Skip to main content
Erschienen in: Tumor Biology 4/2012

01.08.2012 | Review

Ubiquitination and the Ubiquitin–Proteasome System as regulators of transcription and transcription factorsin epithelial mesenchymal transition of cancer

verfasst von: Ioannis A. Voutsadakis

Erschienen in: Tumor Biology | Ausgabe 4/2012

Einloggen, um Zugang zu erhalten

Abstract

Epithelial to Mesenchymal Transition (EMT) in cancer is a process that allows cancer cells to detach from neighboring cells, become mobile and metastasize and shares many signaling pathways with development. Several molecular mechanisms which regulate oncogenic properties in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis through transcription factors or other mediators are also regulators of EMT. These pathways and downstream transcription factors are, in their turn, regulated by ubiquitination and the Ubiquitin–Proteasome System (UPS). Ubiquitination, the covalent link of the small 76-amino acid protein ubiquitin to target proteins, serves as a signal for protein degradation by the proteasome or for other outcomes such as endocytosis, degradation by the lysosome or directing these proteins to specific cellular compartments. This review discusses aspects of the regulation of EMT by ubiquitination and the UPS and underlines its complexity focusing on transcription and transcription factors regulating EMT and are being regulated by ubiquitination.
Literatur
1.
Zurück zum Zitat Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nature Rev Mol Cell Biol. 2006;7:131–42. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nature Rev Mol Cell Biol. 2006;7:131–42.
2.
Zurück zum Zitat Acloque H, Adams MS, Fishwick K, et al. Epithelial–mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest. 2009;119:1438–49.PubMedCentralPubMed Acloque H, Adams MS, Fishwick K, et al. Epithelial–mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest. 2009;119:1438–49.PubMedCentralPubMed
3.
4.
Zurück zum Zitat Behrends C, Harper JW. Constructing and decoding unconventional ubiquitin chains. Nat Struct Mol Biol. 2011;18:520–8.PubMed Behrends C, Harper JW. Constructing and decoding unconventional ubiquitin chains. Nat Struct Mol Biol. 2011;18:520–8.PubMed
5.
Zurück zum Zitat Shukla A, Chaurasia P, Bhaumik SR. Histone methylation and ubiquitination with their cross-talk and roles in gene expression and stability. Cell Mol Life Sci. 2009;66:1419–33.PubMed Shukla A, Chaurasia P, Bhaumik SR. Histone methylation and ubiquitination with their cross-talk and roles in gene expression and stability. Cell Mol Life Sci. 2009;66:1419–33.PubMed
6.
7.
8.
Zurück zum Zitat Mani SA, Guo W, Liao MJ, et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.PubMedCentralPubMed Mani SA, Guo W, Liao MJ, et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.PubMedCentralPubMed
9.
Zurück zum Zitat Tarin D. The fallacy of epithelial–mesenchymal transition in neoplasia. Cancer Res. 2005;65:5996–6001.PubMed Tarin D. The fallacy of epithelial–mesenchymal transition in neoplasia. Cancer Res. 2005;65:5996–6001.PubMed
10.
Zurück zum Zitat Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.PubMed Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.PubMed
11.
Zurück zum Zitat Micalizzi DS, Farabaugh SM, Ford HL. Epithelial–mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 2010;15:117–34.PubMedCentralPubMed Micalizzi DS, Farabaugh SM, Ford HL. Epithelial–mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 2010;15:117–34.PubMedCentralPubMed
12.
Zurück zum Zitat Harris TJC, Tepass U. Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol. 2010;11:502–14.PubMed Harris TJC, Tepass U. Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol. 2010;11:502–14.PubMed
13.
Zurück zum Zitat Meng W, Takeichi M. Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol. 2009;1:a002899.PubMedCentralPubMed Meng W, Takeichi M. Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol. 2009;1:a002899.PubMedCentralPubMed
14.
Zurück zum Zitat Baum B, Georgiou M. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol. 2011;192:907–17.PubMedCentralPubMed Baum B, Georgiou M. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol. 2011;192:907–17.PubMedCentralPubMed
15.
Zurück zum Zitat Fujita Y, Krause G, Scheffner M, et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol. 2002;4:222–31.PubMed Fujita Y, Krause G, Scheffner M, et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol. 2002;4:222–31.PubMed
16.
Zurück zum Zitat Palacios F, Tushir JS, Fujita Y, D’Souza-Schorey C (2005) Lysosomal targeting of E-cadherin: a unique mechanism for the down-regulation of cell–cell adhesion during Epithelia to Mesenchymal Transitions. 25: 389–402 Palacios F, Tushir JS, Fujita Y, D’Souza-Schorey C (2005) Lysosomal targeting of E-cadherin: a unique mechanism for the down-regulation of cell–cell adhesion during Epithelia to Mesenchymal Transitions. 25: 389–402
17.
Zurück zum Zitat Janda E, Nevolo M, Lehmann K, et al. Raf plus TGFβ-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin. Oncogene. 2006;25:7117–30.PubMed Janda E, Nevolo M, Lehmann K, et al. Raf plus TGFβ-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin. Oncogene. 2006;25:7117–30.PubMed
18.
Zurück zum Zitat Ozdamar B, Bose R, Barrios-Rodiles M, et al. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science. 2005;307:1603–9.PubMed Ozdamar B, Bose R, Barrios-Rodiles M, et al. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science. 2005;307:1603–9.PubMed
19.
Zurück zum Zitat Viloria-Petit AM, Wrana JL. The TGFβ–Par6 polarity pathway. Linking the Par complex to EMT and breast cancer progression. Cell Cycle. 2010;9:623–4.PubMed Viloria-Petit AM, Wrana JL. The TGFβ–Par6 polarity pathway. Linking the Par complex to EMT and breast cancer progression. Cell Cycle. 2010;9:623–4.PubMed
20.
Zurück zum Zitat Voutsadakis IA (2010) Ubiquitin, ubiquitination and the ubiquitin–proteasome system in cancer. Atlas Genet Cytogen Oncol Haematol. URL:// Atlas GeneticsOncology.org/Deep/UbiquitinCancerID20083.httml Voutsadakis IA (2010) Ubiquitin, ubiquitination and the ubiquitin–proteasome system in cancer. Atlas Genet Cytogen Oncol Haematol. URL:// Atlas GeneticsOncology.org/Deep/UbiquitinCancerID20083.httml
21.
Zurück zum Zitat Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signaling pathways. Nature Rev Mol Cell Biol. 2009;10:319–31. Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signaling pathways. Nature Rev Mol Cell Biol. 2009;10:319–31.
22.
Zurück zum Zitat van Wijk SJL, Timmers HTM. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J. 2010;24:981–93.PubMed van Wijk SJL, Timmers HTM. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J. 2010;24:981–93.PubMed
23.
Zurück zum Zitat Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem. 2009;78:399–434.PubMed Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem. 2009;78:399–434.PubMed
24.
25.
Zurück zum Zitat Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta. 2004;1695:189–207.PubMed Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta. 2004;1695:189–207.PubMed
26.
Zurück zum Zitat Voutsadakis IA. Pathogenesis of colorectal carcinoma and therapeutic implications: the roles of the ubiquitin–proteasome system and Cox-2. J Cell Mol Med. 2007;11:252–85.PubMedCentralPubMed Voutsadakis IA. Pathogenesis of colorectal carcinoma and therapeutic implications: the roles of the ubiquitin–proteasome system and Cox-2. J Cell Mol Med. 2007;11:252–85.PubMedCentralPubMed
27.
Zurück zum Zitat Wolf DH, Hilt W. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta. 2004;1695:19–31.PubMed Wolf DH, Hilt W. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta. 2004;1695:19–31.PubMed
28.
Zurück zum Zitat Wertz IE, Dixit VM. Signaling to NF-κB: regulation by ubiquitination. Cold Spring Harb Perspect Biol. 2010;2:a003350.PubMedCentralPubMed Wertz IE, Dixit VM. Signaling to NF-κB: regulation by ubiquitination. Cold Spring Harb Perspect Biol. 2010;2:a003350.PubMedCentralPubMed
29.
Zurück zum Zitat Wu Y, Zhou BP. TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion. Br J Cancer. 2010;102:639–44.PubMedCentralPubMed Wu Y, Zhou BP. TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion. Br J Cancer. 2010;102:639–44.PubMedCentralPubMed
30.
Zurück zum Zitat Min C, Eddy SF, Sherr DH, Sonenshein GE. NF-κB and epithelial to mesenchymal transition of cancer. J Cell Biochem. 2008;104:733–44.PubMed Min C, Eddy SF, Sherr DH, Sonenshein GE. NF-κB and epithelial to mesenchymal transition of cancer. J Cell Biochem. 2008;104:733–44.PubMed
31.
Zurück zum Zitat Pham CG, Bubici C, Zazzeroni F, et al. Upregulation of Twist-1 by NF-κB blocks cytotoxicity induced by chemotherapeutic drugs. Mol Cell Biol. 2007;27:3920–35.PubMedCentralPubMed Pham CG, Bubici C, Zazzeroni F, et al. Upregulation of Twist-1 by NF-κB blocks cytotoxicity induced by chemotherapeutic drugs. Mol Cell Biol. 2007;27:3920–35.PubMedCentralPubMed
32.
Zurück zum Zitat Chua HL, Bhat-Nakshatri P, Clare SE, et al. NF-κB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene. 2007;26:711–24.PubMed Chua HL, Bhat-Nakshatri P, Clare SE, et al. NF-κB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene. 2007;26:711–24.PubMed
33.
Zurück zum Zitat Vonach C, Viola K, Giessrigl B, et al. NF-κB mediates the 12(S)-HETE-induced endothelial to mesenchymal transition of lymphendothelial cells during the intravasation of breast carcinoma cells. Br J Cancer. 2011;105:263–71.PubMedCentralPubMed Vonach C, Viola K, Giessrigl B, et al. NF-κB mediates the 12(S)-HETE-induced endothelial to mesenchymal transition of lymphendothelial cells during the intravasation of breast carcinoma cells. Br J Cancer. 2011;105:263–71.PubMedCentralPubMed
34.
Zurück zum Zitat Bachelder RE, Yoon S-O, Franci C, et al. Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial–mesenchymal transition. J Cell Biol. 2005;168:29–33.PubMedCentralPubMed Bachelder RE, Yoon S-O, Franci C, et al. Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial–mesenchymal transition. J Cell Biol. 2005;168:29–33.PubMedCentralPubMed
35.
Zurück zum Zitat Cheng GZ, Chan J, Wang Q, et al. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res. 2007;67:1979–87.PubMed Cheng GZ, Chan J, Wang Q, et al. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res. 2007;67:1979–87.PubMed
36.
Zurück zum Zitat Li J, Zhou BP. Activation of β-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC Cancer. 2011;11:49.PubMedCentralPubMed Li J, Zhou BP. Activation of β-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC Cancer. 2011;11:49.PubMedCentralPubMed
37.
Zurück zum Zitat Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 2009;30:383–91.PubMed Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 2009;30:383–91.PubMed
38.
Zurück zum Zitat Landström M. The TAK1-TRAF6 signalling pathway. Int J Biochem Cell Biol. 2010;42:585–9.PubMed Landström M. The TAK1-TRAF6 signalling pathway. Int J Biochem Cell Biol. 2010;42:585–9.PubMed
39.
Zurück zum Zitat Espinosa L, Bigas A, Mulero MC. Alternative nuclear functions for NF-κB family members. Am J Cancer Res. 2011;1:446–59.PubMedCentralPubMed Espinosa L, Bigas A, Mulero MC. Alternative nuclear functions for NF-κB family members. Am J Cancer Res. 2011;1:446–59.PubMedCentralPubMed
40.
Zurück zum Zitat Dechend R, Hirano F, Lehmann K, et al. The Bcl-3 oncoprotein acts as a bridging factor between NF-κB/Rel and nuclear co-regulators. Oncogene. 1999;18:3316–23.PubMed Dechend R, Hirano F, Lehmann K, et al. The Bcl-3 oncoprotein acts as a bridging factor between NF-κB/Rel and nuclear co-regulators. Oncogene. 1999;18:3316–23.PubMed
41.
Zurück zum Zitat Keutgens A, Shostak K, Close P, et al. The repressing function of the oncoprotein BCL-3 requires CtBP, while its polyubiquitination and degradation involve the E3 ligase TBLR1. Mol Cell Biol. 2010;30:4006–21.PubMedCentralPubMed Keutgens A, Shostak K, Close P, et al. The repressing function of the oncoprotein BCL-3 requires CtBP, while its polyubiquitination and degradation involve the E3 ligase TBLR1. Mol Cell Biol. 2010;30:4006–21.PubMedCentralPubMed
42.
Zurück zum Zitat Viatour P, Dejardin E, Warnier M, et al. GSK3-mediated BCL-3 phosphorylation modulates its degradation and its oncogenicity. Mol Cell. 2004;16:35–45.PubMed Viatour P, Dejardin E, Warnier M, et al. GSK3-mediated BCL-3 phosphorylation modulates its degradation and its oncogenicity. Mol Cell. 2004;16:35–45.PubMed
43.
Zurück zum Zitat Keutgens A, Zhou X, Shostak K, et al. BCL-3 degradation involves its polyubiquitination through a FBW7-independent pathway and its binding to the proteasome subunit PSMB1. J Biol Chem. 2010;285:25831–40.PubMedCentralPubMed Keutgens A, Zhou X, Shostak K, et al. BCL-3 degradation involves its polyubiquitination through a FBW7-independent pathway and its binding to the proteasome subunit PSMB1. J Biol Chem. 2010;285:25831–40.PubMedCentralPubMed
44.
Zurück zum Zitat Perissi V, Scafoglio C, Zhang J, et al. TBL1 and TBLR1 phosphorylation on regulated gene promoters overcomes dual CtBP and NCoR/SMRT transcriptional repression checkpoints. Mol Cell. 2008;29:755–66.PubMedCentralPubMed Perissi V, Scafoglio C, Zhang J, et al. TBL1 and TBLR1 phosphorylation on regulated gene promoters overcomes dual CtBP and NCoR/SMRT transcriptional repression checkpoints. Mol Cell. 2008;29:755–66.PubMedCentralPubMed
45.
Zurück zum Zitat Haase VH. Oxygen regulates epithelial-to-mesenchymal transition: insights into molecular mechanisms and relevance to disease. Kidney Int. 2009;76:492–9.PubMedCentralPubMed Haase VH. Oxygen regulates epithelial-to-mesenchymal transition: insights into molecular mechanisms and relevance to disease. Kidney Int. 2009;76:492–9.PubMedCentralPubMed
46.
Zurück zum Zitat Kim WY, Perera S, Zhou B, et al. HIF2α cooperates with RAS to promote lung tumorigenesis in mice. J Clin Invest. 2009;119:2160–70.PubMedCentralPubMed Kim WY, Perera S, Zhou B, et al. HIF2α cooperates with RAS to promote lung tumorigenesis in mice. J Clin Invest. 2009;119:2160–70.PubMedCentralPubMed
47.
Zurück zum Zitat Chen J, Imanaka N, Chen J, Griffin JD. Hypoxia potentiates Notch signalling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br J Cancer. 2010;102:351–60.PubMed Chen J, Imanaka N, Chen J, Griffin JD. Hypoxia potentiates Notch signalling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br J Cancer. 2010;102:351–60.PubMed
48.
Zurück zum Zitat Xing F, Okuda H, Watabe M, et al. Hypoxia-induced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells. Oncogene. 2011;30:4075–86.PubMedCentralPubMed Xing F, Okuda H, Watabe M, et al. Hypoxia-induced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells. Oncogene. 2011;30:4075–86.PubMedCentralPubMed
49.
Zurück zum Zitat Scortegagna M, Martin RJ, Kladney RD, et al. Hypoxia-inducible factor-1α suppresses squamous carcinogenic progression and epithelial–mesenchymal transition. Cancer Res. 2009;69:2638–46.PubMedCentralPubMed Scortegagna M, Martin RJ, Kladney RD, et al. Hypoxia-inducible factor-1α suppresses squamous carcinogenic progression and epithelial–mesenchymal transition. Cancer Res. 2009;69:2638–46.PubMedCentralPubMed
50.
Zurück zum Zitat Pantuck AJ, An J, Liu H, Rettig MB. NF-κB-dependent plasticity of the epithelial to mesenchymal transition induced by Von Hippel–Lindau inactivation in renal cell carcinomas. Cancer Res. 2010;70:752–61.PubMed Pantuck AJ, An J, Liu H, Rettig MB. NF-κB-dependent plasticity of the epithelial to mesenchymal transition induced by Von Hippel–Lindau inactivation in renal cell carcinomas. Cancer Res. 2010;70:752–61.PubMed
51.
Zurück zum Zitat Cowling VH, Cole MD. Mechanism of transcriptional activation by the Myc oncoproteins. Semin Cancer Biol. 2006;16:242–52.PubMed Cowling VH, Cole MD. Mechanism of transcriptional activation by the Myc oncoproteins. Semin Cancer Biol. 2006;16:242–52.PubMed
52.
Zurück zum Zitat Yada M, Hatakeyama S, Kamura T, et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 2004;23:2116–25.PubMedCentralPubMed Yada M, Hatakeyama S, Kamura T, et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 2004;23:2116–25.PubMedCentralPubMed
53.
Zurück zum Zitat Yeh P-Y, Lu Y-S, Ou D-L, Cheng A-L. IκB kinases increase Myc protein stability and enhance progression of breast cancer cells. Mol Cancer. 2011;10:53.PubMedCentralPubMed Yeh P-Y, Lu Y-S, Ou D-L, Cheng A-L. IκB kinases increase Myc protein stability and enhance progression of breast cancer cells. Mol Cancer. 2011;10:53.PubMedCentralPubMed
54.
Zurück zum Zitat Trimboli AJ, Fukino K, de Bruin A, et al. Direct evidence for epithelial–mesenchymal transitions in breast cancer. Cancer Res. 2008;68:937–45.PubMed Trimboli AJ, Fukino K, de Bruin A, et al. Direct evidence for epithelial–mesenchymal transitions in breast cancer. Cancer Res. 2008;68:937–45.PubMed
55.
Zurück zum Zitat Cho KB, Cho MK, Lee WY, Kang KW. Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells. Cancer Lett. 2010;293:230–9.PubMed Cho KB, Cho MK, Lee WY, Kang KW. Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells. Cancer Lett. 2010;293:230–9.PubMed
56.
Zurück zum Zitat Smith AP, Verrecchia A, Fagà G, et al. A positive role for Myc in TGFβ-induced Snail transcription and epithelial-to-mesenchymal transition. Oncogene. 2009;28:422–30.PubMed Smith AP, Verrecchia A, Fagà G, et al. A positive role for Myc in TGFβ-induced Snail transcription and epithelial-to-mesenchymal transition. Oncogene. 2009;28:422–30.PubMed
57.
Zurück zum Zitat Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biol. 2010;12:247–56.PubMed Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biol. 2010;12:247–56.PubMed
58.
Zurück zum Zitat Khew-Goodall Y, Goodall GJ. Myc-modulated miR-9 makes more metastases. Nature Cell Biol. 2010;12:209–11.PubMed Khew-Goodall Y, Goodall GJ. Myc-modulated miR-9 makes more metastases. Nature Cell Biol. 2010;12:209–11.PubMed
59.
Zurück zum Zitat Turner DP, Watson DK. ETS transcription factors: oncogenes and tumor suppressor genes as therapeutic targets for prostate cancer. Expert Rev Anticancer Ther. 2008;8:33–42.PubMed Turner DP, Watson DK. ETS transcription factors: oncogenes and tumor suppressor genes as therapeutic targets for prostate cancer. Expert Rev Anticancer Ther. 2008;8:33–42.PubMed
60.
Zurück zum Zitat Kovar H. Context matters: the hen or egg problem in Ewing’s sarcoma. Semin Cancer Biol. 2005;15:189–96.PubMed Kovar H. Context matters: the hen or egg problem in Ewing’s sarcoma. Semin Cancer Biol. 2005;15:189–96.PubMed
61.
Zurück zum Zitat Gupta S, Iljin K, Sara H, et al. FZD4 as a mediator of ERG oncogene-induced WNT signalling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res. 2010;70:6735–45.PubMed Gupta S, Iljin K, Sara H, et al. FZD4 as a mediator of ERG oncogene-induced WNT signalling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res. 2010;70:6735–45.PubMed
62.
Zurück zum Zitat Sun C, Dobi A, Mohamed A, et al. TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene. 2008;27:5348–53.PubMedCentralPubMed Sun C, Dobi A, Mohamed A, et al. TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene. 2008;27:5348–53.PubMedCentralPubMed
63.
Zurück zum Zitat Cowden Dahl KD, Dahl R, Kruichak JN, Hudson LG. The epidermal growth factor receptor responsive miR-125a represses mesenchymal morphology in ovarian cancer cells. Neoplasia. 2009;11:1208–15.PubMedCentralPubMed Cowden Dahl KD, Dahl R, Kruichak JN, Hudson LG. The epidermal growth factor receptor responsive miR-125a represses mesenchymal morphology in ovarian cancer cells. Neoplasia. 2009;11:1208–15.PubMedCentralPubMed
64.
Zurück zum Zitat Takebe A, Era T, Okada M, et al. Microarray analysis of PDGFRα+ populations in ES cell differentiation culture identifies genes involved in differentiation of mesoderm and mesenchyme including ARID3b that is essential for development of embryonic mesenchymal cells. Dev Biol. 2006;293:25–37.PubMed Takebe A, Era T, Okada M, et al. Microarray analysis of PDGFRα+ populations in ES cell differentiation culture identifies genes involved in differentiation of mesoderm and mesenchyme including ARID3b that is essential for development of embryonic mesenchymal cells. Dev Biol. 2006;293:25–37.PubMed
65.
Zurück zum Zitat Cowden Dahl KD, Zeineldin R, Hudson LG. PEA3 is necessary for optimal epidermal growth factor receptor-stimulated matrix metalloproteinase expression and invasion of ovarian tumor cells. Mol Cancer Res. 2007;5:413–21.PubMedCentralPubMed Cowden Dahl KD, Zeineldin R, Hudson LG. PEA3 is necessary for optimal epidermal growth factor receptor-stimulated matrix metalloproteinase expression and invasion of ovarian tumor cells. Mol Cancer Res. 2007;5:413–21.PubMedCentralPubMed
66.
Zurück zum Zitat Yuen H-F, Chan Y-K, Grills C, et al. Polyomavirus enhancer activator 3 protein promotes breast cancer metastatic progression through Snail-induced epithelial–mesenchymal transition. J Pathol. 2011;224:78–89.PubMed Yuen H-F, Chan Y-K, Grills C, et al. Polyomavirus enhancer activator 3 protein promotes breast cancer metastatic progression through Snail-induced epithelial–mesenchymal transition. J Pathol. 2011;224:78–89.PubMed
67.
Zurück zum Zitat Vitari AC, Leong KG, Newton K, et al. COP1 is a tumour suppressor that causes degradation of ETS transcription factors. Nature. 2011;474:403–6.PubMed Vitari AC, Leong KG, Newton K, et al. COP1 is a tumour suppressor that causes degradation of ETS transcription factors. Nature. 2011;474:403–6.PubMed
68.
Zurück zum Zitat Vousden KH, Prives C. Blinded by the SteLight: the growing complexity of p53. Cell. 2009;137:413–31.PubMed Vousden KH, Prives C. Blinded by the SteLight: the growing complexity of p53. Cell. 2009;137:413–31.PubMed
69.
Zurück zum Zitat Kashatus D, Cogwell P, Baldwin AS. Expression of the Bcl-3 proto-oncogene suppresses p53 activation. Genes Dev. 2006;20:225–35.PubMedCentralPubMed Kashatus D, Cogwell P, Baldwin AS. Expression of the Bcl-3 proto-oncogene suppresses p53 activation. Genes Dev. 2006;20:225–35.PubMedCentralPubMed
70.
Zurück zum Zitat Laine A, Ronai Z. Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1. Oncogene. 2007;26:1477–83.PubMed Laine A, Ronai Z. Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1. Oncogene. 2007;26:1477–83.PubMed
71.
Zurück zum Zitat Miyazaki K, Ozaki T, Kato C, et al. A novel HECT-type E3 ubiquitin ligase, NEDL2, stabilizes p73 and enhances its transcriptional activity. Biochem Biophys Res Commun. 2003;308:106–13.PubMed Miyazaki K, Ozaki T, Kato C, et al. A novel HECT-type E3 ubiquitin ligase, NEDL2, stabilizes p73 and enhances its transcriptional activity. Biochem Biophys Res Commun. 2003;308:106–13.PubMed
72.
Zurück zum Zitat Melino G, Knight RA, Cesareni G. Degradation of p63 by Itch. Cell Cycle. 2006;5:1735–9.PubMed Melino G, Knight RA, Cesareni G. Degradation of p63 by Itch. Cell Cycle. 2006;5:1735–9.PubMed
73.
Zurück zum Zitat Dai C, Gu W. p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med. 2010;16:528–36.PubMedCentralPubMed Dai C, Gu W. p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med. 2010;16:528–36.PubMedCentralPubMed
74.
Zurück zum Zitat Masuya D, Huang C, Liu D, et al. The HAUSP gene plays an important role in non-small cell lung carcinogenesis through p53-dependent pathways. J Pathol. 2006;208:724–32.PubMed Masuya D, Huang C, Liu D, et al. The HAUSP gene plays an important role in non-small cell lung carcinogenesis through p53-dependent pathways. J Pathol. 2006;208:724–32.PubMed
75.
Zurück zum Zitat Chang C-J, Chao C-H, Xia W, et al. p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biol. 2011;13:317.PubMed Chang C-J, Chao C-H, Xia W, et al. p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biol. 2011;13:317.PubMed
76.
Zurück zum Zitat Kim T, Veronese A, Pichiorri F, et al. p53 regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med. 2011;208:875–83.PubMedCentralPubMed Kim T, Veronese A, Pichiorri F, et al. p53 regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med. 2011;208:875–83.PubMedCentralPubMed
77.
Zurück zum Zitat Pinho AV, Rooman I, Real FX. p53-dependent regulation of growth, epithelial–mesenchymal transition and stemness in normal pancreatic epithelial cells. Cell Cycle. 2011;10:1312–21.PubMed Pinho AV, Rooman I, Real FX. p53-dependent regulation of growth, epithelial–mesenchymal transition and stemness in normal pancreatic epithelial cells. Cell Cycle. 2011;10:1312–21.PubMed
78.
Zurück zum Zitat Wang S-P, Wang W-L, Chang Y-L, et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nature Cell Biol. 2009;11:694–704.PubMed Wang S-P, Wang W-L, Chang Y-L, et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nature Cell Biol. 2009;11:694–704.PubMed
79.
Zurück zum Zitat Liu M, Casimiro MC, Wang C, et al. p21CIP1 attenuates Ras- and c-Myc-dependent breast tumor epithelial mesenchymal transition and cancer stem cell-like gene expression in vivo. Proc Natl Acad Sci USA. 2009;106:19035–9.PubMedCentralPubMed Liu M, Casimiro MC, Wang C, et al. p21CIP1 attenuates Ras- and c-Myc-dependent breast tumor epithelial mesenchymal transition and cancer stem cell-like gene expression in vivo. Proc Natl Acad Sci USA. 2009;106:19035–9.PubMedCentralPubMed
80.
Zurück zum Zitat Zhang Y, Yan W, Chen X. Mutant p53 disrupts MCF-10A cell polarity in three-dimensional culture via epithelial-to-mesenchymal transitions. J Biol Chem. 2011;286:16218–28.PubMedCentralPubMed Zhang Y, Yan W, Chen X. Mutant p53 disrupts MCF-10A cell polarity in three-dimensional culture via epithelial-to-mesenchymal transitions. J Biol Chem. 2011;286:16218–28.PubMedCentralPubMed
81.
Zurück zum Zitat Kogan-Sakin I, Tabach Y, Buganim Y, et al. Mutant p53R175H upregulates Twist1 expression and promotes epithelial–mesenchymal transition in immortalized prostate cells. Cell Death Diff. 2011;18:271–81. Kogan-Sakin I, Tabach Y, Buganim Y, et al. Mutant p53R175H upregulates Twist1 expression and promotes epithelial–mesenchymal transition in immortalized prostate cells. Cell Death Diff. 2011;18:271–81.
82.
Zurück zum Zitat Ohashi S, Natsuizaka M, Wong GS, et al. Epidermal growth factor receptor and mutant p53 expand an esophageal cellular subpopulation capable of epithelial-to-mesenchymal transition through ZEB transcription factors. Cancer Res. 2010;70:4174–84.PubMedCentralPubMed Ohashi S, Natsuizaka M, Wong GS, et al. Epidermal growth factor receptor and mutant p53 expand an esophageal cellular subpopulation capable of epithelial-to-mesenchymal transition through ZEB transcription factors. Cancer Res. 2010;70:4174–84.PubMedCentralPubMed
83.
Zurück zum Zitat Girardini JE, Napoli M, Piazza S, et al. A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell. 2011;20:79–91.PubMed Girardini JE, Napoli M, Piazza S, et al. A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell. 2011;20:79–91.PubMed
84.
Zurück zum Zitat Melino G. p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Diff. 2011;18:1487–99. Melino G. p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Diff. 2011;18:1487–99.
85.
Zurück zum Zitat Weisz L, Damalas A, Liontos M, et al. Mutant p53 enhances nuclear factor κB activation by tumor necrosis factor α in cancer cells. Cancer Res. 2007;67:2396–401.PubMed Weisz L, Damalas A, Liontos M, et al. Mutant p53 enhances nuclear factor κB activation by tumor necrosis factor α in cancer cells. Cancer Res. 2007;67:2396–401.PubMed
86.
Zurück zum Zitat Jiang Z, Jones R, Liu JC, et al. RB1 and p53 at the crossroad of EMT and triple-negative breast cancer. Cell Cycle. 2011;10:1563–70.PubMed Jiang Z, Jones R, Liu JC, et al. RB1 and p53 at the crossroad of EMT and triple-negative breast cancer. Cell Cycle. 2011;10:1563–70.PubMed
87.
Zurück zum Zitat Godar S, Ince TA, Bell GW, et al. Growth-inhibitory and tumor-suppressive functions of p53 depend on its repression of CD44 expression. Cell. 2008;134:62–73.PubMedCentralPubMed Godar S, Ince TA, Bell GW, et al. Growth-inhibitory and tumor-suppressive functions of p53 depend on its repression of CD44 expression. Cell. 2008;134:62–73.PubMedCentralPubMed
88.
Zurück zum Zitat Gemmill RM, Roche J, Potiron VA, et al. ZEB1-responsive genes in non-small cell lung cancer. Cancer Lett. 2011;300:66–78.PubMed Gemmill RM, Roche J, Potiron VA, et al. ZEB1-responsive genes in non-small cell lung cancer. Cancer Lett. 2011;300:66–78.PubMed
89.
Zurück zum Zitat De Craene B, van Roy F, Berx G. Unraveling signalling cascades for the Snail family of transcription factors. Cell Signalling. 2005;17:535–47.PubMed De Craene B, van Roy F, Berx G. Unraveling signalling cascades for the Snail family of transcription factors. Cell Signalling. 2005;17:535–47.PubMed
90.
Zurück zum Zitat Wang Z, Li Y, Kong D, et al. Acquisition of epithelial–mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the Notch signaling pathway. Cancer Res. 2009;69:2400–7.PubMedCentralPubMed Wang Z, Li Y, Kong D, et al. Acquisition of epithelial–mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the Notch signaling pathway. Cancer Res. 2009;69:2400–7.PubMedCentralPubMed
91.
Zurück zum Zitat Bagnato A, Rosanò L. Epithelial–mesenchymal transition in ovarian cancer progression: a crucial role for the endothelin axis. Cells Tissues Organs. 2007;185:85–94.PubMed Bagnato A, Rosanò L. Epithelial–mesenchymal transition in ovarian cancer progression: a crucial role for the endothelin axis. Cells Tissues Organs. 2007;185:85–94.PubMed
92.
Zurück zum Zitat Yadav A, Kumar B, Datta J, et al. IL-6 promotes head and neck tumor metastasis by inducing epithelial–mesenchymal transition via the JAK–STAT3–SNAIL signaling pathway. Mol Cancer Res. 2011;9:1658–67.PubMedCentralPubMed Yadav A, Kumar B, Datta J, et al. IL-6 promotes head and neck tumor metastasis by inducing epithelial–mesenchymal transition via the JAK–STAT3–SNAIL signaling pathway. Mol Cancer Res. 2011;9:1658–67.PubMedCentralPubMed
93.
Zurück zum Zitat Stemmer V, de Craene B, Berx G, Behrens J. Snail promotes Wnt target gene expression and interacts with β-catenin. Oncogene. 2008;27:5075–80.PubMed Stemmer V, de Craene B, Berx G, Behrens J. Snail promotes Wnt target gene expression and interacts with β-catenin. Oncogene. 2008;27:5075–80.PubMed
94.
Zurück zum Zitat Vincent T, Neve EPA, Johnson JR, et al. A SNAIL1–SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial–mesenchymal transition. Nature Cell Biol. 2009;11:943–50.PubMed Vincent T, Neve EPA, Johnson JR, et al. A SNAIL1–SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial–mesenchymal transition. Nature Cell Biol. 2009;11:943–50.PubMed
95.
Zurück zum Zitat Zhang L, Lei W, Wang X, et al. Glucocorticoid induces mesenchymal-to-epithelial transition and inhibits TGF-β1-induced epithelial-to-mesenchymal transition and cell migration. FEBS Lett. 2010;584:4646–54.PubMed Zhang L, Lei W, Wang X, et al. Glucocorticoid induces mesenchymal-to-epithelial transition and inhibits TGF-β1-induced epithelial-to-mesenchymal transition and cell migration. FEBS Lett. 2010;584:4646–54.PubMed
96.
Zurück zum Zitat Yook JI, Li X-Y, Ota I, et al. A Wnt-Axin2-GSK3β cascade regulates Snail1 activity in breast cancer cells. Nature Cell Biol. 2006;8:1398–14.PubMed Yook JI, Li X-Y, Ota I, et al. A Wnt-Axin2-GSK3β cascade regulates Snail1 activity in breast cancer cells. Nature Cell Biol. 2006;8:1398–14.PubMed
97.
Zurück zum Zitat Katoh M, Katoh M. Integrative genomic analyses of ZEB2: transcriptional regulation of ZEB2 based on SMADs, ETS1, HIF1α, POU/OCT, and NF-κB. Int J Oncol. 2009;34:1737–42.PubMed Katoh M, Katoh M. Integrative genomic analyses of ZEB2: transcriptional regulation of ZEB2 based on SMADs, ETS1, HIF1α, POU/OCT, and NF-κB. Int J Oncol. 2009;34:1737–42.PubMed
98.
Zurück zum Zitat Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop-a motor of cellular plasticity in development and cancer? EMBO Rep. 2010;11:670–7.PubMedCentralPubMed Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop-a motor of cellular plasticity in development and cancer? EMBO Rep. 2010;11:670–7.PubMedCentralPubMed
99.
Zurück zum Zitat Xia H, Ng SS, Jiang S, et al. miR-200a-mediated downregulation of ZEB2 and CTNNB1 differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion. Biochem Biophys Res Commun. 2010;391:535–41.PubMed Xia H, Ng SS, Jiang S, et al. miR-200a-mediated downregulation of ZEB2 and CTNNB1 differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion. Biochem Biophys Res Commun. 2010;391:535–41.PubMed
100.
Zurück zum Zitat Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biol. 2009;11:1487–95.PubMed Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biol. 2009;11:1487–95.PubMed
101.
Zurück zum Zitat Voutsadakis IA. Molecular predictors of gemcitabine response in pancreatic cancer. World J Gastrointest Oncol. 2011;3:153–64.PubMedCentralPubMed Voutsadakis IA. Molecular predictors of gemcitabine response in pancreatic cancer. World J Gastrointest Oncol. 2011;3:153–64.PubMedCentralPubMed
102.
Zurück zum Zitat Fu J, Lv X, Lin H, et al. Ubiquitin ligase Cullin 7 induces epithelial–mesenchymal transition in human choriocarcinoma cells. J Biol Chem. 2010;285:10870–9.PubMedCentralPubMed Fu J, Lv X, Lin H, et al. Ubiquitin ligase Cullin 7 induces epithelial–mesenchymal transition in human choriocarcinoma cells. J Biol Chem. 2010;285:10870–9.PubMedCentralPubMed
103.
Zurück zum Zitat Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.PubMed Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.PubMed
104.
Zurück zum Zitat Burguignon LYW, Wong G, Earle C, et al. Hyaluronan–CD44 interaction promotes c-Src-mediated Twist signaling, microRNA-10b expression, and RhoA/RhoC up-regulation, leading to Rho-kinase-associated cytoskeleton activation and breast tumor cell invasion. J Biol Chem. 2010;285:36721–35. Burguignon LYW, Wong G, Earle C, et al. Hyaluronan–CD44 interaction promotes c-Src-mediated Twist signaling, microRNA-10b expression, and RhoA/RhoC up-regulation, leading to Rho-kinase-associated cytoskeleton activation and breast tumor cell invasion. J Biol Chem. 2010;285:36721–35.
105.
Zurück zum Zitat Karlsson R, Pedersen ED, Wang Z, Brakebusch C. Rho GTPase function in tumorigenesis. Biochim Biophys Acta. 2009;1796:91–8.PubMed Karlsson R, Pedersen ED, Wang Z, Brakebusch C. Rho GTPase function in tumorigenesis. Biochim Biophys Acta. 2009;1796:91–8.PubMed
106.
Zurück zum Zitat Sullivan NJ, Sasser AK, Axel AE, et al. Interleukin-6 induces an epithelial–mesenchymal transition phenotype in human breast cancer cells. Oncogene. 2009;28:2940–7.PubMedCentralPubMed Sullivan NJ, Sasser AK, Axel AE, et al. Interleukin-6 induces an epithelial–mesenchymal transition phenotype in human breast cancer cells. Oncogene. 2009;28:2940–7.PubMedCentralPubMed
107.
Zurück zum Zitat Demontis S, Rigo C, Piccinin S, et al. Twist is substrate for caspase cleavage and proteasome-mediated degradation. Cell Death Diff. 2006;13:335–45. Demontis S, Rigo C, Piccinin S, et al. Twist is substrate for caspase cleavage and proteasome-mediated degradation. Cell Death Diff. 2006;13:335–45.
108.
Zurück zum Zitat Hwang-Verslues WW, Chang P-H, Wei P-C, et al. miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene. 2011;30:2463–74.PubMed Hwang-Verslues WW, Chang P-H, Wei P-C, et al. miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene. 2011;30:2463–74.PubMed
109.
Zurück zum Zitat Sun L, Trausch-Azar JS, Ciechanover A, Schwartz AL. E2A protein degradation by the ubiquitin–proteasome system is stage-dependent during muscle differentiation. Oncogene. 2007;26:441–8.PubMed Sun L, Trausch-Azar JS, Ciechanover A, Schwartz AL. E2A protein degradation by the ubiquitin–proteasome system is stage-dependent during muscle differentiation. Oncogene. 2007;26:441–8.PubMed
110.
Zurück zum Zitat Sun L, Trausch-Azar JS, Ciechanover A, Schwartz AL. Ubiquitin–proteasome-mediated degradation, intracellular localization, and protein synthesis of MyoD and Id1 during muscle differentiation. J Biol Chem. 2005;280:26448–56.PubMed Sun L, Trausch-Azar JS, Ciechanover A, Schwartz AL. Ubiquitin–proteasome-mediated degradation, intracellular localization, and protein synthesis of MyoD and Id1 during muscle differentiation. J Biol Chem. 2005;280:26448–56.PubMed
111.
Zurück zum Zitat Bhat KP, Greer SF. Proteolytic and non-proteolytic roles of ubiquitin and the ubiquitin proteasome system in transcriptional regulation. Biochim Biophys Acta. 2011;1809:150–5.PubMed Bhat KP, Greer SF. Proteolytic and non-proteolytic roles of ubiquitin and the ubiquitin proteasome system in transcriptional regulation. Biochim Biophys Acta. 2011;1809:150–5.PubMed
112.
Zurück zum Zitat Jenster G, Spencer TE, Burcin MM, et al. Steroid receptor induction of gene transcription: a two-step model. Proc Natl Acad Sci USA. 1997;94:7879–84.PubMedCentralPubMed Jenster G, Spencer TE, Burcin MM, et al. Steroid receptor induction of gene transcription: a two-step model. Proc Natl Acad Sci USA. 1997;94:7879–84.PubMedCentralPubMed
113.
Zurück zum Zitat Zhang Y. Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev. 2003;17:2733–40.PubMed Zhang Y. Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev. 2003;17:2733–40.PubMed
114.
Zurück zum Zitat Dover J, Schneider J, Tawiah-Boateng MA, et al. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem. 2002;277:28368–71.PubMed Dover J, Schneider J, Tawiah-Boateng MA, et al. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem. 2002;277:28368–71.PubMed
115.
Zurück zum Zitat Sun ZW, Allis CD. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature. 2002;418:104–8.PubMed Sun ZW, Allis CD. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature. 2002;418:104–8.PubMed
116.
Zurück zum Zitat Higashi M, Inoue S, Ito T. Core histone H2A ubiquitylation and transcriptional regulation. Exp Cell Res. 2010;316:2707–12.PubMed Higashi M, Inoue S, Ito T. Core histone H2A ubiquitylation and transcriptional regulation. Exp Cell Res. 2010;316:2707–12.PubMed
117.
118.
Zurück zum Zitat Laribee RN, Fuchs SM, Strahl BD. H2B ubiquitination in transcriptional control: a FACT-finding mission. Genes Dev. 2007;21:737–43.PubMed Laribee RN, Fuchs SM, Strahl BD. H2B ubiquitination in transcriptional control: a FACT-finding mission. Genes Dev. 2007;21:737–43.PubMed
119.
Zurück zum Zitat Ezhkova E, Tansey WP. Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. Mol Cell. 2004;13:435–42.PubMed Ezhkova E, Tansey WP. Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. Mol Cell. 2004;13:435–42.PubMed
120.
Zurück zum Zitat Logan IR, Gaughan L, McCracken SRC, et al. Human PIRH2 enhances androgen receptor signalling through inhibition of histone deacetylase 1 and is overexpressed in prostate cancer. Mol Cell Biol. 2006;26:6502–10.PubMedCentralPubMed Logan IR, Gaughan L, McCracken SRC, et al. Human PIRH2 enhances androgen receptor signalling through inhibition of histone deacetylase 1 and is overexpressed in prostate cancer. Mol Cell Biol. 2006;26:6502–10.PubMedCentralPubMed
121.
Zurück zum Zitat Boeger H, Bushnell DA, Davis R, et al. Structural basis of eukaryotic gene transcription. FEBS Lett. 2005;579:899–903.PubMed Boeger H, Bushnell DA, Davis R, et al. Structural basis of eukaryotic gene transcription. FEBS Lett. 2005;579:899–903.PubMed
122.
Zurück zum Zitat Boeger H, Griesenbeck J, Strattan JS, Kornberg RD. Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol Cell. 2004;14:667–73.PubMed Boeger H, Griesenbeck J, Strattan JS, Kornberg RD. Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol Cell. 2004;14:667–73.PubMed
123.
Zurück zum Zitat Gaughan L, Logan IR, Neal DE, Robson CN. Regulation of androgen receptor and histone deacetylase 1 by mdm2-mediated ubiquitylation. Nucleic Acids Res. 2005;33:13–26.PubMedCentralPubMed Gaughan L, Logan IR, Neal DE, Robson CN. Regulation of androgen receptor and histone deacetylase 1 by mdm2-mediated ubiquitylation. Nucleic Acids Res. 2005;33:13–26.PubMedCentralPubMed
124.
Zurück zum Zitat Ramamoorthy S, Nawaz Z. E6-associated protein (E6-AP) is a dual function coactivator of steroid hormone receptors. Nucl Recept Signal. 2008;6:e006.PubMedCentralPubMed Ramamoorthy S, Nawaz Z. E6-associated protein (E6-AP) is a dual function coactivator of steroid hormone receptors. Nucl Recept Signal. 2008;6:e006.PubMedCentralPubMed
125.
Zurück zum Zitat Vijayvargia R, May MS, Fondell JD. A coregulatory role for the mediator complex in prostate cancer cell proliferation and gene expression. Cancer Res. 2007;67:4034–41.PubMed Vijayvargia R, May MS, Fondell JD. A coregulatory role for the mediator complex in prostate cancer cell proliferation and gene expression. Cancer Res. 2007;67:4034–41.PubMed
126.
Zurück zum Zitat Conaway RC, Brower CS, Conaway JW. Emerging roles of ubiquitin in transcriptional regulation. Science. 2002;296:1254–8.PubMed Conaway RC, Brower CS, Conaway JW. Emerging roles of ubiquitin in transcriptional regulation. Science. 2002;296:1254–8.PubMed
127.
Zurück zum Zitat Burgdorf S, Leister P, Scheidtmann KH. TSG101 interacts with apoptosis-antagonizing transcription factor and enhances androgen receptor-mediated transcription by promoting its monoubiquitination. J Biol Chem. 2004;279:17524–34.PubMed Burgdorf S, Leister P, Scheidtmann KH. TSG101 interacts with apoptosis-antagonizing transcription factor and enhances androgen receptor-mediated transcription by promoting its monoubiquitination. J Biol Chem. 2004;279:17524–34.PubMed
128.
Zurück zum Zitat Kajiro M, Hirota R, Nakajima Y, et al. The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat Cell Biol. 2009;11:312–9.PubMed Kajiro M, Hirota R, Nakajima Y, et al. The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat Cell Biol. 2009;11:312–9.PubMed
129.
Zurück zum Zitat Patterson C, Ronnebaum S. Breast cancer quality control. Nat Cell Biol. 2009;11:239–41.PubMed Patterson C, Ronnebaum S. Breast cancer quality control. Nat Cell Biol. 2009;11:239–41.PubMed
130.
Zurück zum Zitat Lipkowitz S, Weissman AM. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nature Rev Cancer. 2011;11:629–43. Lipkowitz S, Weissman AM. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nature Rev Cancer. 2011;11:629–43.
131.
Zurück zum Zitat Soucy TA, Dick LR, Smith PG, et al. The NEDD8 conjugation pathway and its relevance in cancer biology and therapy. Genes Cancer. 2010;1:708–16.PubMedCentralPubMed Soucy TA, Dick LR, Smith PG, et al. The NEDD8 conjugation pathway and its relevance in cancer biology and therapy. Genes Cancer. 2010;1:708–16.PubMedCentralPubMed
132.
Zurück zum Zitat Kim S-E, Yoon J-Y, Jeong W-J, et al. H-Ras is degraded by Wnt/β-catenin signaling via β-TrCP-mediated polyubiquitination. J Cell Sci. 2009;122:842–8.PubMed Kim S-E, Yoon J-Y, Jeong W-J, et al. H-Ras is degraded by Wnt/β-catenin signaling via β-TrCP-mediated polyubiquitination. J Cell Sci. 2009;122:842–8.PubMed
133.
Zurück zum Zitat Frescas D, Pagano M. Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nature Rev Cancer. 2008;8:438–49. Frescas D, Pagano M. Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nature Rev Cancer. 2008;8:438–49.
134.
Zurück zum Zitat von der Lehr N, Johansson S, Wu S, et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell. 2003;11:1189–200.PubMed von der Lehr N, Johansson S, Wu S, et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell. 2003;11:1189–200.PubMed
135.
Zurück zum Zitat Welcker M, Clurman BE. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nature Rev Cancer. 2008;8:83–93. Welcker M, Clurman BE. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nature Rev Cancer. 2008;8:83–93.
136.
Zurück zum Zitat O’Neal J, Grim J, Strack P, et al. (2005) FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J Exp Med. 2007;204:1813–24. O’Neal J, Grim J, Strack P, et al. (2005) FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J Exp Med. 2007;204:1813–24.
137.
Zurück zum Zitat Minella AC, Welcker M, Clurman BE. Ras activity regulates cyclin E degradation by the Fbw7 pathway. Proc Natl Acad Sci USA. 2005;102:9649–54.PubMedCentralPubMed Minella AC, Welcker M, Clurman BE. Ras activity regulates cyclin E degradation by the Fbw7 pathway. Proc Natl Acad Sci USA. 2005;102:9649–54.PubMedCentralPubMed
138.
Zurück zum Zitat Sarikas A, Xu X, Field LJ, Pan Z-Q. The cullin7 E3 ligase: a novel player in growth control. Cell Cycle. 2008;7:3154–61.PubMed Sarikas A, Xu X, Field LJ, Pan Z-Q. The cullin7 E3 ligase: a novel player in growth control. Cell Cycle. 2008;7:3154–61.PubMed
139.
Zurück zum Zitat Jung P, Verdoodt B, Bailey A, et al. Induction of cullin 7 by DNA damage attenuates p53 function. Proc Natl Acad Sci USA. 2007;104:11388–93.PubMedCentralPubMed Jung P, Verdoodt B, Bailey A, et al. Induction of cullin 7 by DNA damage attenuates p53 function. Proc Natl Acad Sci USA. 2007;104:11388–93.PubMedCentralPubMed
140.
Zurück zum Zitat Nikolaev AY, Li M, Puskas N, et al. Parc: a cytoplasmic anchor for p53. Cell. 2003;112:29–40.PubMed Nikolaev AY, Li M, Puskas N, et al. Parc: a cytoplasmic anchor for p53. Cell. 2003;112:29–40.PubMed
141.
Zurück zum Zitat Kaelin Jr WG. The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer. Nature Rev Cancer. 2008;8:865–73. Kaelin Jr WG. The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer. Nature Rev Cancer. 2008;8:865–73.
142.
Zurück zum Zitat Harten SK, Shukla D, Barod R, et al. Regulation of renal epithelial tight junctions by the von Hippel–Lindau tumor suppressor gene involves occludin and claudin 1 and is independent of E-cadherin. Mol Biol Cell. 2009;20:1089–101.PubMedCentralPubMed Harten SK, Shukla D, Barod R, et al. Regulation of renal epithelial tight junctions by the von Hippel–Lindau tumor suppressor gene involves occludin and claudin 1 and is independent of E-cadherin. Mol Biol Cell. 2009;20:1089–101.PubMedCentralPubMed
143.
Zurück zum Zitat Parant J, Chavez-Reyes A, Little NA, et al. Rescue of embryonic lethality in MDM4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nature. 2001;29:92–5. Parant J, Chavez-Reyes A, Little NA, et al. Rescue of embryonic lethality in MDM4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nature. 2001;29:92–5.
144.
Zurück zum Zitat Perry ME. The regulation of the p53-mediated stress response by MDM2 and MDM4. Cold Spring Harb Perspect Biol. 2010;2:a000968.PubMedCentralPubMed Perry ME. The regulation of the p53-mediated stress response by MDM2 and MDM4. Cold Spring Harb Perspect Biol. 2010;2:a000968.PubMedCentralPubMed
145.
Zurück zum Zitat Marine J-C, Lozano G. Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Diff. 2010;17:93–102. Marine J-C, Lozano G. Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Diff. 2010;17:93–102.
146.
Zurück zum Zitat Barboza JA, Iwakuma T, Terzian T, et al. MDM2 and MDM4 loss regulates distinct p53 activities. Mol Cancer Res. 2008;6:947–54.PubMedCentralPubMed Barboza JA, Iwakuma T, Terzian T, et al. MDM2 and MDM4 loss regulates distinct p53 activities. Mol Cancer Res. 2008;6:947–54.PubMedCentralPubMed
147.
Zurück zum Zitat Manfredi JJ. The Mdm2–p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev. 2010;24:1580–9.PubMedCentralPubMed Manfredi JJ. The Mdm2–p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev. 2010;24:1580–9.PubMedCentralPubMed
148.
Zurück zum Zitat Araki S, Eitel JA, Batuello CN, et al. TGF-β1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. J Clin Invest. 2010;120:290–302.PubMed Araki S, Eitel JA, Batuello CN, et al. TGF-β1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. J Clin Invest. 2010;120:290–302.PubMed
149.
Zurück zum Zitat Ries S, Biederer C, Woods D, et al. Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell. 2000;103:321–30.PubMed Ries S, Biederer C, Woods D, et al. Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell. 2000;103:321–30.PubMed
150.
Zurück zum Zitat Phelps M, Darley M, Primrose JN, Blaydes JP. p53-independent activation of the hdm2-P2 promoter through multiple transcription factor response elements results in elevated hdm2 expression in estrogen receptor α-positive breast cancer cells. Cancer Res. 2003;63:2616–23.PubMed Phelps M, Darley M, Primrose JN, Blaydes JP. p53-independent activation of the hdm2-P2 promoter through multiple transcription factor response elements results in elevated hdm2 expression in estrogen receptor α-positive breast cancer cells. Cancer Res. 2003;63:2616–23.PubMed
151.
Zurück zum Zitat Phelps M, Phillips A, Darley M, Blaydes JP. MEK–ERK signalling controls Hdm2 oncoprotein expression by regulating hdm2 mRNA export to the cytoplasm. J Biol Chem. 2005;280:16651–8.PubMed Phelps M, Phillips A, Darley M, Blaydes JP. MEK–ERK signalling controls Hdm2 oncoprotein expression by regulating hdm2 mRNA export to the cytoplasm. J Biol Chem. 2005;280:16651–8.PubMed
152.
Zurück zum Zitat Cicalese A, Bonizzi G, Pasi CE, et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell. 2009;138:1083–95.PubMed Cicalese A, Bonizzi G, Pasi CE, et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell. 2009;138:1083–95.PubMed
153.
Zurück zum Zitat Allende-Vega N, Saville MK. Targeting the ubiquitin–proteasome system to activate wild-type p53 for cancer therapy. Sem Cancer Biol. 2010;20:29–39. Allende-Vega N, Saville MK. Targeting the ubiquitin–proteasome system to activate wild-type p53 for cancer therapy. Sem Cancer Biol. 2010;20:29–39.
154.
Zurück zum Zitat Vassilev LT. MDM2 inhibitors for cancer therapy. Trends Mol Med. 2007;13:23–31.PubMed Vassilev LT. MDM2 inhibitors for cancer therapy. Trends Mol Med. 2007;13:23–31.PubMed
155.
Zurück zum Zitat Zhuang C, Miao Z, Zhu L, et al. Synthesis and biological evaluation of thio-benzodiazepines as novel small molecule inhibitors of the p53–MDM2 protein–protein interaction. Eur J Med Chem. 2011;46:5654–61.PubMed Zhuang C, Miao Z, Zhu L, et al. Synthesis and biological evaluation of thio-benzodiazepines as novel small molecule inhibitors of the p53–MDM2 protein–protein interaction. Eur J Med Chem. 2011;46:5654–61.PubMed
Metadaten
Titel
Ubiquitination and the Ubiquitin–Proteasome System as regulators of transcription and transcription factorsin epithelial mesenchymal transition of cancer
verfasst von
Ioannis A. Voutsadakis
Publikationsdatum
01.08.2012
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 4/2012
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-012-0355-x

Weitere Artikel der Ausgabe 4/2012

Tumor Biology 4/2012 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.