Skip to main content
Log in

Expression of microRNAs associated with oxidative stress in the hippocampus of piglets

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Oxidative stress is associated with human diseases and the developmental retardation of animals. The hippocampus is particularly vulnerable to oxidative stress. MicroRNAs (miRNAs), expressed largely in the mammalian brain, are emerging as robust players and have been implicated in many cellular processes. The present study investigated the sub-tissue specificity of miRNA expression in the dorsal hippocampus (DH) and ventral hippocampus (VH) and evaluated the effects of oxidative stress induced by iron dextran (FeDex) treatment on miRNA expression in the DH and VH of pigs using RNA-sequencing technology and bioinformatics, respectively. The results demonstrated that the injection of FeDex significantly increased the levels of several markers of oxidative stress in serum of Rongchang piglets, which indicated that oxidative stress was successfully induced. Sub-tissue specificity was displayed with 54 differentially expressed miRNAs between the VH and DH. The induced oxidative stress emphasized 59 and 46 differentially expressed miRNAs in the DH and VH, respectively. GO and KEGG pathway analyses revealed that the predicted targets of these differentially expressed miRNAs were involved in the pathways that regulate the expression of genes associated with nervous system development, immune response and oxidative stress, which not only revealed the ability of miRNAs to influence complex gene networks in the DH and VH but also further corroborated the successful induction of oxidative stress. Collectively, the results of this study provide a valuable basis for future studies aimed at contributions of miRNAs induced by oxidative stress in growth retardation and neurodegenerative diseases of animals and human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adenkola AY, Ayo JO (2010) Physiological and behavioural responses of livestock to road transportation stress: a review. Afr J Biotechnol 9:4845–4856

    Google Scholar 

  • Adlakha Y, Saini N (2014) Brain microRNAs and insights into biological functions and therapeutic potential of brain enriched miRNA-128. Mol Cancer 13:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Amaral DG, Kurz J (1985) An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J Comp Neurol 240:37–59

    Article  CAS  PubMed  Google Scholar 

  • Andrae J, Gouveia L, He L, Betsholtz C (2014) Characterization of platelet-derived growth factor-a expression in mouse tissues using a lacZ knock-in approach. PLoS ONE 9:e105477

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Huang JM, Liu G, Zhang JB, Wang JY, Liu CK, Fang MY (2014) A comprehensive microRNA expression profile of the backfat tissue from castrated and intact full-sib pair male pigs. BMC Genom 15:47

    Article  Google Scholar 

  • Bautista E, Vergara P, Segovia J (2016) Iron-induced oxidative stress activates AKT and ERK1/2 and decreases Dyrk1B and PRMT1 in neuroblastoma SH-SY5Y cells. J Trace Elem Med Biol 34:62–69

    Article  CAS  PubMed  Google Scholar 

  • Belujon P, Grace AA (2011) Hippocampus, amygdala, and stress: interacting systems that affect susceptibility to addiction. Ann NY Acad Sci 1216:114–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryan K, Terrile M, Bray IM, Domingo- Fernandéz R, Watters KM, Koter J, Versteeg R, Stallings RL, Bryan K (2014) Discovery and visualization of miRNA–mRNA functional modules within integrated data using bicluster analysis. Nucleic Acids Res 42:e17

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH (2006) Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 29:77–103

    Article  CAS  PubMed  Google Scholar 

  • Chi H, Sarkisian MR, Rakic P, Flavell RA (2005) Loss of mitogen-activated protein kinase kinase kinase 4 (MEKK4) results in enhanced apoptosis and defective neural tube development. Proc Natl Acad Sci USA 102:3846–3851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi DH, Kim JH, Seo JH, Lee J, Choi WS, Kim YS (2014) Matrix metalloproteinase-3 causes dopaminergic neuronal death through Nox1-regenerated oxidative stress. PLoS ONE 9:e115954

    Article  PubMed  PubMed Central  Google Scholar 

  • Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha RK, Richardson JC, Saunders AM, Roses AD, Richards CA (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14:27–41

    Article  CAS  PubMed  Google Scholar 

  • Corson LB, Yamanaka Y, Lai KM, Rossant J (2003) Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development 130:4527–4537

    Article  CAS  PubMed  Google Scholar 

  • Dincer Y, Erzin Y, Himmetoqlu S, Gunes KN, Bai K, Akcay T (2007) Oxidative DNA damage and antioxidant activity in patients with inflammatory bowel disease. Dig Dis Sci 52:1636–1641

    Article  CAS  PubMed  Google Scholar 

  • Dong HW, Swanson LW, Chen L, Fanselow MS, Toga AW (2009) Genomic-anatomic evidence for distinct functional domains in hippocampal field CA1. Proc Natl Acad Sci USA 106:11794–11799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Santos VV, Santos DB, Lach G, Rodrigues ALS, Farina M, De Lima TCM (2013) Neuropeptide Y (NPY) prevents depressive-like behavior, spatial memory deficits and oxidative stress following amyloid-β (Aβ1–40) administration in mice. Behav Brain Res 244:107–115

    Article  PubMed  Google Scholar 

  • Ehya F, Monavarfeshani A, Mohseni FE, Karimi FL, Khayam NM, Mardi M, Salekdeh GH (2013) Phytoplasma-responsive microRNAs modulate hormonal, nutritional, and stress signalling pathways in Mexican lime trees. PLoS ONE 8:e66372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gage FH, Thompson RG (1980) Differential distribution of norepinephrine and serotonin along the dorsal-ventral axis of the hippocampal formation. Brain Res Bull 5:771–773

    Article  CAS  PubMed  Google Scholar 

  • Gan L, Yang B, Mei H (2016) The effect of iron dextran on the transcriptome of pig hippocampus. Genes Genom 39:1–14

    Article  Google Scholar 

  • Giachello CN, Fiumara F, Giacomini C, Corradi A, Milanese C, Ghirardi M (2010) PK/Erk-dependent phosphorylation of synapsin mediates formation of functional synapses and short-term homosynaptic plasticity. J Cell Sci 123:881–893

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) MiRBase: tools for microRNA genomics. Nucleic Acids Res 36:154–158

    Article  Google Scholar 

  • Grigoryan G, Korkotian E, Segal M (2012) Selective facilitation of LTP in the ventral hippocampus by calcium stores. Hippocampus 22:1635–1644

    Article  CAS  PubMed  Google Scholar 

  • Grigoryan G, Ardi Z, Albrecht A, Richter-Levin G, Segal M (2015) Juvenile stress alters LTP in ventral hippocampal slices: involvement of noradrenergic mechanisms. Behav Brain Res 278:559–562

    Article  PubMed  Google Scholar 

  • Guéraud F, Taché S, Steghens JP, Milkovic L, Borovic-Sunjic S, Zarkovic N, Gaultier E, Naud N, Helies-Toussaint C, Pierre F, Priymenko N (2015) Dietary polyunsaturated fatty acids and heme iron induce oxidative stress biomarkers and a cancer promoting environment in the colon of rats. Free Radical Biol Med 83:192–200

    Article  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  • He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Wang M, Zhan X, Li X, Zhao R (2011) Effect of different selenium sources on productive performance, serum and milk Se concentrations, and antioxidant status of sows. Biol Trace Elem Res 142:471–480

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Zhou P, Rao T, Zhang X, Wang W, Zhang L (2015) Adrenomedullin attenuates interleukin-1β-induced inflammation and apoptosis in rat Leydig cells via inhibition of NF-κB signaling pathway. Exp Cell Res 339:220–230

    Article  CAS  PubMed  Google Scholar 

  • Hua YW, Jiang JJ, Gao Y, Wang RY, Tu GJ (2016) MicroRNA-210 promotes sensory axon regeneration of adult mice in vivo and in vitro. Neurosci Lett 622:61–66

    Article  Google Scholar 

  • Huang TH, Zhu MJ, Li XY, Zhao SH (2008) Discovery of porcine microRNAs and profiling from skeletal muscle tissues during development. PLoS ONE 3:e3225

    Article  PubMed  PubMed Central  Google Scholar 

  • Izzotti A, Pullieroa A (2014) The effects of environmental chemical carcinogens on the microRNA machinery. Int J Hyg Environ Health 217:601–627

    Article  CAS  PubMed  Google Scholar 

  • Jia L, Zhang D, Qi X, Ma B, Xiang Z, He N (2014) Identification of the conserved and Novel miRNAs in Mulberry by high-throughput sequencing. PLoS ONE 9:e104409

    Article  PubMed  PubMed Central  Google Scholar 

  • John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2:e363

    Article  PubMed  PubMed Central  Google Scholar 

  • Junn E, Mouradian MM (2012) MicroRNAs in neurodegenerative diseases and their therapeutic potential. Pharmacol Therapeut 133:142–150

    Article  CAS  Google Scholar 

  • Kim KM, Park SJ, Jung SH, Kim EJ, Jogeswar G, Ajita J, Rhee Y, Kim CH, Lim SK (2012) miR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1. J Bone Miner Res 27:1669–1679

    Article  PubMed  Google Scholar 

  • Köhler C, Chan-Palay V, Steinbusch H (1981) The distribution and orientation of serotonin fibers in the entorhinal and other retrohippocampal areasan immunohistochemical study with anti-serotonin antibodies in the rat’s brain. Anat Embryol 161:237–264

    Article  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 42:D68–D73

    Article  CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739

    Article  CAS  PubMed  Google Scholar 

  • Langie SA, Kowalczyk P, Tudek B, Zabielski R, Dziaman T, Oliński R, van Schooten FJ, Godschalk RWL (2010) The effect of oxidative stress on nucleotide-excision repair in colon tissue of newborn piglets. Mutat Res 695:75–80

    Article  CAS  PubMed  Google Scholar 

  • Li M, Zhang J (2015) Circulating microRNAs: potentialand emerging biomarkers for diagnosis of cardiovascular and cerebrovascular diseases. Biomed Res Int 730535

  • Li XF, Cao RB, Luo J, Fan JM, Wang JM, Zhang YP, Gu JY, Feng XL, Zhou B, Chen PY (2016a) MicroRNA transcriptome profiling of mice brains infected with Japanese encephalitis virus by RNA sequencing. Infect Genet Evol 39:249–257

    Article  PubMed  Google Scholar 

  • Li Y, Li X, Sun W, Cheng C, Chen Y, Zeng K, Chen X, Gu Y, Gao R, Liu R, Lv X (2016b) Comparison of liver microRNA transcriptomes of Tibetan and Yorkshire pigs by deep sequencing. Gene 577:244–250

    Article  CAS  PubMed  Google Scholar 

  • Lipiński P, Starzyński R, Canonne-Hergaux F, Tudek B, Oliński R, Kowalczyk P, Dziaman T, Thibaudeau O, Gralak MA, Smuda E, Woliński J, Usińska A, Zabielski R (2010) Benefits and risks of iron supplementation in anemic neonatal pigs. Am J Pathol 177:1233–1243

    Article  PubMed  PubMed Central  Google Scholar 

  • Magenta A, Greco S, Gaetano C, Martelli F (2013) Oxidative stress and microRNAs in vascular diseases. Int J Mol Sci 14:17319–17346

    Article  PubMed  PubMed Central  Google Scholar 

  • McDaneld TG, Smith TP, Doumit ME, Miles JR, Coutinho LL, Sonstegard TS, Matukumalli LK, Nonneman DJ, Wiedmann RT (2009) MicroRNA transcriptome profiles during swine skeletal muscle development. BMC Genomics 10:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Meerson A, Cacheaux L, Goosens KA, Sapolsky RM, Soreq H, Kaufer D (2010) Changes in brain microRNAs contribute to cholinergic stress reactions. J Mol Neurosci 40:47–55

    Article  CAS  PubMed  Google Scholar 

  • Meneghini R (1997) Iron homeostasis, oxidative stress, and DNA damage. Free Radical Biol Med 23:783–792

    Article  CAS  Google Scholar 

  • Motti D, Bixby JL, Lemmon VP (2012) MicroRNAs and neuronal development. Semin Fetal Neonatal M 17:347–352

    Article  Google Scholar 

  • Müller M, Kuiperij HB, Claassen JA, Küsters B, Verbeek MM (2014) MicroRNAs in Alzheimer’s disease: differential expression in hippocampus and cell-free cerebrospinalfluid. Neurobiol Aging 35:152–158

    Article  PubMed  Google Scholar 

  • Muratsu-Ikeda S, Nangaku M, Ikeda Y, Tanaka T, Wada T, Inagi R (2012) Downregulation of miR-205 modulates cell susceptibility to oxidative and endoplasmic reticulum stresses in renal tubular cells. PLoS ONE 7:e41462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunez-Iglesias J, Liu CC, Morgan TE, Finch CE, Zhou XJ (2010) Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS ONE 5:e8898

    Article  PubMed  PubMed Central  Google Scholar 

  • Podolska A, Kaczkowski B, Kamp Busk P, Søkilde R, Litman T, Fredholm M, Cirera S (2011) MicroRNA expression profiling of the porcine developing brain. PLoS ONE 6:e14494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poljsak B (2011) Strategies for reducing or preventing the generation of oxidative stress. Oxid Med Cell Longev 194586

  • Ramamoorthy M, Sykora P, Scheibye-Knudsen M, Dunn C, Kasmer C, Zhang Y et al (2012) Sporadic Alzheimer disease fibroblasts display an oxidative stress phenotype. Free Radic Bio Med 53:1371–1380

    Article  CAS  Google Scholar 

  • Reglodi D, Renaud J, Tamas A, Tizabi Y, Socias SB, Del-Bel E, Raisman-Vozari R (2015) Novel tactics for neuroprotection in Parkinson’s disease: role of antibiotics, polyphenols and neuropeptides. Prog Neurobiol. doi: 10.1016/j.pneurobio.2015.10.004

    PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) Edger:a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289

    Article  CAS  PubMed  Google Scholar 

  • Schroeter H, Boyd C, Spencer JP, Williams RJ, Cadenas E, Rice-Evans C (2002) MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol Aging 23:861–880

    Article  CAS  PubMed  Google Scholar 

  • Stafa K, Trancikova A, Webber PJ, Glauser L, West AB, Moore DJ (2012) GTPase activity and neuronal toxicity of Parkinson’s disease-associated LRRK2 is regulated by ArfGAP1. PLoS Genet 8:e1002526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su B, Wang X, Nunomura A, Moreira P, Lee H, Perry G, Smith MA, Zhu X (2008) Oxidative stress signaling in Alzheimer’s disease. Curr Alzheimer Res 5:525–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symons KT, Massari ME, Dozier SJ, Nguyen PM, Jenkins D, Herbert M, Gahman TC, Noble SA, Rozenkrants N, Zhang Y, Rao TS, Shiau AK, Hassig CA (2008) Inhibition of inducible nitric oxide synthase expression by a novel small molecule activator of the unfolded protein response. Curr Chem Genom 2:1–9

    Article  CAS  Google Scholar 

  • Traystman RJ (2003) Animal models of focal and global cerebral ischemia. ILAR J 44:85–95

    Article  CAS  PubMed  Google Scholar 

  • Verney C, Baulac M, Berger B, Alvarez C, Vigny A, Helle KB (1985) Morphological evidence for a dopaminergic terminal field in the hippocampal formation of young and adult rat. Neuroscience 14:1039–1052

    Article  CAS  PubMed  Google Scholar 

  • Xia H, Qi Y, Ng S, Chen X, Li D, Chen S, Ge R, Jiang S, Li G, Chen Y, He ML, Kung HF, Lai L, Lina MC (2009) MicroRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Res 1269:158–165

    Article  CAS  PubMed  Google Scholar 

  • Xie SS, Li XY, Liu T, Cao JH, Zhang Q (2011) Discovery of porcine microRNAs in multiple tissues by a Solexa deep sequencing approach. PLoS ONE 6:e16235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildirim Z, Ucgun NI, Yildirim F (2011) The role of oxidative stress and anti-oxidants in the pathogenesis of age-related macular degeneration. Clinics 66:743–746

    PubMed  PubMed Central  Google Scholar 

  • Zhang B, Stellwag EJ, Pan X (2009) Large-scale genome analysis reveals unique features of microRNAs. Gene 443:100–109

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Zhang Q, Niu J, Lu K, Xie B, Cui D, Xu S (2014) Screening of microRNAs associated with Alzheimer’s disease using oxidative stress cell model and different strains of senescence accelerated mice. J Neurol Sci 338:57–64

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (Grant No. 31201807), the Natural Science Foundation of Chongqing (Grant No. cstc2016jcyjA0282), the Science and Technology Innovation Foundation of Social Livelihood of the People of Chongqing (Grant No. cstc2016shmszx80063), the Fundamental Research Funds for the Central Universities (No. XDJK2016C055) and the Youth fund of Rongchang Campus of Southwest University (No. 20700416).

Authors' contributions

LG conceived of the study and developed the study design. BY and HM carried out the analysis and drafted the manuscript. LG and FZ participated in the study design and drafting of the manuscript. LG contributed to the critical revision of the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Gan.

Ethics declarations

Conflict of interest

Binyu Yang, Hongyuan Mei, Fuyuan Zuo and Ling Gan have no competing interests exist in the study.

Research involving animal participants

The experimental procedures followed the actual law of animal protection that was approved by the Animal Care Advisory Committee of Southwest University, China.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Mei, H., Zuo, F. et al. Expression of microRNAs associated with oxidative stress in the hippocampus of piglets. Genes Genom 39, 701–712 (2017). https://doi.org/10.1007/s13258-017-0537-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-017-0537-4

Keywords

Navigation