Skip to main content
Erschienen in: Translational Stroke Research 2/2016

01.04.2016 | Original Article

Ginkgo biloba Extract Prevents Female Mice from Ischemic Brain Damage and the Mechanism Is Independent of the HO1/Wnt Pathway

verfasst von: Jatin Tulsulkar, Bryan Glueck, Terry D. Hinds Jr., Zahoor A. Shah

Erschienen in: Translational Stroke Research | Ausgabe 2/2016

Einloggen, um Zugang zu erhalten

Abstract

It is well known that gender differences exist in experimental or clinical stroke with respect to brain damage and loss of functional outcome. We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia using male mice, and the mechanism of action was attributed to the upregulation of the heme oxygenase 1 (HO1)/Wnt pathway. Here, we sought to investigate whether EGb 761’s protective effect in ovariectomized female mice following stroke is also mediated by the HO1/Wnt pathway. Female mice were ovariectomized (OVX) to remove the protective effect of estrogen and were treated with EGb 761 for 7 days prior to inducing permanent middle cerebral artery occlusion (pMCAO) and allowed to survive for an additional 7 days. At day 8, animals were sacrificed, and the brains were harvested for infarct volume analysis, western blots, and immunohistochemistry. The OVX female mice treated with EGb 761 showed significantly lower infarct size as compared to Veh/OVX animals. EGb 761 treatment in female mice inhibited apoptosis by preventing caspase-3 cleavage and blocking the extrinsic apoptotic pathway. EGb 761 pretreatment significantly enhanced neurogenesis in OVX mice as compared to the Veh/OVX group and significantly upregulated androgen receptor expression with no changes in HO1/Wnt signaling. These results suggest that EGb 761 prevented brain damage in OVX female mice by improving grip strength and neurological deficits, and the mechanism of action is not through HO1/Wnt but via blocking the extrinsic apoptotic pathway.
Literatur
1.
2.
Zurück zum Zitat Roger VL et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–e220.PubMedCentralCrossRefPubMed Roger VL et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–e220.PubMedCentralCrossRefPubMed
3.
Zurück zum Zitat Alkayed NJ et al. Gender-linked brain injury in experimental stroke. Stroke. 1998;29(1):159–65. discussion 166.CrossRefPubMed Alkayed NJ et al. Gender-linked brain injury in experimental stroke. Stroke. 1998;29(1):159–65. discussion 166.CrossRefPubMed
4.
Zurück zum Zitat McCullough LD et al. Postischemic estrogen reduces hypoperfusion and secondary ischemia after experimental stroke. Stroke. 2001;32(3):796–802.CrossRefPubMed McCullough LD et al. Postischemic estrogen reduces hypoperfusion and secondary ischemia after experimental stroke. Stroke. 2001;32(3):796–802.CrossRefPubMed
5.
Zurück zum Zitat McCullough LD, Hurn PD. Estrogen and ischemic neuroprotection: an integrated view. Trends Endocrinol Metab. 2003;14(5):228–35.CrossRefPubMed McCullough LD, Hurn PD. Estrogen and ischemic neuroprotection: an integrated view. Trends Endocrinol Metab. 2003;14(5):228–35.CrossRefPubMed
6.
Zurück zum Zitat Hurn PD et al. Postischemic cerebral blood flow recovery in the female: effect of 17 beta-estradiol. J Cereb Blood Flow Metab. 1995;15(4):666–72.CrossRefPubMed Hurn PD et al. Postischemic cerebral blood flow recovery in the female: effect of 17 beta-estradiol. J Cereb Blood Flow Metab. 1995;15(4):666–72.CrossRefPubMed
7.
Zurück zum Zitat Sampei K et al. Stroke in estrogen receptor-alpha-deficient mice. Stroke. 2000;31(3):738–43. discussion 744.CrossRefPubMed Sampei K et al. Stroke in estrogen receptor-alpha-deficient mice. Stroke. 2000;31(3):738–43. discussion 744.CrossRefPubMed
8.
Zurück zum Zitat Dubal DB et al. Estradiol protects against ischemic injury. J Cereb Blood Flow Metab. 1998;18(11):1253–8.CrossRefPubMed Dubal DB et al. Estradiol protects against ischemic injury. J Cereb Blood Flow Metab. 1998;18(11):1253–8.CrossRefPubMed
9.
Zurück zum Zitat Murphy S et al. Estrogen and selective estrogen receptor modulators: neuroprotection in the Women’s Health Initiative era. Endocrine. 2003;21(1):17–26.CrossRefPubMed Murphy S et al. Estrogen and selective estrogen receptor modulators: neuroprotection in the Women’s Health Initiative era. Endocrine. 2003;21(1):17–26.CrossRefPubMed
10.
Zurück zum Zitat Billeci AM et al. Hormone replacement therapy and stroke. Curr Vasc Pharmacol. 2008;6(2):112–23.CrossRefPubMed Billeci AM et al. Hormone replacement therapy and stroke. Curr Vasc Pharmacol. 2008;6(2):112–23.CrossRefPubMed
11.
Zurück zum Zitat Gibson CL, Coomber B, Murphy SP. Progesterone is neuroprotective following cerebral ischaemia in reproductively ageing female mice. Brain. 2011;134(Pt 7):2125–33.CrossRefPubMed Gibson CL, Coomber B, Murphy SP. Progesterone is neuroprotective following cerebral ischaemia in reproductively ageing female mice. Brain. 2011;134(Pt 7):2125–33.CrossRefPubMed
12.
13.
Zurück zum Zitat Janssen IM et al. Ginkgo biloba in Alzheimer’s disease: a systematic review. Wien Med Wochenschr. 2010;160(21–22):539–46.CrossRefPubMed Janssen IM et al. Ginkgo biloba in Alzheimer’s disease: a systematic review. Wien Med Wochenschr. 2010;160(21–22):539–46.CrossRefPubMed
14.
Zurück zum Zitat Shah ZA, Nada SE, Dore S. Heme oxygenase 1, beneficial role in permanent ischemic stroke and in Gingko biloba (EGb 761) neuroprotection. Neuroscience. 2011;180:248–55.PubMedCentralCrossRefPubMed Shah ZA, Nada SE, Dore S. Heme oxygenase 1, beneficial role in permanent ischemic stroke and in Gingko biloba (EGb 761) neuroprotection. Neuroscience. 2011;180:248–55.PubMedCentralCrossRefPubMed
15.
Zurück zum Zitat Tulsulkar J, Shah ZA. Ginkgo biloba prevents transient global ischemia-induced delayed hippocampal neuronal death through antioxidant and anti-inflammatory mechanism. Neurochem Int. 2013;62(2):189–97.PubMedCentralCrossRefPubMed Tulsulkar J, Shah ZA. Ginkgo biloba prevents transient global ischemia-induced delayed hippocampal neuronal death through antioxidant and anti-inflammatory mechanism. Neurochem Int. 2013;62(2):189–97.PubMedCentralCrossRefPubMed
16.
Zurück zum Zitat Nada SE, Tulsulkar J, Shah ZA. Heme oxygenase 1-mediated neurogenesis is enhanced by Ginkgo biloba (EGb 761(R)) after permanent ischemic stroke in mice. Mol Neurobiol. 2014;49(2):945–56.PubMedCentralCrossRefPubMed Nada SE, Tulsulkar J, Shah ZA. Heme oxygenase 1-mediated neurogenesis is enhanced by Ginkgo biloba (EGb 761(R)) after permanent ischemic stroke in mice. Mol Neurobiol. 2014;49(2):945–56.PubMedCentralCrossRefPubMed
17.
18.
Zurück zum Zitat Nada SE et al. A derivative of the CRMP2 binding compound lanthionine ketimine provides neuroprotection in a mouse model of cerebral ischemia. Neurochem Int. 2012;61(8):1357–63.PubMedCentralCrossRefPubMed Nada SE et al. A derivative of the CRMP2 binding compound lanthionine ketimine provides neuroprotection in a mouse model of cerebral ischemia. Neurochem Int. 2012;61(8):1357–63.PubMedCentralCrossRefPubMed
19.
Zurück zum Zitat Allgood VE, Oakley RH, Cidlowski JA. Modulation by vitamin B6 of glucocorticoid receptor-mediated gene expression requires transcription factors in addition to the glucocorticoid receptor. J Biol Chem. 1993;268(28):20870–6.PubMed Allgood VE, Oakley RH, Cidlowski JA. Modulation by vitamin B6 of glucocorticoid receptor-mediated gene expression requires transcription factors in addition to the glucocorticoid receptor. J Biol Chem. 1993;268(28):20870–6.PubMed
20.
Zurück zum Zitat Vanella L et al. Increased heme-oxygenase 1 expression in mesenchymal stem cell-derived adipocytes decreases differentiation and lipid accumulation via upregulation of the canonical Wnt signaling cascade. Stem Cell Res Ther. 2013;4(2):28.PubMedCentralCrossRefPubMed Vanella L et al. Increased heme-oxygenase 1 expression in mesenchymal stem cell-derived adipocytes decreases differentiation and lipid accumulation via upregulation of the canonical Wnt signaling cascade. Stem Cell Res Ther. 2013;4(2):28.PubMedCentralCrossRefPubMed
22.
Zurück zum Zitat Siegel C et al. miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci U S A. 2011;108(28):11662–7.PubMedCentralCrossRefPubMed Siegel C et al. miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci U S A. 2011;108(28):11662–7.PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Ogawa S et al. Survival of reproductive behaviors in estrogen receptor beta gene-deficient (betaERKO) male and female mice. Proc Natl Acad Sci U S A. 1999;96(22):12887–92.PubMedCentralCrossRefPubMed Ogawa S et al. Survival of reproductive behaviors in estrogen receptor beta gene-deficient (betaERKO) male and female mice. Proc Natl Acad Sci U S A. 1999;96(22):12887–92.PubMedCentralCrossRefPubMed
25.
26.
Zurück zum Zitat McCullough LD et al. Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection. J Cereb Blood Flow Metab. 2005;25(4):502–12.CrossRefPubMed McCullough LD et al. Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection. J Cereb Blood Flow Metab. 2005;25(4):502–12.CrossRefPubMed
27.
Zurück zum Zitat Takuma K et al. Ginkgo biloba extract EGb 761 attenuates hippocampal neuronal loss and cognitive dysfunction resulting from chronic restraint stress in ovariectomized rats. Neuroscience. 2007;149(2):256–62.CrossRefPubMed Takuma K et al. Ginkgo biloba extract EGb 761 attenuates hippocampal neuronal loss and cognitive dysfunction resulting from chronic restraint stress in ovariectomized rats. Neuroscience. 2007;149(2):256–62.CrossRefPubMed
28.
Zurück zum Zitat Genazzani AR et al. Estrogen, cognition and female ageing. Hum Reprod Update. 2007;13(2):175–87.CrossRefPubMed Genazzani AR et al. Estrogen, cognition and female ageing. Hum Reprod Update. 2007;13(2):175–87.CrossRefPubMed
29.
Zurück zum Zitat Walesiuk A, Trofimiuk E, Braszko JJ. Gingko biloba extract diminishes stress-induced memory deficits in rats. Pharmacol Rep. 2005;57(2):176–87.PubMed Walesiuk A, Trofimiuk E, Braszko JJ. Gingko biloba extract diminishes stress-induced memory deficits in rats. Pharmacol Rep. 2005;57(2):176–87.PubMed
30.
Zurück zum Zitat Walesiuk A, Trofimiuk E, Braszko JJ. Ginkgo biloba normalizes stress- and corticosterone-induced impairment of recall in rats. Pharmacol Res. 2006;53(2):123–8.CrossRefPubMed Walesiuk A, Trofimiuk E, Braszko JJ. Ginkgo biloba normalizes stress- and corticosterone-induced impairment of recall in rats. Pharmacol Res. 2006;53(2):123–8.CrossRefPubMed
31.
Zurück zum Zitat Chandrasekaran K et al. Neuroprotective effects of bilobalide, a component of Ginkgo biloba extract (EGb 761) in global brain ischemia and in excitotoxicity-induced neuronal death. Pharmacopsychiatry. 2003;36 Suppl 1:S89–94.PubMed Chandrasekaran K et al. Neuroprotective effects of bilobalide, a component of Ginkgo biloba extract (EGb 761) in global brain ischemia and in excitotoxicity-induced neuronal death. Pharmacopsychiatry. 2003;36 Suppl 1:S89–94.PubMed
32.
Zurück zum Zitat Nada SE, Shah ZA. Preconditioning with Ginkgo biloba (EGb 761(R)) provides neuroprotection through HO1 and CRMP2. Neurobiol Dis. 2012;46(1):180–9.PubMedCentralCrossRefPubMed Nada SE, Shah ZA. Preconditioning with Ginkgo biloba (EGb 761(R)) provides neuroprotection through HO1 and CRMP2. Neurobiol Dis. 2012;46(1):180–9.PubMedCentralCrossRefPubMed
33.
Zurück zum Zitat Sung JH et al. Ginkgo biloba extract (EGb 761) prevents the ischemic brain injury-induced decrease in parvalbumin expression. Lab Anim Res. 2012;28(2):77–82.PubMedCentralCrossRefPubMed Sung JH et al. Ginkgo biloba extract (EGb 761) prevents the ischemic brain injury-induced decrease in parvalbumin expression. Lab Anim Res. 2012;28(2):77–82.PubMedCentralCrossRefPubMed
35.
36.
38.
Zurück zum Zitat Arvin B et al. The role of inflammation and cytokines in brain injury. Neurosci Biobehav Rev. 1996;20(3):445–52.CrossRefPubMed Arvin B et al. The role of inflammation and cytokines in brain injury. Neurosci Biobehav Rev. 1996;20(3):445–52.CrossRefPubMed
40.
Zurück zum Zitat Manitt C, Thompson KM, Kennedy TE. Developmental shift in expression of netrin receptors in the rat spinal cord: predominance of UNC-5 homologues in adulthood. J Neurosci Res. 2004;77(5):690–700.CrossRefPubMed Manitt C, Thompson KM, Kennedy TE. Developmental shift in expression of netrin receptors in the rat spinal cord: predominance of UNC-5 homologues in adulthood. J Neurosci Res. 2004;77(5):690–700.CrossRefPubMed
41.
Zurück zum Zitat Bradford D, Cole SJ, Cooper HM. Netrin-1: diversity in development. Int J Biochem Cell Biol. 2009;41(3):487–93.CrossRefPubMed Bradford D, Cole SJ, Cooper HM. Netrin-1: diversity in development. Int J Biochem Cell Biol. 2009;41(3):487–93.CrossRefPubMed
42.
Zurück zum Zitat Masuda T et al. Netrin-1 acts as a repulsive guidance cue for sensory axonal projections toward the spinal cord. J Neurosci. 2008;28(41):10380–5.CrossRefPubMed Masuda T et al. Netrin-1 acts as a repulsive guidance cue for sensory axonal projections toward the spinal cord. J Neurosci. 2008;28(41):10380–5.CrossRefPubMed
43.
Zurück zum Zitat Lu H et al. Netrin-1 hyperexpression in mouse brain promotes angiogenesis and long-term neurological recovery after transient focal ischemia. Stroke. 2012;43(3):838–43.CrossRefPubMed Lu H et al. Netrin-1 hyperexpression in mouse brain promotes angiogenesis and long-term neurological recovery after transient focal ischemia. Stroke. 2012;43(3):838–43.CrossRefPubMed
44.
Zurück zum Zitat Phoenix CH et al. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology. 1959;65:369–82.CrossRefPubMed Phoenix CH et al. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology. 1959;65:369–82.CrossRefPubMed
45.
Zurück zum Zitat Bialek M et al. Neuroprotective role of testosterone in the nervous system. Pol J Pharmacol. 2004;56(5):509–18.PubMed Bialek M et al. Neuroprotective role of testosterone in the nervous system. Pol J Pharmacol. 2004;56(5):509–18.PubMed
47.
Zurück zum Zitat Garcia-Segura LM, Azcoitia I, DonCarlos LL. Neuroprotection by estradiol. Prog Neurobiol. 2001;63(1):29–60.CrossRefPubMed Garcia-Segura LM, Azcoitia I, DonCarlos LL. Neuroprotection by estradiol. Prog Neurobiol. 2001;63(1):29–60.CrossRefPubMed
48.
Zurück zum Zitat Ahlbom E et al. Androgen treatment of neonatal rats decreases susceptibility of cerebellar granule neurons to oxidative stress in vitro. Eur J Neurosci. 1999;11(4):1285–91.CrossRefPubMed Ahlbom E et al. Androgen treatment of neonatal rats decreases susceptibility of cerebellar granule neurons to oxidative stress in vitro. Eur J Neurosci. 1999;11(4):1285–91.CrossRefPubMed
49.
Zurück zum Zitat Ahlbom E, Prins GS, Ceccatelli S. Testosterone protects cerebellar granule cells from oxidative stress-induced cell death through a receptor mediated mechanism. Brain Res. 2001;892(2):255–62.CrossRefPubMed Ahlbom E, Prins GS, Ceccatelli S. Testosterone protects cerebellar granule cells from oxidative stress-induced cell death through a receptor mediated mechanism. Brain Res. 2001;892(2):255–62.CrossRefPubMed
50.
Zurück zum Zitat Yu WH. Sex difference in the regeneration of the hypoglossal nerve in rats. Brain Res. 1982;238(2):404–6.CrossRefPubMed Yu WH. Sex difference in the regeneration of the hypoglossal nerve in rats. Brain Res. 1982;238(2):404–6.CrossRefPubMed
51.
Zurück zum Zitat Yu WH. Effect of testosterone on the regeneration of the hypoglossal nerve in rats. Exp Neurol. 1982;77(1):129–41.CrossRefPubMed Yu WH. Effect of testosterone on the regeneration of the hypoglossal nerve in rats. Exp Neurol. 1982;77(1):129–41.CrossRefPubMed
52.
Zurück zum Zitat Yu WH, Yu MC. Acceleration of the regeneration of the crushed hypoglossal nerve by testosterone. Exp Neurol. 1983;80(2):349–60.CrossRefPubMed Yu WH, Yu MC. Acceleration of the regeneration of the crushed hypoglossal nerve by testosterone. Exp Neurol. 1983;80(2):349–60.CrossRefPubMed
53.
Zurück zum Zitat Ayala P et al. Androgen receptor overexpression is neuroprotective in experimental stroke. Transl Stroke Res. 2011;2(3):346–57.CrossRefPubMed Ayala P et al. Androgen receptor overexpression is neuroprotective in experimental stroke. Transl Stroke Res. 2011;2(3):346–57.CrossRefPubMed
Metadaten
Titel
Ginkgo biloba Extract Prevents Female Mice from Ischemic Brain Damage and the Mechanism Is Independent of the HO1/Wnt Pathway
verfasst von
Jatin Tulsulkar
Bryan Glueck
Terry D. Hinds Jr.
Zahoor A. Shah
Publikationsdatum
01.04.2016
Verlag
Springer US
Erschienen in
Translational Stroke Research / Ausgabe 2/2016
Print ISSN: 1868-4483
Elektronische ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-015-0433-7

Weitere Artikel der Ausgabe 2/2016

Translational Stroke Research 2/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.