Skip to main content

Advertisement

Log in

Effects of exosomes from LPS-activated macrophages on adipocyte gene expression, differentiation, and insulin-dependent glucose uptake

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Obesity is usually associated with low-grade inflammation, which determines the appearance of comorbidities like atherosclerosis and insulin resistance. Infiltrated macrophages in adipose tissue are partly responsible of this inflammatory condition. Numerous studies point to the existence of close intercommunication between macrophages and adipocytes and pay particular attention to the proinflammatory cytokines released by both cell types. However, it has been recently described that in both, circulation and tissue level, there are extracellular vesicles (including microvesicles and exosomes) containing miRNAs, mRNAs, and proteins that can influence the inflammatory response. The objective of the present research is to investigate the effect of exosomes released by lipopolysaccharide (LPS)-activated macrophages on gene expression and cell metabolism of adipocytes, focusing on the differential exosomal miRNA pattern between LPS- and non-activated macrophages. The results show that the exosomes secreted by the macrophages do not influence the preadipocyte-to-adipocyte differentiation process, fat storage, and insulin-mediated glucose uptake in adipocytes. However, exosomes induce changes in adipocyte gene expression depending on their origin (LPS- or non-activated macrophages), including genes such as CXCL5, SOD, TNFAIP3, C3, and CD34. Some of the pathways or metabolic processes upregulated by exosomes from LPS-activated macrophages are related to inflammation (complement activation, regulation of reactive oxygen species, migration and activation of leukocyte, and monocyte chemotaxis), carbohydrate catabolism, and cell activation. miR-530, chr9_22532, and chr16_34840 are more abundant in exosomes from LPS-activated macrophages, whereas miR-127, miR-143, and miR-486 are more abundant in those secreted by non-activated macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adachi T, Toishi T, Wu H, Kamiya T, Hara H (2009) Expression of extracellular superoxide dismutase during adipose differentiation in 3T3-L1 cells. Redox Rep 14:34–40

    Article  CAS  Google Scholar 

  2. Ai L, Wang X, Chen Z, Lin Q, Su D, Xu Q, Wu C, Jiang X, Xu A, Fan Z (2016) A20 reduces lipid storage and inflammation in hypertrophic adipocytes via p38 and Akt signaling. Mol Cell Biochem 420:73–83

    Article  CAS  Google Scholar 

  3. Alrob OA, OA KS, Naser SA (2017) MicroRNAs 33, 122, and 208: a potential novel targets in the treatment of obesity, diabetes, and heart-related diseases. J Physiol Biochem 73:307–314

    Article  CAS  Google Scholar 

  4. Arias N, Aguirre L, Fernández-Quintela A, González M, Lasa A, Miranda J, Macarulla MT, Portillo MP (2016) MicroRNAs involved in the browning process of adipocytes. J Physiol Biochem 72:509–521

    Article  CAS  Google Scholar 

  5. Bouloumié A, Curat CA, Sengenès C, Lolmède K, Miranville A, Busse R (2005) Role of macrophage tissue infiltration in metabolic diseases. Curr Opin Clin Nutr Metab Care 8:347–354

    Article  Google Scholar 

  6. Caporali A, Meloni M, Völlenkle C, Bonci D, Sala-Newby GB, Addis R, Spinetti G, Losa S, Masson R, Baker AH, Agami R, le Sage C, Condorelli G, Madeddu P, Martelli F, Emanueli C (2011) Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 123:282–291

    Article  CAS  Google Scholar 

  7. Chavey C, Lazennec G, Lagarrigue S, Clapé C, Iankova I, Teyssier J, Annicotte JS, Schmidt J, Mataki C, Yamamoto H, Sanches R, Guma A, Stich V, Vitkova M, Jardin-Watelet B, Renard E, Strieter R, Tuthill A, Hotamisligil GS, Vidal-Puig A, Zorzano A, Langin D, Fajas L (2009) CXC ligand 5 is an adipose-tissue derived factor that links obesity to insulin resistance. Cell Metab 9:339–349

    Article  CAS  Google Scholar 

  8. Dalmas E, Clément K, Guerre-Millo M (2011) Defining macrophage phenotype and function in adipose tissue. Trends Immunol 32:307–314

    Article  CAS  Google Scholar 

  9. Deiuliis JA, Syed R, Duggineni D, Rutsky J, Rengasamy P, Zhang J, Huang K, Needleman B, Mikami D, Perry K, Hazey J, Rajagopalan S (2016) Visceral adipose MicroRNA 223 is upregulated in human and murine obesity and modulates the inflammatory phenotype of macrophages. PLoS One 11:e0165962

    Article  Google Scholar 

  10. Deng ZB, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, Wang J, Xiang X, Zhang S, Zhuang X, Shah SV, Sun D, Michalek S, Grizzle WE, Garvey T, Mobley J, Zhang HG (2009) Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes 58:2498–2505

    Article  CAS  Google Scholar 

  11. Ferrante SC, Nadler EP, Pillai DK, Hubal MJ, Wang Z, Wang JM, Gordish-Dressman H, Koeck E, Sevilla S, Wiles AA, Freishtat RJ (2015) Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease. Pediatr Res 77:447–454

    Article  CAS  Google Scholar 

  12. Forrest ARR, Kanamori-Katayama M, Tomaru Y, Lassmann T, Ninomiya N, Takahashi Y, de Hoon MJ, Kubosaki A, Kaiho A, Suzuki M, Yasuda J, Kawai J, Hayashizaki Y, Hume DA, Suzuki H (2010) Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia 24:460–466

    Article  CAS  Google Scholar 

  13. Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40:37–52

    Article  Google Scholar 

  14. Gao X, Salomon C, Freeman DJ (2017) Extracellular vesicles from adipose tissue-a potential role in obesity and type 2 diabetes? Front Endocrinol 8:202

    Article  Google Scholar 

  15. Gutzeit C, Nagy N, Gentile M, Lyberg K, Gumz J, Vallhov H, Puga I, Klein E, Gabrielsson S, Cerutti A, Scheynius A (2014) Exosomes derived from Burkitt’s lymphoma cell lines induce proliferation, differentiation, and class-switch recombination in B cells. J Immunol 19:5852–5862

    Article  Google Scholar 

  16. Huang-Doran I, Zhang CY, Vidal-Puig A (2017) Extracellular vesicles: novel mediators of cell communication in metabolic disease. Trends Endocrinol Metab 28:3–18

    Article  CAS  Google Scholar 

  17. Jordan SD, Krüger M, Willmes DM, Redemann N, Wunderlich FT, Brönneke HS, Merkwirth C, Kashkar H, Olkkonen VM, Böttger T, Braun T, Seibler J, Brüning JC (2011) Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 13:434–446

    Article  CAS  Google Scholar 

  18. Kabir SM, Lee E-S, Son D-S (2014) Chemokine network during adipogenesis in 3T3-L1 cells: differential response between growth and proinflammatory factor in preadipocytes vs. adipocytes. Adipocyte 3:97–106

    Article  CAS  Google Scholar 

  19. Keuper M, Dzyakanchuk A, Amrein KE, Wabitsch M, Fischer-Posovszky P (2011) THP-1 macrophages and SGBS adipocytes—a new human in vitro model system of inflamed adipose tissue. Front Endocrinol 2:89

    Article  Google Scholar 

  20. Koeck ES, Iordanskaia T, Sevilla S, Ferrante SC, Hubal MJ, Freishtat RJ, Nadler EP (2014) Adipocyte exosomes induce transforming growth factor beta pathway dysregulation in hepatocytes: a novel paradigm for obesity-related liver disease. J Surg Res 192:268–275

    Article  CAS  Google Scholar 

  21. Kranendonk ME, Visseren FL, van Balkom BW, Nolte-‘t Hoen EN, van Herwaarden JA, de Jager W, Schipper HS, Brenkman AB, Verhaar MC, Wauben MH, Kalkhoven E (2014) Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity 22:1296–1308

    Article  CAS  Google Scholar 

  22. Kranendonk ME, Visseren FL, van Herwaarden JA, Nolte-‘t Hoen EN, de Jager W, Wauben MH, Kalkhoven E (2014) Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells. Obesity 22:2216–2223

    Article  CAS  Google Scholar 

  23. Lin J, Liu Q, Zhang H, Huang X, Zhang R, Chen S, Wang X, Yu B, Hou J (2017) C1q/tumor necrosis factor-related protein-3 protects macrophages against LPS-induced lipid accumulation, inflammation and phenotype transition via PPARγ and TLR4-mediated pathways. Oncotarget 8:82541–82557

    PubMed  PubMed Central  Google Scholar 

  24. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  Google Scholar 

  25. Man X-F, Tan S-W, Tang H-N, Guo Y, Tang C-Y, Tang J, Zhou CL, Zhou HD (2016) MiR-503 inhibits adipogenesis by targeting bone morphogenetic protein receptor 1a. Am J Transl Res 8:2727–2737

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Marques-Rocha JL, Samblas M, Milagro FI, Bressan J, Martínez JA, Marti A (2015) Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J 29:3595–3611

    Article  CAS  Google Scholar 

  27. McGregor RA, Choi MS (2011) microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med 11:304–316

    Article  CAS  Google Scholar 

  28. Müller G, Schneider M, Biemer-Daub G, Wied S (2011) Microvesicles released from rat adipocytes and harboring glycosylphosphatidylinositol-anchored proteins transfer RNA stimulating lipid synthesis. Cell Signal 23:1207–1223

    Article  Google Scholar 

  29. Ogawa R, Tanaka C, Sato M, Nagasaki H, Sugimura K, Okumura K, Nakagawa Y, Aoki N (2010) Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation. Biochem Biophys Res Commun 398:723–729

    Article  CAS  Google Scholar 

  30. Onat A, Hergenç G, Can G, Kaya Z, Yuksel H (2010) Serum complement C3: a determinant of cardiometabolic risk, additive to the metabolic syndrome, in middle-aged population. Metabolism 59:628–634

    Article  CAS  Google Scholar 

  31. Palacios-Ortega S, Varela-Guruceaga M, Algarabel M, Ignacio Milagro F, Alfredo Martínez J, de Miguel C (2015) Effect of TNF-alpha on caveolin-1 expression and insulin signaling during adipocyte differentiation and in mature adipocytes. Cell Physiol Biochem 36:1499–1516

    Article  CAS  Google Scholar 

  32. Palacios-Ortega S, Varela-Guruceaga M, Martínez JA, de Miguel C, Milagro FI (2016) Effects of high glucose on caveolin-1 and insulin signaling in 3T3-L1 adipocytes. Adipocyte 5:65–80

    Article  CAS  Google Scholar 

  33. Regassa A, Kim WK (2015) Transcriptome analysis of hen preadipocytes treated with an adipogenic cocktail (DMIOA) with or without 20(S)-hydroxylcholesterol. BMC Genomics 16:1–15

    Article  CAS  Google Scholar 

  34. Sano S, Izumi Y, Yamaguchi T, Yamazaki T, Tanaka M, Shiota M, Osada-Oka M, Nakamura Y, Wei M, Wanibuchi H, Iwao H, Yoshiyama M (2014) Lipid synthesis is promoted by hypoxic adipocyte-derived exosomes in 3T3-L1 cells. Biochem Biophys Res Commun 445:327–333

    Article  CAS  Google Scholar 

  35. Scholz-Romero K, Zuñiga F, Lamperti L, Truong G, Kobayashi M, Duncombe G, Mitchell M, Rice G, Salomon C (2015) Trophoblast-derived exosomes under diabetic conditions modulate glucose uptake in skeletal muscle cells involving mTOR pathway. Placenta 36:A40

    Article  Google Scholar 

  36. Suganami T, Nishida J, Ogawa Y (2005) A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor. Arterioscler Thromb Vasc Biol 25:2062–2068

    Article  CAS  Google Scholar 

  37. Takanabe R, Ono K, Abe Y, Takaya T, Horie T, Wada H, Kita T, Satoh N, Shimatsu A, Hasegawa K (2008) Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem Biophys Res Commun 376:728–732

    Article  CAS  Google Scholar 

  38. Xie T, Liang J, Liu N, Wang Q, Li Y, Noble PW, Jiang D (2012) miRNA-127 inhibits lung inflammation by targeting IgG Fcγ receptor I. J Immunol 188:2437–2444

    Article  CAS  Google Scholar 

  39. Ying H, Kang Y, Zhang H, Zhao D (2015) MiR-127 modulates macrophage polarization and promotes lung inflammation and injury by activating the JNK pathway. J Immunol 194:1239–1251

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Maider Varela, Ana Lorente, Neira Sáinz, and Asunción Redín for their valuable help with laboratory techniques. Sistemas Genómicos is acknowledged for the miRNA-seq.

Funding

This work was supported by the CIBERobn and MINECO (AGL2013-45554-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fermín I. Milagro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Silva, N., Samblas, M., Martínez, J.A. et al. Effects of exosomes from LPS-activated macrophages on adipocyte gene expression, differentiation, and insulin-dependent glucose uptake. J Physiol Biochem 74, 559–568 (2018). https://doi.org/10.1007/s13105-018-0622-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-018-0622-4

Keywords

Navigation