Skip to main content
Log in

Metabolomics identifies changes in fatty acid and amino acid profiles in serum of overweight older adults following a weight loss intervention

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The application of metabolomics in nutritional research may be a useful tool to analyse and predict the response to a dietary intervention. The aim of this study was to examine metabolic changes in serum samples following exposure to an energy-restricted diet (−15 % of daily energy requirements) over a period of 8 weeks in overweight and obese older adults (n = 22) using a gas chromatography/mass spectrometry (GC/MS) metabolomic approach. After 8 weeks, there were significant reductions in weight (7 %) and metabolic improvement (glucose and lipid profiles). Metabolomic analysis found that total saturated fatty acids (SFAs), including palmitic acid (C16:0) and stearic acid (C18:0) and monounsaturated fatty acids (MUFAs), were significantly decreased after the 8-week intervention. Furthermore, palmitoleic acid (C16:1) was found to be a negative predictor of change in body fat loss. Both the total ω-6 and ω-3 polyunsaturated fatty acids (PUFAs) significantly decreased, although the overall total amounts of PUFAs did not. The branched chain amino acid (BCAA) isoleucine significantly decreased in the serum samples after the intervention. In conclusion, this study demonstrated that the weight loss intervention based on a hypocaloric diet identified changes in the metabolic profiles of serum in overweight and obese older adults, with a reduction in anthropometric and biochemical parameters also found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Attie AD, Krauss RM, Gray-Keller MP, Brownlie A, Miyazaki M, Kastelein JJ, Lusis AJ, Stalenhoef AF, Stoehr JP, Hayden MR et al (2002) Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. J Lipid Res 43:1899–1907

    Article  CAS  PubMed  Google Scholar 

  2. Bjermo H, Riserus U (2010) Role of hepatic desaturases in obesity-related metabolic disorders. Curr Opin Clin Nutr Metab Care 13:703–708

    Article  CAS  PubMed  Google Scholar 

  3. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  4. Brennan L (2013) Metabolomics in nutrition research: current status and perspectives. Biochem Soc Trans 41:670–673

    Article  CAS  PubMed  Google Scholar 

  5. Bruss MD, Khambatta CF, Ruby MA, Aggarwal I, Hellerstein MK (2010) Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates. Am J Physiol Endocrinol Metab 298:E108–E116

    Article  CAS  PubMed  Google Scholar 

  6. Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS (2008) Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134:933–944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chen YJ, Chen CC, Li TK, Wang PH, Liu LR, Chang FY, Wang YC, Yu YH, Lin SP, Mersmann HJ et al (2012) Docosahexaenoic acid suppresses the expression of FoxO and its target genes. J Nutr Biochem 23:1609–1616

    Article  CAS  PubMed  Google Scholar 

  8. Chen SC, Lin YH, Huang HP, Hsu WL, Houng JY, Huang CK (2012) Effect of conjugated linoleic acid supplementation on weight loss and body fat composition in a Chinese population. Nutrition 28:559–565

    Article  PubMed  Google Scholar 

  9. Chong MF, Hodson L, Bickerton AS, Roberts R, Neville M, Karpe F, Frayn KN, Fielding BA (2008) Parallel activation of de novo lipogenesis and stearoyl-CoA desaturase activity after 3 d of high-carbohydrate feeding. Am J Clin Nutr 87:817–823

    CAS  PubMed  Google Scholar 

  10. Chopra M, Galbraith S, Darnton-Hill I (2002) A global response to a global problem: the epidemic of overnutrition. Bull World Health Organ 80:952–958

    PubMed Central  PubMed  Google Scholar 

  11. Du Y, Meng Q, Zhang Q, Guo F (2012) Isoleucine or valine deprivation stimulates fat loss via increasing energy expenditure and regulating lipid metabolism in WAT. Amino Acids 43:725–734

    Article  CAS  PubMed  Google Scholar 

  12. Etxeberria U, de la Garza AL, Martinez JA, Milagro FI (2013) Diet-induced hyperinsulinemia differentially affects glucose and protein metabolism: a high-throughput metabolomic approach in rats. J Physiol Biochem 69:613–623

    Article  CAS  PubMed  Google Scholar 

  13. Flock MR, Kris-Etherton PM (2013) Diverse physiological effects of long-chain saturated fatty acids: implications for cardiovascular disease. Curr Opin Clin Nutr Metab Care 16:133–140

    Article  CAS  PubMed  Google Scholar 

  14. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    CAS  PubMed  Google Scholar 

  15. Gibney MJ, Walsh M, Brennan L, Roche HM, German B, van Ommen B (2005) Metabolomics in human nutrition: opportunities and challenges. Am J Clin Nutr 82:497–503

    CAS  PubMed  Google Scholar 

  16. Gong J, Campos H, McGarvey S, Wu Z, Goldberg R, Baylin A (2011) Adipose tissue palmitoleic acid and obesity in humans: does it behave as a lipokine? Am J Clin Nutr 93:186–191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Guo X, Li H, Xu H, Halim V, Zhang W, Wang H, Ong KT, Woo SL, Walzem RL, Mashek DG et al (2012) Palmitoleate induces hepatic steatosis but suppresses liver inflammatory response in mice. PLoS One 7:e39286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hudgins LC, Hellerstein MK, Seidman CE, Neese RA, Tremaroli JD, Hirsch J (2000) Relationship between carbohydrate-induced hypertriglyceridemia and fatty acid synthesis in lean and obese subjects. J Lipid Res 41:595–604

    CAS  PubMed  Google Scholar 

  19. Iggman D, Arnlov J, Vessby B, Cederholm T, Sjogren P, Riserus U (2010) Adipose tissue fatty acids and insulin sensitivity in elderly men. Diabetologia 53:850–857

    Article  CAS  PubMed  Google Scholar 

  20. Jakobsen MU, O’Reilly EJ, Heitmann BL, Pereira MA, Balter K, Fraser GE, Goldbourt U, Hallmans G, Knekt P, Liu S et al (2009) Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am J Clin Nutr 89:1425–1432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jiye A, Huang Q, Wang G, Zha W, Yan B, Ren H, Gu S, Zhang Y, Zhang Q, Shao F et al (2008) Global analysis of metabolites in rat and human urine based on gas chromatography/time-of-flight mass spectrometry. Anal Biochem 379:20–26

    Article  CAS  PubMed  Google Scholar 

  22. Kien CL, Bunn JY, Poynter ME, Stevens R, Bain J, Ikayeva O, Fukagawa NK, Champagne CM, Crain KI, Koves TR et al (2013) A lipidomics analysis of the relationship between dietary fatty acid composition and insulin sensitivity in young adults. Diabetes 62:1054–1063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kroger J, Schulze MB (2012) Recent insights into the relation of Δ5 desaturase and Δ6 desaturase activity to the development of type 2 diabetes. Curr Opin Lipidol 23:4–10

    Article  PubMed  Google Scholar 

  24. Kurotani K, Sato M, Ejima Y, Nanri A, Yi S, Pham NM, Akter S, Poudel-Tandukar K, Kimura Y, Imaizumi K et al (2012) High levels of stearic acid, palmitoleic acid, and dihomo-gamma-linolenic acid and low levels of linoleic acid in serum cholesterol ester are associated with high insulin resistance. Nutr Res 32(669–675):e663

    Google Scholar 

  25. Labayen I, Diez N, Parra MD, Gonzalez A, Martinez JA (2004) Time-course changes in macronutrient metabolism induced by a nutritionally balanced low-calorie diet in obese women. Int J Food Sci Nutr 55:27–35

    Article  CAS  PubMed  Google Scholar 

  26. Laferrere B, Reilly D, Arias S, Swerdlow N, Gorroochurn P, Bawa B, Bose M, Teixeira J, Stevens RD, Wenner BR et al (2011) Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci Transl Med 3:80re82

    Article  Google Scholar 

  27. Leidy HJ, Carnell NS, Mattes RD, Campbell WW (2007) Higher protein intake preserves lean mass and satiety with weight loss in pre-obese and obese women. Obesity (Silver Spring) 15:421–429

    Article  CAS  Google Scholar 

  28. Lien LF, Haqq AM, Arlotto M, Slentz CA, Muehlbauer MJ, McMahon RL, Rochon J, Gallup D, Bain JR, Ilkayeva O et al (2009) The STEDMAN project: biophysical, biochemical and metabolic effects of a behavioral weight loss intervention during weight loss, maintenance, and regain. Omics 13:21–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Lopez-Alvarenga JC, Ebbesson SO, Ebbesson LO, Tejero ME, Voruganti VS, Comuzzie AG (2010) Polyunsaturated fatty acids effect on serum triglycerides concentration in the presence of metabolic syndrome components. The Alaska–Siberia Project. Metabolism 59:86–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Lorente-Cebrian S, Costa AG, Navas-Carretero S, Zabala M, Martinez JA, Moreno-Aliaga MJ (2013) Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. J Physiol Biochem

  31. Magkos F, Bradley D, Schweitzer GG, Finck BN, Eagon JC, Ilkayeva O, Newgard CB, Klein S (2013) Effect of roux-en-Y gastric bypass and laparoscopic adjustable gastric banding on branched-chain amino acid metabolism. Diabetes 62:2757–2761

    Article  CAS  PubMed  Google Scholar 

  32. Marques-Lopes I, Ansorena D, Astiasaran I, Forga L, Martinez JA (2001) Postprandial de novo lipogenesis and metabolic changes induced by a high-carbohydrate, low-fat meal in lean and overweight men. Am J Clin Nutr 73:253–261

    CAS  PubMed  Google Scholar 

  33. Mathus-Vliegen EM (2012) Prevalence, pathophysiology, health consequences and treatment options of obesity in the elderly: a guideline. Obes Facts 5:460–483

    Article  CAS  PubMed  Google Scholar 

  34. Morris C, Grada CO, Ryan M, Roche HM, De Vito G, Gibney MJ, Gibney ER, Brennan L (2013) The relationship between aerobic fitness level and metabolic profiles in healthy adults. Mol Nutr Food Res 57:1246–1254

    Article  CAS  PubMed  Google Scholar 

  35. Morris C, O’Grada C, Ryan M, Roche HM, Gibney MJ, Gibney ER, Brennan L (2012) The relationship between BMI and metabolomic profiles: a focus on amino acids. Proc Nutr Soc 71:634–638

    Article  CAS  PubMed  Google Scholar 

  36. Moussavi N, Gavino V, Receveur O (2008) Could the quality of dietary fat, and not just its quantity, be related to risk of obesity? Obesity (Silver Spring) 16:7–15

    Article  Google Scholar 

  37. Muhlhausler BS, Ailhaud GP (2013) Omega-6 polyunsaturated fatty acids and the early origins of obesity. Curr Opin Endocrinol Diabetes Obes 20:56–61

    Article  CAS  PubMed  Google Scholar 

  38. Munro IA, Garg ML (2012) Dietary supplementation with n-3 PUFA does not promote weight loss when combined with a very-low-energy diet. Br J Nutr 108:1466–1474

    Article  CAS  PubMed  Google Scholar 

  39. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Newman AB, Lee JS, Visser M, Goodpaster BH, Kritchevsky SB, Tylavsky FA, Nevitt M, Harris TB (2005) Weight change and the conservation of lean mass in old age: the Health, Aging and Body Composition Study. Am J Clin Nutr 82:872–878, quiz 915-876

    CAS  PubMed  Google Scholar 

  41. Ni Raghallaigh S, Bender K, Lacey N, Brennan L, Powell FC (2012) The fatty acid profile of the skin surface lipid layer in papulopustular rosacea. Br J Dermatol 166:279–287

    Article  CAS  PubMed  Google Scholar 

  42. Norli HR, Christiansen A, Holen B (2010) Independent evaluation of a commercial deconvolution reporting software for gas chromatography mass spectrometry analysis of pesticide residues in fruits and vegetables. J Chromatogr A 1217:2056–2064

    Article  CAS  PubMed  Google Scholar 

  43. Ntambi JM, Miyazaki M (2004) Regulation of stearoyl-CoA desaturases and role in metabolism. Prog Lipid Res 43:91–104

    Article  CAS  PubMed  Google Scholar 

  44. Paillard F, Catheline D, Duff FL, Bouriel M, Deugnier Y, Pouchard M, Daubert JC, Legrand P (2008) Plasma palmitoleic acid, a product of stearoyl-CoA desaturase activity, is an independent marker of triglyceridemia and abdominal adiposity. Nutr Metab Cardiovasc Dis 18:436–440

    Article  CAS  PubMed  Google Scholar 

  45. Pan DA, Lillioja S, Milner MR, Kriketos AD, Baur LA, Bogardus C, Storlien LH (1995) Skeletal muscle membrane lipid composition is related to adiposity and insulin action. J Clin Invest 96:2802–2808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Rezzi S, Ramadan Z, Fay LB, Kochhar S (2007) Nutritional metabonomics: applications and perspectives. J Proteome Res 6:513–525

    Article  CAS  PubMed  Google Scholar 

  47. Ryan M, McInerney D, Owens D, Collins P, Johnson A, Tomkin GH (2000) Diabetes and the Mediterranean diet: a beneficial effect of oleic acid on insulin sensitivity, adipocyte glucose transport and endothelium-dependent vasoreactivity. Qjm 93:85–91

    Article  CAS  PubMed  Google Scholar 

  48. Santanasto AJ, Glynn NW, Newman MA, Taylor CA, Brooks MM, Goodpaster BH, Newman AB (2011) Impact of weight loss on physical function with changes in strength, muscle mass, and muscle fat infiltration in overweight to moderately obese older adults: a randomized clinical trial. J Obes 2011

  49. Shah SH, Crosslin DR, Haynes CS, Nelson S, Turer CB, Stevens RD, Muehlbauer MJ, Wenner BR, Bain JR, Laferrere B et al (2012) Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia 55:321–330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Smilowitz JT, Wiest MM, Watkins SM, Teegarden D, Zemel MB, German JB, Van Loan MD (2009) Lipid metabolism predicts changes in body composition during energy restriction in overweight humans. J Nutr 139:222–229

    Article  CAS  PubMed  Google Scholar 

  51. Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836

    Article  CAS  PubMed  Google Scholar 

  52. van Dijk SJ, Feskens EJ, Bos MB, Hoelen DW, Heijligenberg R, Bromhaar MG, de Groot LC, de Vries JH, Muller M, Afman LA (2009) A saturated fatty acid-rich diet induces an obesity-linked proinflammatory gene expression profile in adipose tissue of subjects at risk of metabolic syndrome. Am J Clin Nutr 90:1656–1664

    Article  PubMed  Google Scholar 

  53. Van Gaal LF, Mertens IL, De Block CE (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444:875–880

    Article  PubMed  Google Scholar 

  54. Walsh MC, Brennan L, Malthouse JP, Roche HM, Gibney MJ (2006) Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am J Clin Nutr 84:531–539

    CAS  PubMed  Google Scholar 

  55. Warensjo E, Ohrvall M, Vessby B (2006) Fatty acid composition and estimated desaturase activities are associated with obesity and lifestyle variables in men and women. Nutr Metab Cardiovasc Dis 16:128–136

    Article  PubMed  Google Scholar 

  56. Warensjo E, Riserus U, Vessby B (2005) Fatty acid composition of serum lipids predicts the development of the metabolic syndrome in men. Diabetologia 48:1999–2005

    Article  CAS  PubMed  Google Scholar 

  57. Weckwerth W, Morgenthal K (2005) Metabolomics: from pattern recognition to biological interpretation. Drug Discov Today 10:1551–1558

    Article  CAS  PubMed  Google Scholar 

  58. Witham MD, Avenell A (2010) Interventions to achieve long-term weight loss in obese older people: a systematic review and meta-analysis. Age Ageing 39:176–184

    Article  PubMed  Google Scholar 

  59. Xie B, Waters MJ, Schirra HJ (2012) Investigating potential mechanisms of obesity by metabolomics. J Biomed Biotechnol 2012:805683

    Article  PubMed Central  PubMed  Google Scholar 

  60. Zong G, Ye X, Sun L, Li H, Yu Z, Hu FB, Sun Q, Lin X (2012) Associations of erythrocyte palmitoleic acid with adipokines, inflammatory markers, and the metabolic syndrome in middle-aged and older Chinese. Am J Clin Nutr 96:970–976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the volunteers for their participation in the study and the physician Blanca E. Martínez de Morentín, the nurse Salomé Pérez, as well as the technician Verónica Ciaurriz for excellent technical assistance in the University of Navarra. We thank Ciara Morris and Martina Wallace from University College Dublin for their contribution to this study. Aurora Pérez-Cornago gratefully acknowledges the pre-doctoral research grant from the “Asociación de Amigos Universidad de Navarra”, as well as the mobility grant from the Spanish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Alfredo Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez-Cornago, A., Brennan, L., Ibero-Baraibar, I. et al. Metabolomics identifies changes in fatty acid and amino acid profiles in serum of overweight older adults following a weight loss intervention. J Physiol Biochem 70, 593–602 (2014). https://doi.org/10.1007/s13105-013-0311-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-013-0311-2

Keywords

Navigation