kukreja RC. Preconditioning by phosphodiesterase-5 inhibition improves therapeutic efficacy of adipose-derived stem cells following myocardial infarction in mice. Stem Cells. 2012;30:326–35.PubMedCrossRef
119.
Zurück zum Zitat Herrmann JL, Wang Y, Abarbanell AM, Weil BR, Tan JN, Meldrum DR. Preconditiong mesenchymal stem cells with transforming growth factor-α improves mesenchymal stem cell-mediated cardioprotection. Shock. 2010;33:24–30.PubMedCrossRef Herrmann JL, Wang Y, Abarbanell AM, Weil BR, Tan JN, Meldrum DR. Preconditiong mesenchymal stem cells with transforming growth factor-α improves mesenchymal stem cell-mediated cardioprotection. Shock. 2010;33:24–30.PubMedCrossRef
120.
Zurück zum Zitat Efimenko A, Starostina E, Kalinina N, Stolzing A. Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. J Transl Med. 2011;9:13.CrossRef Efimenko A, Starostina E, Kalinina N, Stolzing A. Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. J Transl Med. 2011;9:13.CrossRef
121.
Zurück zum Zitat Chang C-P, Chio C-C, Cheong C-U, Chao C-M, Cheng B-C, Lin M-T. Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci (Lond). 2013;124:165–76.CrossRef Chang C-P, Chio C-C, Cheong C-U, Chao C-M, Cheng B-C, Lin M-T. Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci (Lond). 2013;124:165–76.CrossRef
122.
Zurück zum Zitat Mohamad O, Chen DD, Zhang LL, Hofmann C, Wei L, Yu SP. Erythropoietin reduces neuronal cell death and hyperalgesia induced by peripheral inflammatory pain in neonatal rats. Mol Pain. 2011;7:15.CrossRef Mohamad O, Chen DD, Zhang LL, Hofmann C, Wei L, Yu SP. Erythropoietin reduces neuronal cell death and hyperalgesia induced by peripheral inflammatory pain in neonatal rats. Mol Pain. 2011;7:15.CrossRef
123.
Zurück zum Zitat Li JM, Li JP, Zhang X, Lu ZY, Yu SP, Wei L. Expression of heparanase in vascular cells and astrocytes of the mouse brain after focal cerebral ischemia. Brain Res. 2012;1433:137–44.PubMedCrossRef Li JM, Li JP, Zhang X, Lu ZY, Yu SP, Wei L. Expression of heparanase in vascular cells and astrocytes of the mouse brain after focal cerebral ischemia. Brain Res. 2012;1433:137–44.PubMedCrossRef
124.
Zurück zum Zitat Hu X, Wei L, Taylor TM, Wei J, Zhou X, Wang J-A, et al. Hypoxic preconditioning enhances bone marrow mesenchymal stem cell migration via Kv2.1 channel and FAK activation. Am J Physiol Cell Physiol. 2011;301:C362–72.PubMedCrossRef Hu X, Wei L, Taylor TM, Wei J, Zhou X, Wang J-A, et al. Hypoxic preconditioning enhances bone marrow mesenchymal stem cell migration via Kv2.1 channel and FAK activation. Am J Physiol Cell Physiol. 2011;301:C362–72.PubMedCrossRef
125.
Zurück zum Zitat Kamota T, Li TS, Morikage N, Murakami M, Ohshima M, Kubo M, et al. Ischemic pre-conditioning enhances the mobilization and recruitment of bone marrow stem cells to protect against ischemia/reperfusion injury in the late phase. J Am Coll Cardiol. 2009;53:1814–22.PubMedCrossRef Kamota T, Li TS, Morikage N, Murakami M, Ohshima M, Kubo M, et al. Ischemic pre-conditioning enhances the mobilization and recruitment of bone marrow stem cells to protect against ischemia/reperfusion injury in the late phase. J Am Coll Cardiol. 2009;53:1814–22.PubMedCrossRef
126.
Zurück zum Zitat Li SY, Deng YB, Feng JQ, Ye WB. Oxidative preconditioning promotes bone marrow mesenchymal stem cells migration and prevents apoptosis. Cell Biol Int. 2009;33:411–8.PubMedCrossRef Li SY, Deng YB, Feng JQ, Ye WB. Oxidative preconditioning promotes bone marrow mesenchymal stem cells migration and prevents apoptosis. Cell Biol Int. 2009;33:411–8.PubMedCrossRef
127.
Zurück zum Zitat Rosova I, Dao M, Capoccia B, Link D, Nolta JA. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells. 2008;26:2173–82.PubMedCrossRef Rosova I, Dao M, Capoccia B, Link D, Nolta JA. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells. 2008;26:2173–82.PubMedCrossRef
128.
Zurück zum Zitat Hayakawa J, Migita M, Ueda T, Fukazawa R, Adachi K, Ooue Y, et al. Dextran sulfate and stromal cell derived factor-1 promote cxcr4 expression and improve bone marrow homing efficiency of infused hematopoietic stem cells. J Nippon Med School. 2009;76:198–208.CrossRef Hayakawa J, Migita M, Ueda T, Fukazawa R, Adachi K, Ooue Y, et al. Dextran sulfate and stromal cell derived factor-1 promote cxcr4 expression and improve bone marrow homing efficiency of infused hematopoietic stem cells. J Nippon Med School. 2009;76:198–208.CrossRef
129.
Zurück zum Zitat Wei J-F, Wei L, Zhou X, Lu Z-Y, Francis K, Hu X-Y, et al. Formation of Kv2.1-FAK complex as a mechanism of FAK activation, cell polarization and enhanced motility. J Cell Physiol. 2008;217:544–57.PubMedCrossRef Wei J-F, Wei L, Zhou X, Lu Z-Y, Francis K, Hu X-Y, et al. Formation of Kv2.1-FAK complex as a mechanism of FAK activation, cell polarization and enhanced motility. J Cell Physiol. 2008;217:544–57.PubMedCrossRef
130.
Zurück zum Zitat Wei, J-F, Wei, L, Zhou, X, Lu, Z-Y, Francis, K, Hu, X-Y, Liu, Y, Xiong, W-C, Zhang, X, Banik, NL, Zheng, S-S, Yu, SP. Formation of Kv2.1-FAK complex as a mechanism of FAK activation, cell polarization and enhanced motility. J Cell Physiol. 2008;217(2):544–57. Wei, J-F, Wei, L, Zhou, X, Lu, Z-Y, Francis, K, Hu, X-Y, Liu, Y, Xiong, W-C, Zhang, X, Banik, NL, Zheng, S-S, Yu, SP. Formation of Kv2.1-FAK complex as a mechanism of FAK activation, cell polarization and enhanced motility. J Cell Physiol. 2008;217(2):544–57.
131.
Zurück zum Zitat Rota C, Imberti B, Pozzobon M, Piccoli M, De Coppi P, Atala A, et al. Human amniotic fluid stem cell preconditioning improves their regenerative potential. Stem Cells Dev. 2012;21:1911–23.PubMedCrossRef Rota C, Imberti B, Pozzobon M, Piccoli M, De Coppi P, Atala A, et al. Human amniotic fluid stem cell preconditioning improves their regenerative potential. Stem Cells Dev. 2012;21:1911–23.PubMedCrossRef
132.
Zurück zum Zitat Gyongyosi M, Posa A, Pavo N, Hemetsberger R, Kvakan H, Steiner-Boker S, et al. Differential effect of ischaemic preconditioning on mobilisation and recruitment of haematopoietic and mesenchymal stem cells in porcine myocardial ischaemia-reperfusion. Thromb Haemost. 2010;104:376–84.PubMedCrossRef Gyongyosi M, Posa A, Pavo N, Hemetsberger R, Kvakan H, Steiner-Boker S, et al. Differential effect of ischaemic preconditioning on mobilisation and recruitment of haematopoietic and mesenchymal stem cells in porcine myocardial ischaemia-reperfusion. Thromb Haemost. 2010;104:376–84.PubMedCrossRef
133.
Zurück zum Zitat Czeiger D, Dukhno O, Douvdevani A, Porat Y, Shimoni D, Fulga V, et al. Transient extremity ischemia augments CD34+ progenitor cell availability. Stem Cell Rev Rep. 2011;7:639–45.CrossRef Czeiger D, Dukhno O, Douvdevani A, Porat Y, Shimoni D, Fulga V, et al. Transient extremity ischemia augments CD34+ progenitor cell availability. Stem Cell Rev Rep. 2011;7:639–45.CrossRef
134.
Zurück zum Zitat Patschan D, Krupincza K, Patschan S, Zhang ZT, Hamby C, Goligorsky MS. Dynamics of mobilization and homing of endothelial progenitor cells after acute renal ischemia: modulation by ischemic preconditioning. Am J Physiol Renal Physiol. 2006;291:F176–85.PubMedCrossRef Patschan D, Krupincza K, Patschan S, Zhang ZT, Hamby C, Goligorsky MS. Dynamics of mobilization and homing of endothelial progenitor cells after acute renal ischemia: modulation by ischemic preconditioning. Am J Physiol Renal Physiol. 2006;291:F176–85.PubMedCrossRef
135.
Zurück zum Zitat Akita T, Murohara T, Ikeda H, Sasaki KI, Shimada T, Egami K, et al. Hypoxic preconditioning augments efficacy of human endothelial progenitor cells for therapeutic neovascularization. Lab Investig. 2003;83:65–73.PubMedCrossRef Akita T, Murohara T, Ikeda H, Sasaki KI, Shimada T, Egami K, et al. Hypoxic preconditioning augments efficacy of human endothelial progenitor cells for therapeutic neovascularization. Lab Investig. 2003;83:65–73.PubMedCrossRef
136.
Zurück zum Zitat Leroux L, Descamps B, Tojais NF, Seguy B, Oses P, Moreau C, et al. Hypoxia preconditioned mesenchymal stem cells improve vascular and skeletal muscle fiber regeneration after ischemia through a Wnt4-dependent pathway. Mol Ther. 2010;18:1545–52.PubMedCrossRef Leroux L, Descamps B, Tojais NF, Seguy B, Oses P, Moreau C, et al. Hypoxia preconditioned mesenchymal stem cells improve vascular and skeletal muscle fiber regeneration after ischemia through a Wnt4-dependent pathway. Mol Ther. 2010;18:1545–52.PubMedCrossRef
137.
Zurück zum Zitat Yamazaki M, Nakamura K, Mizukami Y, Ii M, Sasajima J, Sugiyama Y, et al. Sonic hedgehog derived from human pancreatic cancer cells augments angiogenic function of endothelial progenitor cells. Cancer Sci. 2008;99:1131–8.PubMedCrossRef Yamazaki M, Nakamura K, Mizukami Y, Ii M, Sasajima J, Sugiyama Y, et al. Sonic hedgehog derived from human pancreatic cancer cells augments angiogenic function of endothelial progenitor cells. Cancer Sci. 2008;99:1131–8.PubMedCrossRef
138.
Zurück zum Zitat Volkmer E, Kallukalam BC, Maertz J, Otto S, Drosse I, Polzer H, et al. Hypoxic preconditioning of human mesenchymal stem cells overcomes hypoxia-induced inhibition of osteogenic differentiation. Tissue Eng Part A. 2010;16:153–64.PubMedCrossRef Volkmer E, Kallukalam BC, Maertz J, Otto S, Drosse I, Polzer H, et al. Hypoxic preconditioning of human mesenchymal stem cells overcomes hypoxia-induced inhibition of osteogenic differentiation. Tissue Eng Part A. 2010;16:153–64.PubMedCrossRef
139.
Zurück zum Zitat Morimoto D, Tomita T, Kuroda S, Higuchi C, Kato S, Shiba T, et al. Inorganic polyphosphate differentiates human mesenchymal stem cells into osteoblastic cells. J Bone Miner Metab. 2010;28:418–23.PubMedCrossRef Morimoto D, Tomita T, Kuroda S, Higuchi C, Kato S, Shiba T, et al. Inorganic polyphosphate differentiates human mesenchymal stem cells into osteoblastic cells. J Bone Miner Metab. 2010;28:418–23.PubMedCrossRef
140.
Zurück zum Zitat Kawazoe Y, Katoh S, Onodera Y, Kohgo T, Shindoh M, Shiba T. Activation of the FGF signaling pathway and subsequent induction of mesenchymal stem cell differentiation by inorganic polyphosphate. Int J Biol Sci. 2008;4:37–47.PubMedCrossRef Kawazoe Y, Katoh S, Onodera Y, Kohgo T, Shindoh M, Shiba T. Activation of the FGF signaling pathway and subsequent induction of mesenchymal stem cell differentiation by inorganic polyphosphate. Int J Biol Sci. 2008;4:37–47.PubMedCrossRef
141.
Zurück zum Zitat Shmelkov SV, Meeus S, Moussazadeh N, Kermani P, Rashbaum WK, Rabbany SY, et al. Cytokine preconditioning promotes codifferentiation of human fetal liver CD133(+) stem cells into angiomyogenic tissue. Circulation. 2005;111:1175–83.PubMedCrossRef Shmelkov SV, Meeus S, Moussazadeh N, Kermani P, Rashbaum WK, Rabbany SY, et al. Cytokine preconditioning promotes codifferentiation of human fetal liver CD133(+) stem cells into angiomyogenic tissue. Circulation. 2005;111:1175–83.PubMedCrossRef
142.
Zurück zum Zitat Cui JH, Park SR, Park K, Choi BH, Min BH. Preconditioning of mesenchymal stem cells with low-intensity ultrasound for cartilage formation in vivo. Tissue Eng. 2007;13:351–60.PubMedCrossRef Cui JH, Park SR, Park K, Choi BH, Min BH. Preconditioning of mesenchymal stem cells with low-intensity ultrasound for cartilage formation in vivo. Tissue Eng. 2007;13:351–60.PubMedCrossRef
143.
Zurück zum Zitat Lucchinetti E, Zeisberger SM, Baruscotti I, Wacker J, Feng JH, Zaugg K, et al. Stem cell-like human endothelial progenitors show enhanced colony-forming capacity after brief sevoflurane exposure: preconditioning of angiogenic cells by volatile anesthetics. Anesth Analg. 2009;109:1117–26.PubMedCrossRef Lucchinetti E, Zeisberger SM, Baruscotti I, Wacker J, Feng JH, Zaugg K, et al. Stem cell-like human endothelial progenitors show enhanced colony-forming capacity after brief sevoflurane exposure: preconditioning of angiogenic cells by volatile anesthetics. Anesth Analg. 2009;109:1117–26.PubMedCrossRef
144.
Zurück zum Zitat Popescu M, Munteanu A, Isvoranu G, Suciu L, Pavel B, Marinescu B, et al. Dynamics of endothelial progenitor cells following sevoflurane preconditioning. Roum Arch Microbiol Immunol. 2011;70:109–13.PubMed Popescu M, Munteanu A, Isvoranu G, Suciu L, Pavel B, Marinescu B, et al. Dynamics of endothelial progenitor cells following sevoflurane preconditioning. Roum Arch Microbiol Immunol. 2011;70:109–13.PubMed
145.
Zurück zum Zitat Kubo M, Li TS, Kurazumi H, Takemoto Y, Ohshima M, Murata T, et al. Hypoxic preconditioning enhances angiogenic potential of bone marrow cells with aging-related functional impairment. Circ J. 2012;76:986–94.PubMedCrossRef Kubo M, Li TS, Kurazumi H, Takemoto Y, Ohshima M, Murata T, et al. Hypoxic preconditioning enhances angiogenic potential of bone marrow cells with aging-related functional impairment. Circ J. 2012;76:986–94.PubMedCrossRef
146.
Zurück zum Zitat Wang MJ, Tsai BM, Crisostomo PR, Meldrum DR. Pretreatment with adult progenitor cells improves recovery and decreases native myocardial proinflammatory signaling after ischemia. Shock. 2006;25:454–9.PubMedCrossRef Wang MJ, Tsai BM, Crisostomo PR, Meldrum DR. Pretreatment with adult progenitor cells improves recovery and decreases native myocardial proinflammatory signaling after ischemia. Shock. 2006;25:454–9.PubMedCrossRef
147.
Zurück zum Zitat Bacigaluppi M, Pluchino S, Jametti LP, Kilic E, Kilic U, Salani G, et al. Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain. 2009;132:2239–51.PubMedCrossRef Bacigaluppi M, Pluchino S, Jametti LP, Kilic E, Kilic U, Salani G, et al. Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain. 2009;132:2239–51.PubMedCrossRef
148.
Zurück zum Zitat Loos B, Smith R, Engelbrecht AM. Ischaemic preconditioning and TNF-alpha-mediated preconditioning is associated with a differential cPLA(2) translocation pattern in early ischaemia. Prostaglandins Leukot Essent Fat Acids. 2008;78:403–13.CrossRef Loos B, Smith R, Engelbrecht AM. Ischaemic preconditioning and TNF-alpha-mediated preconditioning is associated with a differential cPLA(2) translocation pattern in early ischaemia. Prostaglandins Leukot Essent Fat Acids. 2008;78:403–13.CrossRef
149.
Zurück zum Zitat Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, et al. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells. 2006;24:386–98.PubMedCrossRef Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, et al. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells. 2006;24:386–98.PubMedCrossRef
150.
Zurück zum Zitat Cheng AS, Yau TM. Paracrine effects of cell transplantation: strategies to augment the efficacy of cell therapies. Sem Thorac Cardiovasc Surg. 2008;20:94–101.CrossRef Cheng AS, Yau TM. Paracrine effects of cell transplantation: strategies to augment the efficacy of cell therapies. Sem Thorac Cardiovasc Surg. 2008;20:94–101.CrossRef
151.
Zurück zum Zitat Canfield SG, Sepac A, Sedlic F, Muravyeva MY, Bai XW, Bosnjak ZJ. Marked hyperglycemia attenuates anesthetic preconditioning in human-induced pluripotent stem cell-derived cardiomyocytes. Anesthesiology. 2012;117:735–44.PubMedCrossRef Canfield SG, Sepac A, Sedlic F, Muravyeva MY, Bai XW, Bosnjak ZJ. Marked hyperglycemia attenuates anesthetic preconditioning in human-induced pluripotent stem cell-derived cardiomyocytes. Anesthesiology. 2012;117:735–44.PubMedCrossRef
152.
Zurück zum Zitat Zeng XJ, Yu SP, Zhang L, Wei L. Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons. Exp Cell Res. 2010;316:1773–83.PubMedCrossRef Zeng XJ, Yu SP, Zhang L, Wei L. Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons. Exp Cell Res. 2010;316:1773–83.PubMedCrossRef
153.
Zurück zum Zitat Ito T, Itakura S, Todorov I, Rawson J, Asari S, Shintaku J, et al. Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation. 2010;89:1438–45.PubMedCrossRef Ito T, Itakura S, Todorov I, Rawson J, Asari S, Shintaku J, et al. Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation. 2010;89:1438–45.PubMedCrossRef
154.
Zurück zum Zitat Oh JS, Ha Y, An SS, Khan M, Pennant WA, Kim HJ, et al. Hypoxia-preconditioned adipose tissue-derived mesenchymal stem cell increase the survival and gene expression of engineered neural stem cells in a spinal cord injury model. Neurosci Lett. 2010;472:215–9.PubMedCrossRef Oh JS, Ha Y, An SS, Khan M, Pennant WA, Kim HJ, et al. Hypoxia-preconditioned adipose tissue-derived mesenchymal stem cell increase the survival and gene expression of engineered neural stem cells in a spinal cord injury model. Neurosci Lett. 2010;472:215–9.PubMedCrossRef
155.
Zurück zum Zitat Kim HW, Haider HK, Jiang SJ, Ashraf M. Ischemic preconditioning augments survival of stem cells via mir-210 expression by targeting caspase-8-associated protein 2. J Biol Chem. 2009;284:33161–8.PubMedCrossRef Kim HW, Haider HK, Jiang SJ, Ashraf M. Ischemic preconditioning augments survival of stem cells via mir-210 expression by targeting caspase-8-associated protein 2. J Biol Chem. 2009;284:33161–8.PubMedCrossRef
156.
Zurück zum Zitat Noiseux N, Borie M, Desnoyers A, Menaouar A, Stevens LM, Mansour S, et al. Preconditioning of stem cells by oxytocin to improve their therapeutic potential. Endocrinology. 2012;153:5361–72.PubMedCrossRef Noiseux N, Borie M, Desnoyers A, Menaouar A, Stevens LM, Mansour S, et al. Preconditioning of stem cells by oxytocin to improve their therapeutic potential. Endocrinology. 2012;153:5361–72.PubMedCrossRef
157.
Zurück zum Zitat Chen TL, Wang JA, Shi H, Gui C, Luo RH, Xie XJ, et al. Cyclosporin A pre-incubation attenuates hypoxia/reoxygenation-induced apoptosis in mesenchymal stem cells. Scand J Clin Lab Inv. 2008;68:585–93.CrossRef Chen TL, Wang JA, Shi H, Gui C, Luo RH, Xie XJ, et al. Cyclosporin A pre-incubation attenuates hypoxia/reoxygenation-induced apoptosis in mesenchymal stem cells. Scand J Clin Lab Inv. 2008;68:585–93.CrossRef
Metadaten
Titel
Preconditioning Strategy in Stem Cell Transplantation Therapy
verfasst von
Shan Ping Yu
Zheng Wei
Ling Wei
Publikationsdatum
01.02.2013
Verlag
Springer US
Erschienen in
Translational Stroke Research / Ausgabe 1/2013
Print ISSN: 1868-4483
Elektronische ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-012-0251-0

Weitere Artikel der Ausgabe 1/2013

Translational Stroke Research 1/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.