Skip to main content
Log in

Estimating false discovery rate and false non-discovery rate using the empirical cumulative distribution function of p-values in ‘omics’ studies

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Large numbers of mRNA transcripts, proteins, metabolites, and single nucleotide polymorphisms can be measured in a single tissue sample using new molecular biological techniques. Accordingly, the interpretation of ensuing hypothesis tests should manage the number of comparisons. For example, cDNA microarray experiments generate large multiplicity problems in which thousands of hypotheses are tested simultaneously. In this context, the false discovery rate (FDR) and false non-discovery rate (FNR) are used to account for multiple comparisons. In this study, we propose non-parametric estimates of FDR and FNR that are conceptually and computationally straightforward. Additionally, to illustrate their properties and use in a procedure for an optimum subset of significant tests, an example from a functional genomics study is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison DB, Cui X, Page GP, Sabripour M (2006) Microarray data analysis: from disarray to consolidation and consensus. Nat. Rev. Genet. 7: 55–65.

    Article  PubMed  CAS  Google Scholar 

  • Allison DB, Gadbury GL, Heo M, Fernandez JR, Lee C-K, Prolla TA, Weindruch R (2002) A mixture model approach for the analysis of microarray gene expression data. Comput. Stat. Data Anal. 39: 1–20.

    Article  Google Scholar 

  • Barlow RE, Bartholomew DJ, Bremner JM, Brunk HD (1972) Statistical inference under order restrictions. John Wiley & Sons, New York.

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57: 289–300.

    Google Scholar 

  • Bohning D (1999) Computer-assisted analysis of mixtures and applications: meta-analysis, disease mapping and others. Chapman & Hall, Boca Raton, FL.

    Google Scholar 

  • Bowyer JF, Harris AJ, Delongchamp RR, Jakab R, Miller DB, Little AR, O’callaghan JP (2004) Selective changes in gene expression in cortical regions sensitive to amphetamine during the neurodegenerative process. Neurotoxicology 25: 555–572.

    Article  PubMed  CAS  Google Scholar 

  • Delongchamp RR, Bowyer JF, Chen JJ, Kodell RL (2004) Multiple-testing strategy for analyzing cDNA array data on gene expression. Biometrics 60: 774–782.

    Article  PubMed  Google Scholar 

  • Delongchamp RR, Harris AJ, Bowyer JF (2003) A statistical approach in using cDNA array analysis to finding modest, 2-fold or less, changes in several brain regions after neurotoxic insult. Ann. N. Y. Acad. Sci. 993: 363–376.

    Article  PubMed  CAS  Google Scholar 

  • Dudoit S, Shaffer JP, Boldrick JC (2003) Multiple hypothesis testing in microarray experiments. Stat. Sci. 18: 71–103.

    Article  Google Scholar 

  • Hsueh H-M, Chen JJ, Kodell RL (2003) Comparison of methods for estimating the number of true hypotheses in multiplicity testing. J. Biopharm. Stat. 13: 675–689.

    Article  PubMed  Google Scholar 

  • Lay JO, Borgmann S, Liyanage R, Wilkins CL (2006) Problems with the “omics”. Trends Analyt. Chem. 25: 1046–1056.

    Article  CAS  Google Scholar 

  • Pounds S, Morris SW (2003) Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics 19: 1236–1242.

    Article  PubMed  CAS  Google Scholar 

  • Schweder T, Spjotvoll E (1982) Plots of p-values to evaluate many tests simultaneously. Biometrika 69: 493–502.

    Google Scholar 

  • Storey JD (2002) A direct approach to false discovery rates. J. R. Stat. Soc. Series B Stat. Methodol. 64: 479–498.

    Article  Google Scholar 

  • Storey JD, Taylor JE, Siegmund D (2004) Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates: A unified approach. J. R. Stat. Soc. Series B Stat. Methodol. 66: 187–205.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taewon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delongchamp, R.R., Razzaghi, M. & Lee, T. Estimating false discovery rate and false non-discovery rate using the empirical cumulative distribution function of p-values in ‘omics’ studies. Genes Genom 33, 461–466 (2011). https://doi.org/10.1007/s13258-011-0052-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-011-0052-y

Keywords

Navigation