Skip to main content

Advertisement

Log in

Utilising pseudo-CT data for dose calculation and plan optimization in adaptive radiotherapy

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

To quantify the dose calculation error and resulting optimization uncertainty caused by performing inverse treatment planning on inaccurate electron density data (pseudo-CT) as needed for adaptive radiotherapy and Magnetic Resonance Imaging (MRI) based treatment planning. Planning Computer Tomography (CT) data from 10 cervix cancer patients was used to generate 4 pseudo-CT data sets. Each pseudo-CT was created based on an available method of assigning electron density to an anatomic image. An inversely modulated radiotherapy (IMRT) plan was developed on each planning CT. The dose calculation error caused by each pseudo-CT data set was quantified by comparing the dose calculated each pseudo-CT data set with that calculated on the original planning CT for the same IMRT plan. The optimization uncertainty introduced by the dose calculation error was quantified by re-optimizing the same optimization parameters on each pseudo-CT data set and comparing against the original planning CT. Dose differences were quantified by assessing the Equivalent Uniform Dose (EUD) for targets and relevant organs at risk. Across all pseudo-CT data sets and all organs, the absolute mean dose calculation error was 0.2 Gy, and was within 2 % of the prescription dose in 98.5 % of cases. Then absolute mean optimisation error was 0.3 Gy EUD, indicating that that inverse optimisation is impacted by the dose calculation error. However, the additional uncertainty introduced to plan optimisation is small compared the sources of variation which already exist. Use of inaccurate electron density data for inverse treatment planning results in a dose calculation error, which in turn introduces additional uncertainty into the plan optimization process. In this study, we showed that both of these effects are clinically acceptable for cervix cancer patients using four different pseudo-CT data sets. Dose calculation and inverse optimization on pseudo-CT is feasible for this patient cohort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Verellen D et al (2007) Innovations in image-guided radiotherapy. Nat Rev Cancer 7(12):949–960

    Article  PubMed  CAS  Google Scholar 

  2. Hoogcarspel SJ et al (2014) The feasibility of utilizing pseudo CT-data for online MRI based treatment plan adaptation for a stereotactic radiotherapy treatment of spinal bone metastases. Phys Med Biol 59(23):7383

    Article  PubMed  Google Scholar 

  3. Metcalfe P et al (2013) The potential for an enhanced role for MRI in radiation-therapy treatment planning. Technol Cancer Res Treat 12(5):429–446

    PubMed  CAS  PubMed Central  Google Scholar 

  4. de la Zerda A, Armbruster B, Xing L (2007) Formulating adaptive radiation therapy (ART) treatment planning into a closed-loop control framework. Phys Med Biol 52(14):4137

    Article  PubMed  Google Scholar 

  5. Lambert J et al (2011) MRI-guided prostate radiation therapy planning: investigation of dosimetric accuracy of MRI-based dose planning. Radiother Oncol 98(3):330–334

    Article  PubMed  Google Scholar 

  6. Chi Y, Wu Q, Yan D (2007) SU-FF-T-163: dose calculation on Cone Beam CT (CBCT). Med Phys 34(6):2438

    Article  Google Scholar 

  7. Jonsson JH et al (2013) Treatment planning of intracranial targets on MRI derived substitute CT data. Radiother Oncol 108(1):118–122

    Article  PubMed  Google Scholar 

  8. Karotki A et al (2011) Comparison of bulk electron density and voxel-based electron density treatment planning. J Appl Clin Med Phys 12(4):3522

    PubMed  Google Scholar 

  9. Dowling JA et al (2012) An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy. Int J Radiat Oncol Biol Phys 83(1):e5–e11

    Article  PubMed  Google Scholar 

  10. Yang Y et al (2007) Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation. Phys Med Biol 52(3):685

    Article  PubMed  Google Scholar 

  11. Hsu S-H et al (2013) Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy. Phys Med Biol 58(23):8419

    Article  PubMed  Google Scholar 

  12. Korhonen J et al (2014) A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer. Med Phys 41(1):011704

    Article  PubMed  Google Scholar 

  13. Gudur MSR et al (2014) A unifying probabilistic Bayesian approach to derive electron density from MRI for radiation therapy treatment planning. Phys Med Biol 59(21):6595

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rong Y et al (2010) Dose calculation on kv cone beam ct images: an investigation of the hu-density conversion stability and dose accuracy using the site-specific calibration. Med Dosim 35(3):195

    Article  PubMed  Google Scholar 

  15. Hatton J, McCurdy B, Greer PB (2009) Cone beam computerized tomography: the effect of calibration of the Hounsfield unit number to electron density on dose calculation accuracy for adaptive radiation therapy. Phys Med Biol 54(15):N329

    Article  PubMed  Google Scholar 

  16. Lim K et al (2009) Pelvic radiotherapy for cancer of the cervix: is what you plan actually what you deliver? Int J Radiat Oncol Biol Phys 74(1):304–312

    Article  PubMed  Google Scholar 

  17. Burdett N et al (2010) MILXView: a medical imaging, analysis and visualization platform, in E-Health. Springer, New York, pp 177–186

    Google Scholar 

  18. Lambert J et al (2011) MRI-guided prostate radiation therapy planning: investigation of dosimetric accuracy of MRI-based dose planning. Radiother Oncol 98:330–334

    Article  PubMed  Google Scholar 

  19. Roberson PL et al (2005) Use and uncertainties of mutual information for computed tomography/magnetic resonance (CT/MR) registration post permanent implant of the prostate. Med Phys 32:473

    Article  PubMed  Google Scholar 

  20. Holloway LC et al (2012) Comp plan: a computer program to generate dose and radiobiological metrics from dose-volume histogram files. Med Dosim 37(3):305–309

    Article  PubMed  Google Scholar 

  21. Whelan B, Holloway L (2014) SU-ET-194: from Dicom-RT to radiobiological dose metrics in 5 minutes. Med Phys 41(6):267

    Article  Google Scholar 

  22. Gay HA, Niemierko A (2007) A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. Physica Med 23(3):115–125

    Article  Google Scholar 

  23. Ebert MA (2000) Viability of the EUD and TCP concepts as reliable dose indicators. Phys Med Biol 45:441

    Article  PubMed  CAS  Google Scholar 

  24. Burman C et al (1991) Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 21(1):123–135

    Article  PubMed  CAS  Google Scholar 

  25. Venselaar J, Welleweerd H, Mijnheer B (2001) Tolerances for the accuracy of photon beam dose calculations of treatment planning systems. Radiother Oncol 60(2):191–201

    Article  PubMed  CAS  Google Scholar 

  26. White GDR WI (1992) Photon, electron, proton and neutron interaction data for body tissues. ICRU report 46

  27. Fogliata A et al (2007) On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations. Phys Med Biol 52(5):1363

    Article  PubMed  Google Scholar 

  28. Aspradakis MM et al (2003) Experimental verification of convolution/superposition photon dose calculations for radiotherapy treatment planning. Phys Med Biol 48(17):2873

    Article  PubMed  Google Scholar 

  29. Bortfeld T (2006) IMRT: a review and preview. Phys Med Biol 51(13):R363

    Article  PubMed  Google Scholar 

  30. Batumalai V et al (2012) How important is dosimetrist experience for intensity modulated radiation therapy? A comparative analysis of a head and neck case. Pract Radiat Oncol 3:e99–e106

    Article  PubMed  Google Scholar 

  31. Arumugam S et al (2014) Independent calculation-based verification of IMRT plans using a 3D dose-calculation engine. Med Dosim 38(4):376–384

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr Mike Milosevic & Dr Anthony Fyles from Prince Margaret Hospital for supplying the patient CT data used in this study. Brendan Whelan would like to acknowledge The Cancer Institute NSW, Liverpool and Macarthur Cancer Therapy Centres, and the Ingham Institute for scholarship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan Whelan.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whelan, B., Kumar, S., Dowling, J. et al. Utilising pseudo-CT data for dose calculation and plan optimization in adaptive radiotherapy. Australas Phys Eng Sci Med 38, 561–568 (2015). https://doi.org/10.1007/s13246-015-0376-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-015-0376-z

Keywords

Navigation