Skip to main content
Log in

Role of mitochondrial permeability transition pore and mitochondrial ATP-sensitive potassium channels in the protective effects of ischemic preconditioning in isolated hearts from fed and fasted rats

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The aim of the present study was to assess whether the protective effects of ischemic preconditioning (PC) are associated with activation of the mitochondrial ATP-sensitive potassium channels (mitoKATP) and if there is any relationship between the activity of these channels and the mitochondrial permeability transition pore (MPTP) opening in ischemic-reperfused rat hearts under different nutritional conditions. Langendorff-perfused hearts of fed and 24-h fasted rats were exposed to 25 min of no-flow global ischemia plus 30 min of reperfusion. Fasting accelerated functional recovery and attenuated MPTP opening. The mitoKATP blocker, 5-hydroxydecanoic (HD), did not influence functional recovery and MPTP opening induced by ischemia–reperfusion in the fed hearts but partially reversed the beneficial effects of fasting. PC and the mitoKATP opener, diazoxide (DZ), improved functional recovery, preserved cell viability, and inhibited MPTP opening in both fed and fasted hearts. The protection elicited by PC and DZ on contractile recovery and MPTP opening was reversed by HD, which did not affect cell viability. Altogether, these results argue for a role of mitoKATP and its impact on preservation mitochondrial inner membrane permeability as a relevant factor in the improvement of contractile function in the ischemic-reperfused rat heart. They also suggest that the functional protection elicited by PC may be related to this mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANT:

Adenine nucleotide transporter

C:

Control

DMSO:

Dimethyl sulfoxide

DZ:

Diazoxide

HD:

5-Hydroxydecanoic

[3H]-2-DG:

2-Deoxy-[3H]-glucose

mitoKATP:

Mitochondrial ATP-sensitive potassium channels

MPTP:

Mitochondrial permeability transition pore

PC:

Ischemic preconditioning

References

  1. Abdallah Y, Wolf C, Meuter K, Piper HM, Reusch HP, Ladilov Y (2010) Preconditioning with diazoxide prevents reoxygenation-induced rigor-type hypercontracture. J Mol Cell Cardiol 48:270–276

    Article  PubMed  CAS  Google Scholar 

  2. Asimakis GK, Inners-McBride K, Medellin G, Conti VR (1992) Ischemic preconditioning attenuates acidosis and postischemic dysfunction in isolated rat heart. Am J Physiol 263:H887–H894

    PubMed  CAS  Google Scholar 

  3. Baines CP (2009) The mitochondrial permeability transition pore and ischemia-reperfusion injury. Basic Res Cardiol 104(2):181–188

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Di Lisa F, Semenzato M, Carpi A, Menazza S, Kaludercic N, Menabò R, Canton M (2010) In: Minotti G (ed) Mitochondrial dysfunction in cell injury and cardiotoxicity in cardiotoxicity of non-cardiovascular drugs. Wiley, Chichester, pp 1–23

    Chapter  Google Scholar 

  5. Facundo HT, de Paula JG, Kowaltowski AJ (2005) Mitochondrial ATP-sensitive K + channels prevent oxidative stress, permeability transition and cell death. J Bioenerg Biomembr 37(2):75–82

    Article  PubMed  CAS  Google Scholar 

  6. Fryer RM, Eells JT, Hsu AK, Henry MM, Gross GJ (2000) Ischemic preconditioning in rats: role of mitochondrial K(ATP) channel in preservation of mitochondrial function. Am J Physiol 278:H305–H312

    CAS  Google Scholar 

  7. Fryer RM, Hsu AK, Gross GJ (2001) Mitochondrial K (ATP) channel opening is important during index ischemia and following myocardial reperfusion in ischemic preconditioned rat hearts. J Mol Cell Cardiol 33:31–34

    Article  Google Scholar 

  8. Gabel S, Cross HR, London RE, Steenbergen C, Murphy E (1997) Decreased intracellular pH is not due to the increased H+ extrusion in preconditioned rat hearts. Am J Physiol 273:H2257–H2262

    PubMed  CAS  Google Scholar 

  9. Griffiths EJ, Halestrap AP (1995) Mitochondrial non specific pores remain closed during cardiac ischemia, but open upon reperfusion. Biochem J 307:93–98

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Gross GJ, Peart JN (2003) KATP channels and myocardial preconditioning: an update. Am J Physiol Heart Circ Physiol 285:H921–H930

    PubMed  CAS  Google Scholar 

  11. Grover GJ, Murray HN, Baird AJ, Dzwonczyk S (1995) The KATP blocker sodium 5-hydroxydecanoate does not abolish preconditioning in isolated rat hearts. Eur J Pharmacol 277:271–274

    Article  PubMed  CAS  Google Scholar 

  12. Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46(6):821–831

    Article  PubMed  CAS  Google Scholar 

  13. Hausenloy DJ, Ong SB, Yellon DM (2009) The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Res Cardiol 104:189–202

    Article  PubMed  CAS  Google Scholar 

  14. Jennings RB (2013) Historical perspective on the pathology of myocardial ischemia/reperfusion injury. Circ Res 113:428–438

    Article  PubMed  CAS  Google Scholar 

  15. Kerr PM, Suleiman MS, Halestrap AP (1999) Reversal of permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate. Am J Physiol 276:H496–H502

    PubMed  CAS  Google Scholar 

  16. Korge P, Honda HM, Weiss JN (2002) Protection of cardiac mitochondria by diazoxide and protein kinase C: implications for ischemic preconditioning. Proc Natl Acad Sci 299:3312–3317

    Article  Google Scholar 

  17. Liepinsh E, Makrecka M, Kuka J, Makarova E, Vilskersts R, Cirule H, Sevostjanovs E, Grinberga S, Pugovics O, Dambrova M (2014) The heart is better protected against myocardial infarction in the fed state compared to the fasted state. Metab Clin Exp 63:127–136

    Article  PubMed  CAS  Google Scholar 

  18. Marina Prendes MG, Rastelli AH, Astudilla C, Fernández MA, Martínez M, Perazzo JC, Testoni G, Savino EA, Varela A (2004) Influence of fasting on the effects of diazoxide in the ischemic-reperfused rat heart. J Physiol Biochem 60:51–58

    Article  PubMed  CAS  Google Scholar 

  19. Marina Prendes MG, González MS, Torresín ME, Hermann R, Pascale NG, Jaitovich MM, Savino EA, Varela A (2009) Involvement of mitochondrial permeability transition, glutathione status, pentose phosphate pathway and oxidative damage in the protective effect of fasting in the ischemic-reperfused rat heart. Clin Exp Pharmacol Physiol 36:637–642

    Article  PubMed  Google Scholar 

  20. Marina Prendes MG, González MS, Hermann R, Pascale NG, Torresín ME, Jaitovich MM, Savino EA, Varela A (2010) Involvement of the mitochondrial ATP-sensitive potassium channel in the beneficial effects of fasting on the ischaemic-reperfused rat heart. In: Haugen S, Meijer S (eds) Handbook of nutritional biochemistry: genomics, metabolomics and food supply. Nova Science Publishers, United States of America, pp 483–494

    Google Scholar 

  21. Montessuit C, Papageorgiou I, Tardy I, Cantalupi I, Rosenblatt-Velin N, Lerch R (2000) Postischemic recovery of heart metabolism and function: role of mitochondrial fatty acid transfer. J Appl Physiol 89:111–119

    PubMed  CAS  Google Scholar 

  22. Murata M, Akao M, O’Rourke B, Marban E (2001) Mitochondrial ATP sensitive potassium channels attenuate matrix Ca2+ overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res 89:891–898

    Article  PubMed  CAS  Google Scholar 

  23. Ong SB, Gustafsson AS (2012) New roles for mitochondria in cell death in the reperfused myocardium. Cardiovasc Res 94:190–196

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. O’Rourke B (2004) Evidence of mitochondrial K + channels and their role in cardioprotection. Circ Res 94:420–432

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ramasamy R, Liu H, Cherednichenko G, Schaefer S (2001) Fasting limits the increase in intracellular calcium during ischemia in isolated rat hearts. Basic Res Cardiol 96:463–470

    Article  PubMed  CAS  Google Scholar 

  26. Schaefer S, Ramasamy R (1997) Glycogen utilization and ischemic injury in the isolated rat heart. Cardiovasc Res 35:90–98

    Article  PubMed  CAS  Google Scholar 

  27. Schneider CA, Taegtmeyer H (1991) Fasting in vivo delays myocardial cell damage after brief periods of ischemia in the isolated working rat heart. Circ Res 68:1045–1050

    Article  PubMed  CAS  Google Scholar 

  28. Schultz JE, Qian YZ, Gross GJ, Kukreja RC (1997) The ischemia-selective KATP channel antagonist, 5-hydroxydecanoate, blocks ischemic preconditioning in the rat heart. J Mol Cell Cardiol 29:1055–1060

    Article  PubMed  CAS  Google Scholar 

  29. Schwartz LM, Welch TS, Crago MS (2002) Cardioprotection by multiple preconditioning cycles does not require mitochondrial K(ATP) channels in pigs. Am J Physiol 283:H1538–H1544

    CAS  Google Scholar 

  30. Shepherd D, Garland PB (1969) The kinetic properties of citrate synthase from rat liver mitochondria. Biochem J 144:597–599

    Google Scholar 

  31. Sivaraman V, Yellon DM (2014) Pharmacologic therapy that simulates conditioning for cardiac ischemic/reperfusion injury. J Cardiovasc Pharmacol Ther 19:83–96

    Article  PubMed  CAS  Google Scholar 

  32. Sunaga D, Tanno M, Miki T, Kuno A, Kouzu H, Sato T, Ishikawa S, Ogasawara M, Tobisawa T, Miura T (2013) Activation of the mitochondrial ATP-sensitive potassium channel achieves cell protection by promoting re-closure of the mPTP via suppression of GSK-3beta—complex III interaction. Eur Heart J 34:1859

    Article  Google Scholar 

  33. Varanyuwatana P, Halestrap AP (2012) The roles of phosphate and the phosphate carrier in the mitochondrial permeability transition pore. Mitochondrion 12(1):120–125

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Varela A, Marina Prendes MG, Testoni G, Vázquez N, Astudilla C, Cerruti S, Savino EA (2002) Influence of fasting on the effects of ischemic preconditioning in the ischemic-reperfused rat heart. Arch Physiol Biochem 110:189–196

    Article  PubMed  CAS  Google Scholar 

  35. Walters AM, Porter GA Jr, Brookes PS (2012) Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. Circ Res 111:1222–1236

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Norma Gladys Infante for the technical assistance. This research was supported in part by grants from Universidad de Buenos Aires and IQUIMEFA-CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Marina Prendes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marina Prendes, M.G., Hermann, R., Torresin, M.E. et al. Role of mitochondrial permeability transition pore and mitochondrial ATP-sensitive potassium channels in the protective effects of ischemic preconditioning in isolated hearts from fed and fasted rats. J Physiol Biochem 70, 791–800 (2014). https://doi.org/10.1007/s13105-014-0347-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-014-0347-y

Keywords

Navigation