Skip to main content

Advertisement

Log in

Image based modeling of tumor growth

  • Review
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Tumors are a main cause of morbidity and mortality worldwide. Despite the efforts of the clinical and research communities, little has been achieved in the past decades in terms of improving the treatment of aggressive tumors. Understanding the underlying mechanism of tumor growth and evaluating the effects of different therapies are valuable steps in predicting the survival time and improving the patients’ quality of life. Several studies have been devoted to tumor growth modeling at different levels to improve the clinical outcome by predicting the results of specific treatments. Recent studies have proposed patient-specific models using clinical data usually obtained from clinical images and evaluating the effects of various therapies. The aim of this review is to highlight the imaging role in tumor growth modeling and provide a worthwhile reference for biomedical and mathematical researchers with respect to tumor modeling using the clinical data to develop personalized models of tumor growth and evaluating the effect of different therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. World Health Organization (2007) Cancer control: knowledge into action:I. 2. World Health Organization

  2. Silbergeld DL, Rostomily RC, Alvord EC (1991) The cause of death in patients with glioblastoma is multifactorial: clinical factors and autopsy findings in 117 cases of supratentorial glioblastoma in adults. J Neurooncol 10(2):179–185

    Article  CAS  PubMed  Google Scholar 

  3. Giese A, Bjerkvig R, Berens ME, Westphal M (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21(8):1624–1636

    Article  CAS  PubMed  Google Scholar 

  4. Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, Stroup NE, Kruchko C, Barnholtz JSS (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol 15(2):ii1–ii56

    Google Scholar 

  5. Deangelis LM (2001) brain tumors. New Engl J Med 344(2):114–123

    Article  CAS  PubMed  Google Scholar 

  6. Menze Stretton E (2011) Image-based modeling of tumor growth in patients with glioma. Optimal control in image processing. Springer, Heidelberg, pp 1–12

    Google Scholar 

  7. Soltani M, Chen P (2012) Effect of tumor shape and size on drug delivery to solid tumors. J Biol Eng 6:1–15

    Article  Google Scholar 

  8. Soltani M, Chen P (2013) Numerical modeling of interstitial fluid flow coupled with blood flow through a remodeled solid tumor microvascular network. PLoS One 8(6):e67025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sefidgar M, Soltani M, Bazmara H, Mousavi M, Bazargan M, Elkamel A (2014) Interstitial flow in cancerous tissue: effect of considering remodeled capillary network. J Tissue Sci Eng S4:2

    Google Scholar 

  10. Bazmara H, Rahmim A (2015) Blood flow and endothelial cell phenotype regulation during sprouting angiogenesis. Med Biol Eng Comput.

    Google Scholar 

  11. Bazmara H, Soltani M, Sefidgar M, Bazargan M, Naeenian MM, Rahmim A (2015) The vital role of blood flow-induced proliferation and migration in capillary network formation in a multiscale model of angiogenesis. PLoS One 10(6):e0128878

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sefidgar M, Soltani M, Raahemifar K, Bazmara H (2015) Effect of fluid friction on interstitial fluid flow coupled with blood flow through solid tumor microvascular network. Comput Math Methods Med 380:1–8

    Article  Google Scholar 

  13. Sefidgar M, Soltani M, Raahemifar K, Sadeghi M, Bazmara H, Bazargan M, Naeenian MM (2015) Numerical modeling of drug delivery in a dynamic solid tumor microvasculature. Microvasc Res 99:43–56

    Article  CAS  PubMed  Google Scholar 

  14. Bellomo N, Bellouquid A, Herrero MA (2007) From microscopic to macroscopic description of multicellular systems and biological growing tissues. Comput Math Appl 53(3–4):647–663

    Article  Google Scholar 

  15. Rejniak KA, Anderson AR (2011) Hybrid models of tumor growth. Wiley Interdiscip Rev 3(1):115–125

    CAS  Google Scholar 

  16. Deisboeck TS, Wang Z, Macklin P, Cristini Vittorio (2011) Multiscale cancer modeling. Annu Rev Biomed Eng 13(2):10–29

    PubMed Central  Google Scholar 

  17. Astanin S, Preziosi L (2008) Multiphase models of tumour growth: selected topics in cancer modeling. Birkhäuser Boston, Cambridge, pp 1–31

    Book  Google Scholar 

  18. Scianna M, Bell CG, Preziosi L (2013) A mechanical model for the formation of vascular networks . J Theor Biol 333:174–209

    Article  CAS  PubMed  Google Scholar 

  19. Ferreira SC, Martins ML, Vilela MJ (2002) Reaction-diffusion model for the growth of avascular tumor. Phys Rev E 65(2):1–12

    Google Scholar 

  20. Cruywagen GC, Woodward DE et al (1995) The modelling of diffusive tumors. J Biol Syst 3(4):937–945

    Article  Google Scholar 

  21. Gatenby RA, Gawlinski ET (1996) A reaction-diffusion model of cancer invasion. Cancer Res 56(24):5745–5753

    CAS  PubMed  Google Scholar 

  22. Swanson KR, Alvord EC, Murray JD (2002) Quantifying efficacacy of chemo therapy of brain tumours with homogeneous and heterogeneous drug delivery. Acta Biotheor 50:223–237

    Article  PubMed  Google Scholar 

  23. Swanson KR, Alvord EC, Murray JD (2002) Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br J Cancer 86(1):14–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Britton NF (1986) Reaction-diffusion equations and their applications to biology. Academic Press, London

    Google Scholar 

  25. Swanson KR, Bridge C, Murray JD, Alvord EC (2003) Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci 216(1):1–10

    Article  PubMed  Google Scholar 

  26. Burgess PK, Kulesa PM, Murray JD, Alvord EC (1997) The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas. J Neuropathol Exp Neurol 56(6):704–713

    Article  CAS  PubMed  Google Scholar 

  27. Kot M (2001) Mathematical ecology. Cambridge University Press, Cambridge

    Google Scholar 

  28. Sarapata EA, de Pillis LG (2014) A comparison and catalog of intrinsic tumor growth models. Bull Math Biol 76(8):2010–2024

    Article  CAS  PubMed  Google Scholar 

  29. Mombach J, Lemke N, Bodmann B, Idiart MAP (2002) A mean-field theory of cellular growth. EPL (Europhys Lett) 59(6):923

    Article  CAS  Google Scholar 

  30. Ajadi SO, Zuilino M (2011) Approximate analytical solutions of reaction–diffusion equations with exponential source term: homotopy perturbation method (HPM). Appl Math Lett 24(10):1634–1639

    Article  Google Scholar 

  31. Foryś U, Marciniak-Czochra A (2003) Logistic equations in tumour growth modelling. Int J Appl 13(3):317–325

    Google Scholar 

  32. Moummou EK, Gutiérrez-Sanchez R, Melchor MC, Ramos-Ábalos E (2014) A stochastic Gompertz model highlighting internal and external therapy function for tumour growth. Appl Math Comput 246:1–11

    Google Scholar 

  33. Bellomo N, Li NK, Maini PK (2010) On the foundations of cancer modelling: selected topics, speculations, & perspectives. Math Model Methods Appl Sci 51:441–451

    Google Scholar 

  34. Graziano L, Preziosi L (2007) Mechanics in tumor growth. Model Biol Mater 1:263–321

    Article  Google Scholar 

  35. Zacharaki EI, Hogea CS, Biros G, Davatzikos C (2008) A comparative study of biomechanical simulators in deformable registration of brain tumor images. IEEE Trans Biomed Eng 55(3):1233–1236

    Article  PubMed  PubMed Central  Google Scholar 

  36. Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in eukaryotes. New Phytol 188(1):82–97

    Article  CAS  PubMed  Google Scholar 

  37. Hay E (2013) Cell biology of extracellular matrix. Springer, Berlin

    Google Scholar 

  38. Mohamed A, Davatzikos C (2005) Finite element modeling of brain tumor mass-effect from 3D medical images. Med Image Comput Comput Assist Interv 8(1):400–408

    PubMed  Google Scholar 

  39. Ambrosi D, Preziosi L (2002) On the closure of mass balance models for tumor growth. Math Model Methods Appl Sci 12(05):737–754

    Article  Google Scholar 

  40. Mohamed A, Davatzikos C (2005) Finite element modeling of brain tumor mass-effect from 3D medical images. Med Image Comput Comput Assist Interv 8(Pt 1):400–408

    PubMed  Google Scholar 

  41. Malandain G, Ayache N (2005) Realistic simulation of 3D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans Med Imaging 24(10):1334–1346

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hogea C, Davatzikos C, Biros G (2007) Modeling glioma growth and mass effect in 3D MR images of the brain. Med Image Comput Comput Assist Interv 10(1):642–650

    PubMed  Google Scholar 

  43. Hogea C, Davatzikos C, Biros G (2008) An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. J Math Biol 56(6):793–825

    Article  PubMed  Google Scholar 

  44. Chen Y, Ji S, Wu X, An H, Zhu Shen D, Lin W (2010) Simulation of brain mass effect with an arbitrary Lagrangian and Eulerian FEM. Lecture Notes in Computer Science, vol 6362(2). Springer, Berlin, pp 274–281

  45. Kelly PJ, Daumas-Duport C, Kispert DB, Kispert DB, Kall BA, Scheithauer BW, Illig JJ (1987) Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 66(6):865–874

    Article  CAS  PubMed  Google Scholar 

  46. Tovi M (1989) MR imaging in cerebral gliomas analysis of tumour tissue components. Acta Radiol Suppl 384:1–24

    Google Scholar 

  47. Kang H, Lee HY, Lee KS, Kim J-H (2012) Imaging-based tumor treatment response evaluation: review of conventional, new, and emerging concepts. Korean J Radiol 13(4):371–390

    Article  PubMed  PubMed Central  Google Scholar 

  48. Johnson TRC, Krauß B, Sedlmair M, Grasruck M, Bruder H, Morhard D, Fink C, Weckbach S, Lenhard M, Schmidt B, Flohr T, Reiser MF, Becker CR (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17(6):1510–1517

    Article  PubMed  Google Scholar 

  49. Bae KT (2010) Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 256(1):32–61

    Article  PubMed  Google Scholar 

  50. Bushberg JT, Seibert JA, Leidholdt EM Jr, Boone JM (2011) The essential physics of medical imaging. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  51. Ludemann L, Grieger W, Wurm R, Budzisch M, Hamm B, Zimmer C (2001) Comparison of dynamic contrast-enhanced MRI with WHO tumor grading for gliomas. Eur Radiol 11(7):1231–1241

    Article  CAS  PubMed  Google Scholar 

  52. Baldock A, Ahn S, Rockne R, Neal M, Corwin D,Clark-Swanson K, Sterin G, Trister AD,Malone H, Ebiana V, Sonabend AM, Mrugala M, Rockhill JK, Silbergeld DL, Lai A, Cloughesy T, McKhann GM, Bruce JN, Rostomily R, Canoll P, Swanson KR (2014) Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas. PLoS One. 10: 7–9

  53. Young RJ, Knopp EA (2006) Brain MRI: tumor evaluation. J Magn Reson Imaging 24(4):709–724

    Article  PubMed  Google Scholar 

  54. Padhani AR, Leach MO (2005) Antivascular cancer treatments: functional assessments by dynamic contrast-enhanced magnetic resonance imaging. Abdom Imaging 30(3):324–341

    Article  CAS  PubMed  Google Scholar 

  55. Padhani AR, Khan AA (2010) Diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) for monitoring anticancer therapy. Target Oncol 5(1):39–52

    Article  PubMed  Google Scholar 

  56. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188(6):1622–1635

    Article  PubMed  Google Scholar 

  57. Jansen JF, Backes WH, Nicolay K, Kooi ME (2006) 1H MR spectroscopy of the brain: absolute quantification of metabolites. Radiology 240(2):318–332

    Article  PubMed  Google Scholar 

  58. Plathow C, Weber WA (2008) Tumor cell metabolism imaging. J Nucl Med 49(2):43S–63S

    Article  CAS  PubMed  Google Scholar 

  59. Riederer SJ (1988) Recent advances in magnetic resonance. Proc IEEE 76(9):1095–1105

    Article  Google Scholar 

  60. Yamada H, Sadato N, Konishi Y, Kimura K, Tanaka M, Yonekura Y, Ishii Y (1997) A rapid brain metabolic change in infants detected by fMRI. Neuro Rep 8(17):3775–3778

    CAS  Google Scholar 

  61. Richards TL (2001) Functional magnetic resonance imaging and spectroscopic imaging of the brain: application of fMRI and fMRS to reading disabilities and education. Learn Disabil Q 24(3):189–203

    Article  Google Scholar 

  62. Zhu A, Lee D, Shim H (2012) Metabolic PET imaging in cancer detection and therapy response. Changes 29(6):997–1003

    Google Scholar 

  63. Magistretti PJ, Pellerin L (1999) Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc London Ser B 354(1387):1155–1163

    Article  CAS  Google Scholar 

  64. Denecke T, Rau B, Hoffmann KT, Hildebrandt B, Ruf J, Gutberlet M, Hünerbein M, Felix R, Wust P, Amthauer H (2005) Comparison of CT, MRI and FDG-PET in response prediction of patients with locally advanced rectal cancer after multimodal preoperative therapy: is there a benefit in using functional imaging? Eur Radiol 15(8):1658–1666

    Article  CAS  PubMed  Google Scholar 

  65. Spence AM, Muzi M, Swanson KR, O’Sullivan F, Rockhill JK, Rajendran JG, Adamsen TCH, Link JM, Swanson PE, Yagle KJ, Rostomily RC, Silbergeld DL, Krohn KA (2008) Regional hypoxia in glioblastoma multiforme quantified with [18F] fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res 14(9):2623–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brown JM (2001) Therapeutic targets in radiotherapy. Int J Radiat Oncol Biol Phys 49(2):319–326

    Article  CAS  PubMed  Google Scholar 

  67. McConathy J, Goodman MM (2008) Non-natural amino acids for tumor imaging using positron emission tomography and single photon emission computed tomography. Cancer Metastasis Rev 27(4):555–573

    Article  PubMed  Google Scholar 

  68. Histed SN, Lindenberg ML, Mena E, Turkbey B, Choyke PL, Kurdziel KA (2012) Review of functional/anatomic imaging in oncology. Nucl Med Commun 33(4):349–361

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ramli AR, Balafar MA, Saripan MI, Mashohor S (2010) Review of brain MRI image segmentation methods. Artif Intell Rev 33(3):261–274

    Article  Google Scholar 

  70. Bauer S, Wiest R, Nolte L-P, Reyes M (2013) A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 58(13):R97–R129

    Article  PubMed  Google Scholar 

  71. Benzekry S, Lamont C, Beheshti A, Tracz A (2014) Classical mathematical models for description and prediction of experimental tumor growth. PLoS Comput Biol 10(8):e1003800

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wong KCL, Summers RM, Kebebew E, Yao J (2015) Tumor growth prediction with reaction-diffusion and hyperelastic biomechanical model by physiological data fusion. Med Image Anal 25(1):1–14

    Article  CAS  Google Scholar 

  73. Szeto MD, Chakraborty G, Hadley J, Rockne R, Muzi M, Alvord EC, Krohn KA, Spence AM, Swanson KR (2009) Quantitative metrics of net proliferation and invasion link biological aggressiveness assessed by MRI with hypoxia assessed by FMISO-PET in newly diagnosed glioblastomas. Cancer Res 69(10):4502–4509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang CH, Rockhill JK, Mrugala M, Peacock DL, Lai A, Jusenius K, Wardlaw JM, Cloughesy T, Spence AM, Rockne R, Alvord EC, Swanson KR (2009) Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. Cancer Res 69(23):9133–9140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Konukoglu E, Clatz O, Delingette H, Ayache N (2010) Personalization of reaction-diffusion tumor growth models in MR images: application to brain gliomas characterization and radiotherapy planning. CRC Press, Boca Raton

    Book  Google Scholar 

  76. Swanson KR (2008) Quantifying glioma cell growth and invasion in vitro. Math Comput Model 47(5–6):638–648

    Article  Google Scholar 

  77. Liu Y, Sadowski SM, Weisbrod AB, Kebebew E, Summers RM, Yao J (2013) Tumor growth modeling based on dual phase CT and FDG-PET. In: IEEE 10th International Symposium on Biomedical Imaging., pp 394–397

  78. Liu Y, Sadowski SM, Weisbrod AB, Kebebew E, Summers RM, Yao J (2014) Patient specific tumor growth prediction using multimodal images. Med Image Anal 18(3):555–566

    Article  PubMed  PubMed Central  Google Scholar 

  79. West GB, Brown JH, Enquist BJ (2001) A general model for ontogenetic growth. Nature 413(6856):628–631

    Article  CAS  PubMed  Google Scholar 

  80. Chen X, Summers RM, Yao J (2013) Kidney tumor growth prediction by coupling reaction—diffusion and biomechanical model. IEEE Trans Med Imaging 60(1):169–173

    Google Scholar 

  81. Menze BH, Van Leemput K, Honkela A, Konukoglu E, Weber MA, Ayache N, Golland P (2011) A generative approach for image-based modeling of tumor growth. Lecture notes in computer science, vol 6801. Springer, Berlin, pp 735–747

  82. Konukoglu E, Pennec X, Clatz O, Ayache N et al (2008) Tumor growth modeling in oncological image analysis. Handb Med Image Process Anal 18:297–307

    Google Scholar 

  83. Stummer W, Van Den Bent MJ, Westphal M (2011) Cytoreductive surgery of glioblastoma as the key to successful adjuvant therapies: new arguments in an old discussion. Acta Neurochir (Wien) 153(6):1211–1218

    Article  Google Scholar 

  84. Zinn PO, Colen RR, Kasper EM, Burkhardt JK (2013) Extent of resection and radiotherapy in GBM: a 1973 to 2007 surveillance, epidemiology and end results analysis of 21,783 patients. Int J Oncol 42(3):929–934

    PubMed  Google Scholar 

  85. Sanai N, Polley M-Y, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115(1):3–8

    Article  PubMed  Google Scholar 

  86. Macmanus M, Nestle U, Rosenzweig KE, Carrio I (2007) Use of PET and PET/CT for radiation therapy planning: iAEA. Radiother Oncol 91(1):85–94

    Article  Google Scholar 

  87. Rockne R, Rockhill JK, Mrugala M, Spence AM, Kalet I, Hendrickson K, Lai A, Cloughesy T, Alvord EC, Swanson KR (2010) Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Phys Med Biol 55(12):3271–3285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Unkelbach J, Menze BH, Konukoglu E, Dittmann F, Aache N, Shih HA (2014) Radiotherapy planning for glioblastoma based on a tumor growth model: implications for spatial dose redistribution. Phys Med Biol 59(3):771–789

    Article  PubMed  Google Scholar 

  89. Adair JE, Johnston SK, Mrugala MM, Beard BC, Guyman LA, Baldock AL, Bridge CA, Hawkins-daarud A, Gori JL, Born DE, Gonzalez-cuyar LF, Silbergeld DL, Rockne RC, Storer BE, Rockhill JK, Swanson KR, Kiem H (2014) Gene therapy enhances chemotherapy tolerance and efficacy in glioblastoma patients. Clin Med 124(9):4082–4092

    CAS  Google Scholar 

  90. Minev B (2011) Cancer management in man: chemotherapybiological therapy hyperthermia and supporting measures. Springer, Berlin

    Book  Google Scholar 

  91. Tian JP, Friedman A, Wang J, Chiocca EA (2009) Modeling the effects of resection, radiation and chemotherapy in glioblastoma. J Neurooncol 91(3):287–293

    Article  PubMed  Google Scholar 

  92. Swanson KR, Alvord EC, Murray JD (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33(33):317–329

    Article  CAS  PubMed  Google Scholar 

  93. Swanson KR, Rostomily RC, Alvord EC (2008) A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. Br J Cancer 98(1):113–119

    Article  CAS  PubMed  Google Scholar 

  94. Rockne RC, Trister AD, Jacobs J, Neal ML, Hendrickson K, Mrugala MM, Rockhill JK, Kinahan P, Krohn KA, Swanson KR (2014) A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using 18 F-FMISO-PET. J R Soc Interface 12(103):20141174

    Article  Google Scholar 

  95. Atuegwu NC, Arlinghaus LR, Li X, Chakravarthy AB, Abramson VG, Sanders ME, Yankeelov TE (2013) Parameterizing the logistic model of tumor growth by DW-MRI and DCE-MRI Data to predict treatment response and changes in breast cancer cellularity during neoadjuvant chemotherapy. Transl Oncol 6(3):256–264

    Article  PubMed  PubMed Central  Google Scholar 

  96. Neal ML, DennisMK Field AS, Burai R, Ramesh C, Whitney K, Bologa CG, Oprea TI, Yamaguchi Y, Hayashi S, Sklar LA, Hathaway HJ, Arterburn JB, Prossnitz ER (2013) Response classification based on a minimal model of glioblastoma growth is prognostic for clinical outcomes and distinguishes progression from pseudoprogression. Cancer Res 127(10):358–366

    Google Scholar 

  97. Neal ML, Trister AD, Cloke T, Sodt R, Ahn S, Baldock AL, Bridge CA, Lai A, Cloughesy TF, Mrugala MM, Rockhill J (2013) Discriminating survival outcomes in patients with glioblastoma using a simulation-based, patient-specific response metric. PLoS One 8(1):e51951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mi H, Petitjean C, Vera P, Ruan S (2015) Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images. Med Image Anal 23(1):84–91

    Article  PubMed  Google Scholar 

  99. Mi H, Petitjean C, Dubray B, Vera P, Ruan S (2014) Prediction of lung tumor evolution during radiotherapy in individual patients with pet. IEEE Trans Med Imaging 33(4):995–1003

    Article  PubMed  Google Scholar 

  100. Murray JD (2003) Mathematical biology II. Spatial models and biomedical applications, vol II, 3rd edn. Springer-Verlag, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Soltani or H. Niroomand-Oscuii.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meghdadi, N., Soltani, M., Niroomand-Oscuii, H. et al. Image based modeling of tumor growth. Australas Phys Eng Sci Med 39, 601–613 (2016). https://doi.org/10.1007/s13246-016-0475-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-016-0475-5

Keywords

Navigation