Skip to main content
Log in

Brain oscillatory activity during sleep shows unknown dysfunctions in early encephalopathy

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Electroencephalographic recordings in cirrhotic patients without overt hepatic encephalopathy (HE) have mainly been performed during wakefulness. Our aim was to quantify their alterations in nocturnal sleep electroencephalogram (EEG). In 20 patients and 20 healthy volunteers, we recorded a nocturnal digital polysomnography. Different sleep parameters were measured. Besides, we performed quantitative analysis of EEG (qEEG) as follows: spectral power in the different sleep stages was calculated in the frequency bands low δ, δ, θ, α, and σ. Also, the mean dominant frequency and Sleep Indexes were obtained. In comparison with controls, the group of patients showed (1) different alterations in both the microstructure and the macrostructure of sleep; (2) an increase in, both, θ band power and the average mean dominant frequency during rapid eye movement (REM); (3) in all sleep stages, a decrease of sleep electroencephalogram spectral power in low δ band and an increase in δ band: and (4) in stages N3 and REM, significant increases in the minimum of mean dominant frequency and in the respective sleep indexes. Therefore, in cirrhotic patients without overt HE, and likely having minimal hepatic encephalopathy, we found different alterations in both the microstructure and the macrostructure of nocturnal sleep. Also, sleep qEEG showed a brain dysfunction in slow oscillatory mechanisms intrinsic of sleep stages, with an increase in the frequency of its maximal electroencephalogram synchronization, from low δ to δ band. These alterations may reflect the onset of encephalopathy; sleep qEEG may, thus, be an adequate tool for its brain functional evaluation and follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aeschbach D, Borbély AA (1993) All-night dynamics of the human sleep EEG. J Sleep Res 2:70–81

    Article  PubMed  Google Scholar 

  2. Albrecht J, Jones EA (1999) Hepatic encephalopathy: molecular mechanisms underlying the clinical syndrome. J Neurol Sci 170:138–146

    Article  PubMed  CAS  Google Scholar 

  3. Amodio P, Marchetti P, Del Piccolo F, de Tourtchaninoff M, Varghese P et al (1999) Spectral versus visual EEG analysis in mild hepatic encephalopathy. Clin Neurophysiol 110:1334–1344

    Article  PubMed  CAS  Google Scholar 

  4. Amodio P, Valenti P, Del Piccolo F, Pellegrini A, Schiff S et al (2005) P300 latency for the diagnosis of minimal hepatic encephalopathy: evidence that spectral EEG analysis and psychometric tests are enough. Dig Liver Dis 37:861–868

    Article  PubMed  CAS  Google Scholar 

  5. Amzica F, Steriade M (1998) Cellular substrates and laminar profile of sleep K-complex. Neuroscience 82:671–686

    Article  PubMed  CAS  Google Scholar 

  6. Amzica F, Steriade M (1998) Electrophysiological correlates of sleep delta waves. Clin Neurophysiol 107:69–83

    Article  CAS  Google Scholar 

  7. Bajaj JS (2008) Minimal hepatic encephalopathy matters in daily life. World J Gastroenterol 14(23):3609-3615

  8. Bajaj JS, Saeian K, Schubert CM, Franco R, Franco J et al (2011) Disruption of sleep architecture in minimal hepatic encephalopathy and ghrelin secretion. Aliment Pharmacol Ther 34:103–105

    Article  PubMed  CAS  Google Scholar 

  9. Bajaj JS, Wade JB, Sanyal AJ (2009) Spectrum of neurocognitive impairment in cirrhosis: Implications for the assessment of hepatic encephalopathy. Hepatology 50:2014–2021

    Article  PubMed  Google Scholar 

  10. Bersagliere A, Raduazzo ID, Nardi M, Schiff S, Gatta A et al (2012) Induced hyperammonemia may compromise the ability to generate restful sleep in patients with cirrhosis. Hepatology 55:869–878

    Article  PubMed  CAS  Google Scholar 

  11. Butterworth RF (2000) Complications of cirrhosis III. Hepatic encephalopathy. J Hepatol 32:171–180

    Article  PubMed  CAS  Google Scholar 

  12. Carskadon MA, Dement WC (2000) Normal human sleep: an overview. In: Krieger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine. Saunders, Philadelphia, pp 15–25

    Google Scholar 

  13. Connors BW, Gutnick MJ, Prince DA (1982) Electrophysiological properties of neocortical neurons in vitro. J Neurophysiol 48:1302–1320

    PubMed  CAS  Google Scholar 

  14. Córdoba J, Cabrera J, Lataif L, Penev P, Zee P et al (1998) High prevalence of sleep disturbance in cirrhosis. Hepatology 27:339–345

    Article  PubMed  Google Scholar 

  15. Crunelli V, Hughes SW (2010) The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci 13:9–17

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Dhiman RK, Saraswat VA, Sharma BK, Sarin SK, Chawla YK et al (2010) Minimal hepatic encephalopathy: consensus statement of a working party of the Indian National Association for Study of the Liver. J Gastroenterol Hepatol 25:1029–1041

    Article  PubMed  Google Scholar 

  17. Felipo V, Butterworth RF (2002) Neurobiology of ammonia. Prog Neurobiol 67:259–279

    Article  PubMed  CAS  Google Scholar 

  18. Felipo V, Urios A, Montesinos E, Molina I, Garcia-Torres M et al (2012) Contribution of hyperammonemia and inflammatory factors to cognitive impairment in minimal hepatic encephalopathy. Metab Brain Dis 27:51–58

    Article  PubMed  CAS  Google Scholar 

  19. Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K et al (2002) Hepatic encephalopathy—definition, nomenclature, diagnosis, and quantification: Final report of the Working Party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology 35:716–721

    Article  PubMed  Google Scholar 

  20. Iber C A-IS, Chesson A, Quan SF (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. In: IAAoSM (ed). American Academy of Sleep Medicine. Westchester

  21. Lombardi G, Mannaioni G, Leonardi P, Cherici G, Carlà V et al (1994) Ammonium acetate inhibits ionotropic receptors and differentially affects metabotropic receptors for glutamate. J Neural Transm Gen Sect 97:187–196

    Article  PubMed  CAS  Google Scholar 

  22. Martino ME, Romero-Vives M, Fernandez-Lorente J, De Vicente E, Barcena R et al (2002) Sleep electroencephalogram alterations disclose initial stage of encephalopathy. Methods Find Exp Clin Pharmacol 24(Suppl D):119–122

    PubMed  Google Scholar 

  23. Montagnese S, Middleton B, Mani A, Skene D, Morgan M (2009) Sleep and circadian abnormalities in patients with cirrhosis: features of delayed sleep phase syndrome? Metab Brain Dis 24:427–439

    Article  PubMed  Google Scholar 

  24. Montagnese S, Middleton B, Skene DJ, Morgan MY (2009) Night-time sleep disturbance does not correlate with neuropsychiatric impairment in patients with cirrhosis. Liver Int 29:1372–1382

    Article  PubMed  Google Scholar 

  25. Montgomery J, Bajaj J (2011) Advances in the evaluation and management of minimal hepatic encephalopathy. Curr Gastroenterol Rep 13:26–33

    Article  PubMed  Google Scholar 

  26. Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring systems for sleep stage of human subjects. Institute UBISBR, Los Angeles

    Google Scholar 

  27. Sagalés T, Gimeno V, Calzada MD, Casellas F, Macià MD et al (1990) Brain mapping analysis in patients with hepatic encephalopathy. Brain Topogr 2:221–228

    Article  PubMed  Google Scholar 

  28. Saxena N, Bhatia M, Joshi YK, Garg PK, Dwivedi SN et al (2002) Electrophysiological and neuropsychological tests for the diagnosis of subclinical hepatic encephalopathy and prediction of overt encephalopathy. Liver 22:190–197

    Article  PubMed  Google Scholar 

  29. Silber MH, Ancoli-Israel S, Bonnet MH, Chokroverty S, Grigg-Damberger MM et al (2007) The visual scoring of sleep in adults. J Clin Sleep Med 3:121–131

    PubMed  Google Scholar 

  30. Steriade M, Contreras D, Curro Dossi R, Nunez A (1993) The slow (<1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci 13:3284–3299

    PubMed  CAS  Google Scholar 

  31. Van der Rijt CCD, Schalm SW, de Groot GH, de Vlieger M (1984) Objective measurement of hepatic encephalopathy by means of automated EEG analysis. Electroencephalogr Clin Neurophysiol 57:423–426

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by FIS 00/0457 and FIS G03/155 to JMG. MEM was a recipient of a post-doctoral fellowship (FIS G03/155). The authors wish to thank Dr. Angel Núñez for his valuable comments and Verónica García-Vázquez for her suggestions on data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Elena Martino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martino, M.E., Fernández-Lorente, J., Romero-Vives, M. et al. Brain oscillatory activity during sleep shows unknown dysfunctions in early encephalopathy. J Physiol Biochem 70, 821–835 (2014). https://doi.org/10.1007/s13105-014-0351-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-014-0351-2

Keywords

Navigation