Skip to main content
Erschienen in: Tumor Biology 3/2016

19.10.2015 | Original Article

miR-29a suppresses growth and metastasis in papillary thyroid carcinoma by targeting AKT3

verfasst von: Rui Li, Jia Liu, Qun Li, Guang Chen, Xiaofang Yu

Erschienen in: Tumor Biology | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

MicroRNA-29a (miR-29a) has been reported to play important roles in tumor initiation, development, and metastasis in various cancers. However, the biological function and potential mechanisms of miR-29a in papillary thyroid carcinoma (PTC) remain unclear. In the present study, we discovered that miR-29a was frequently downregulated in PTC tissues, and its expression was significantly associated with tumor size, TNM stage, and lymph node metastasis. Functional assays showed that overexpression of miR-29a markedly suppressed PTC cell proliferation, migration, and invasion and promoted PTC apoptosis and cell cycle arrest at G0/G1 phase. In vivo, miR-29a overexpression decreased tumor growth in a xenograft mouse model. Luciferase reporter assay showed that miR-29a can directly bind to the 3′ untranslated region (UTR) of AKT3 in PTC cells. Overexpreesion of miR‑29a obviously decreased AKT3 expression, thereby suppressing phosphatidylinositol 3-kinase (PI3K)/AKT pathway activation. We also confirmed that AKT3 expression was increased in PTC tissue and was inversely correlated miR-29a expression in PTC tissues. In addition, downregulation of AKT3 by siRNA mimicked the effects of miR-29a overexpression, and upregulation of AKT3 partially reversed the inhibitory effects of miR-29a. These results suggested that miR-29a could act as a tumor suppressor in PTC by targeting AKT3 and that miR-29a may potentially serve as an anti-tumor agent in the treatment of PTC.
Literatur
2.
Zurück zum Zitat Pitoia F, Bueno F, Urciuoli C, Abelleira E, Cross G, Tuttle RM. Outcomes of patients with differentiated thyroid cancer risk-stratified according to the American thyroid association and Latin American thyroid society risk of recurrence classification systems. Thyroid Off J Am Thyroid Assoc. 2013;23:1401–7.CrossRef Pitoia F, Bueno F, Urciuoli C, Abelleira E, Cross G, Tuttle RM. Outcomes of patients with differentiated thyroid cancer risk-stratified according to the American thyroid association and Latin American thyroid society risk of recurrence classification systems. Thyroid Off J Am Thyroid Assoc. 2013;23:1401–7.CrossRef
6.
Zurück zum Zitat Bartel DP. Micrornas: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMed Bartel DP. Micrornas: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMed
8.
Zurück zum Zitat Esquela-Kerscher A, Slack FJ. Oncomirs - micrornas with a role in cancer. Nat Rev Cancer. 2006;6:259–69.CrossRefPubMed Esquela-Kerscher A, Slack FJ. Oncomirs - micrornas with a role in cancer. Nat Rev Cancer. 2006;6:259–69.CrossRefPubMed
9.
Zurück zum Zitat Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D. Microrna expression profiles classify human cancers. Nature. 2005;435:834–8.CrossRefPubMed Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D. Microrna expression profiles classify human cancers. Nature. 2005;435:834–8.CrossRefPubMed
10.
Zurück zum Zitat Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microrna expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103:2257–61.CrossRefPubMedPubMedCentral Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microrna expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103:2257–61.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Wang Y, Zhang X, Li H, Yu J, Ren X. The role of mirna-29 family in cancer. Eur J Cell Biol. 2013;92:123–8.CrossRefPubMed Wang Y, Zhang X, Li H, Yu J, Ren X. The role of mirna-29 family in cancer. Eur J Cell Biol. 2013;92:123–8.CrossRefPubMed
12.
Zurück zum Zitat Cui Y, Su WY, Xing J, Wang YC, Wang P, Chen XY, et al. Mir-29a inhibits cell proliferation and induces cell cycle arrest through the downregulation of p42.3 in human gastric cancer. PLoS One. 2011;6:e25872.CrossRefPubMedPubMedCentral Cui Y, Su WY, Xing J, Wang YC, Wang P, Chen XY, et al. Mir-29a inhibits cell proliferation and induces cell cycle arrest through the downregulation of p42.3 in human gastric cancer. PLoS One. 2011;6:e25872.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Trehoux S, Lahdaoui F, Delpu Y, Renaud F, Leteurtre E, Torrisani J, et al. Micro-rnas mir-29a and mir-330-5p function as tumor suppressors by targeting the muc1 mucin in pancreatic cancer cells. Biochim Biophys Acta. 1853;2015:2392–403. Trehoux S, Lahdaoui F, Delpu Y, Renaud F, Leteurtre E, Torrisani J, et al. Micro-rnas mir-29a and mir-330-5p function as tumor suppressors by targeting the muc1 mucin in pancreatic cancer cells. Biochim Biophys Acta. 1853;2015:2392–403.
14.
Zurück zum Zitat Li Y, Kong D, Ahmad A, Bao B, Dyson G, Sarkar FH. Epigenetic deregulation of mir-29a and mir-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics. 2012;7:940–9.CrossRefPubMedPubMedCentral Li Y, Kong D, Ahmad A, Bao B, Dyson G, Sarkar FH. Epigenetic deregulation of mir-29a and mir-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics. 2012;7:940–9.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Zhong S, Li W, Chen Z, Xu J, Zhao J. Mir-222 and mir-29a contribute to the drug-resistance of breast cancer cells. Gene. 2013;531:8–14.CrossRefPubMed Zhong S, Li W, Chen Z, Xu J, Zhao J. Mir-222 and mir-29a contribute to the drug-resistance of breast cancer cells. Gene. 2013;531:8–14.CrossRefPubMed
16.
Zurück zum Zitat Qiu F, Sun R, Deng N, Guo T, Cao Y, Yu Y, et al. Mir-29a/b enhances cell migration and invasion in nasopharyngeal carcinoma progression by regulating sparc and col3a1 gene expression. PLoS One. 2015;10:e0120969.CrossRefPubMedPubMedCentral Qiu F, Sun R, Deng N, Guo T, Cao Y, Yu Y, et al. Mir-29a/b enhances cell migration and invasion in nasopharyngeal carcinoma progression by regulating sparc and col3a1 gene expression. PLoS One. 2015;10:e0120969.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Zhao D, Jiang X, Yao C, Zhang L, Liu H, Xia H, et al. Heat shock protein 47 regulated by mir-29a to enhance glioma tumor growth and invasion. J Neuro-Oncol. 2014;118:39–47.CrossRef Zhao D, Jiang X, Yao C, Zhang L, Liu H, Xia H, et al. Heat shock protein 47 regulated by mir-29a to enhance glioma tumor growth and invasion. J Neuro-Oncol. 2014;118:39–47.CrossRef
18.
Zurück zum Zitat Zhu C, Wang Y, Kuai W, Sun X, Chen H, Hong Z. Prognostic value of mir-29a expression in pediatric acute myeloid leukemia. Clin Biochem. 2013;46:49–53.CrossRefPubMed Zhu C, Wang Y, Kuai W, Sun X, Chen H, Hong Z. Prognostic value of mir-29a expression in pediatric acute myeloid leukemia. Clin Biochem. 2013;46:49–53.CrossRefPubMed
19.
Zurück zum Zitat Kang SS, Kwon T, Kwon DY, Do SI. Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J Biol Chem. 1999;274:13085–90.CrossRefPubMed Kang SS, Kwon T, Kwon DY, Do SI. Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J Biol Chem. 1999;274:13085–90.CrossRefPubMed
21.
Zurück zum Zitat Chiang CH, Hou MF, Hung WC. Up-regulation of mir-182 by beta-catenin in breast cancer increases tumorigenicity and invasiveness by targeting the matrix metalloproteinase inhibitor reck. Biochim Biophys Acta. 1830;2013:3067–76. Chiang CH, Hou MF, Hung WC. Up-regulation of mir-182 by beta-catenin in breast cancer increases tumorigenicity and invasiveness by targeting the matrix metalloproteinase inhibitor reck. Biochim Biophys Acta. 1830;2013:3067–76.
22.
Zurück zum Zitat Visone R, Russo L, Pallante P, De Martino I, Ferraro A, Leone V, et al. Micrornas (mir)-221 and mir-222, both overexpressed in human thyroid papillary carcinomas, regulate p27kip1 protein levels and cell cycle. Endocr-Relat Cancer. 2007;14:791–8.CrossRefPubMed Visone R, Russo L, Pallante P, De Martino I, Ferraro A, Leone V, et al. Micrornas (mir)-221 and mir-222, both overexpressed in human thyroid papillary carcinomas, regulate p27kip1 protein levels and cell cycle. Endocr-Relat Cancer. 2007;14:791–8.CrossRefPubMed
23.
Zurück zum Zitat Mardente S, Mari E, Consorti F, Di Gioia C, Negri R, Etna M, et al. Hmgb1 induces the overexpression of mir-222 and mir-221 and increases growth and motility in papillary thyroid cancer cells. Oncol Rep. 2012;28:2285–9.PubMed Mardente S, Mari E, Consorti F, Di Gioia C, Negri R, Etna M, et al. Hmgb1 induces the overexpression of mir-222 and mir-221 and increases growth and motility in papillary thyroid cancer cells. Oncol Rep. 2012;28:2285–9.PubMed
24.
Zurück zum Zitat Zhang X, Li M, Zuo K, Li D, Ye M, Ding L, et al. Upregulated mir-155 in papillary thyroid carcinoma promotes tumor growth by targeting apc and activating wnt/beta-catenin signaling. J Clin Endocrinol Metab. 2013;98:E1305–13.CrossRefPubMed Zhang X, Li M, Zuo K, Li D, Ye M, Ding L, et al. Upregulated mir-155 in papillary thyroid carcinoma promotes tumor growth by targeting apc and activating wnt/beta-catenin signaling. J Clin Endocrinol Metab. 2013;98:E1305–13.CrossRefPubMed
25.
Zurück zum Zitat Ma Y, Qin H, Cui Y. Mir-34a targets gas1 to promote cell proliferation and inhibit apoptosis in papillary thyroid carcinoma via pi3k/akt/bad pathway. Biochem Biophys Res Commun. 2013;441:958–63.CrossRefPubMed Ma Y, Qin H, Cui Y. Mir-34a targets gas1 to promote cell proliferation and inhibit apoptosis in papillary thyroid carcinoma via pi3k/akt/bad pathway. Biochem Biophys Res Commun. 2013;441:958–63.CrossRefPubMed
26.
Zurück zum Zitat Liu L, Wang J, Li X, Ma J, Shi C, Zhu H, et al. Mir-204-5p suppresses cell proliferation by inhibiting igfbp5 in papillary thyroid carcinoma. Biochem Biophys Res Commun. 2015;457:621–6.CrossRefPubMed Liu L, Wang J, Li X, Ma J, Shi C, Zhu H, et al. Mir-204-5p suppresses cell proliferation by inhibiting igfbp5 in papillary thyroid carcinoma. Biochem Biophys Res Commun. 2015;457:621–6.CrossRefPubMed
27.
Zurück zum Zitat Gu L, Sun W. Mir-539 inhibits thyroid cancer cell migration and invasion by directly targeting CARMA1. Biochem Biophys Res Commun. 2015;464: 1128–33. Gu L, Sun W. Mir-539 inhibits thyroid cancer cell migration and invasion by directly targeting CARMA1. Biochem Biophys Res Commun. 2015;464: 1128–33.
28.
Zurück zum Zitat Guan H, Liang W, Xie Z, Li H, Liu J, Liu L, et al. Down-regulation of mir-144 promotes thyroid cancer cell invasion by targeting zeb1 and zeb2. Endocrine. 2015;48:566–74.CrossRefPubMed Guan H, Liang W, Xie Z, Li H, Liu J, Liu L, et al. Down-regulation of mir-144 promotes thyroid cancer cell invasion by targeting zeb1 and zeb2. Endocrine. 2015;48:566–74.CrossRefPubMed
29.
Zurück zum Zitat Jiang H, Zhang G, Wu JH, Jiang CP. Diverse roles of mir-29 in cancer (review). Oncol Rep. 2014;31:1509–16.PubMed Jiang H, Zhang G, Wu JH, Jiang CP. Diverse roles of mir-29 in cancer (review). Oncol Rep. 2014;31:1509–16.PubMed
30.
Zurück zum Zitat Amodio N, Rossi M, Raimondi L, Pitari MR, Botta C, Tagliaferri P, et al. Mir-29s: a family of epi-mirnas with therapeutic implications in hematologic malignancies. Oncotarget. 2015;6:12837–61.CrossRefPubMedPubMedCentral Amodio N, Rossi M, Raimondi L, Pitari MR, Botta C, Tagliaferri P, et al. Mir-29s: a family of epi-mirnas with therapeutic implications in hematologic malignancies. Oncotarget. 2015;6:12837–61.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Rostas 3rd JW, Pruitt HC, Metge BJ, Mitra A, Bailey SK, Bae S, et al. Microrna-29 negatively regulates emt regulator n-myc interactor in breast cancer. Mol Cancer. 2014;13:200.CrossRefPubMedPubMedCentral Rostas 3rd JW, Pruitt HC, Metge BJ, Mitra A, Bailey SK, Bae S, et al. Microrna-29 negatively regulates emt regulator n-myc interactor in breast cancer. Mol Cancer. 2014;13:200.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Nishikawa R, Goto Y, Kojima S, Enokida H, Chiyomaru T, Kinoshita T, et al. Tumor-suppressive microrna-29s inhibit cancer cell migration and invasion via targeting lamc1 in prostate cancer. Int J Oncol. 2014;45:401–10.PubMed Nishikawa R, Goto Y, Kojima S, Enokida H, Chiyomaru T, Kinoshita T, et al. Tumor-suppressive microrna-29s inhibit cancer cell migration and invasion via targeting lamc1 in prostate cancer. Int J Oncol. 2014;45:401–10.PubMed
33.
Zurück zum Zitat Tan M, Wu J, Cai Y. Suppression of wnt signaling by the mir-29 family is mediated by demethylation of wif-1 in non-small-cell lung cancer. Biochem Biophys Res Commun. 2013;438:673–9.CrossRefPubMed Tan M, Wu J, Cai Y. Suppression of wnt signaling by the mir-29 family is mediated by demethylation of wif-1 in non-small-cell lung cancer. Biochem Biophys Res Commun. 2013;438:673–9.CrossRefPubMed
34.
Zurück zum Zitat Hers I, Vincent EE, Tavare JM. Akt signalling in health and disease. Cell Signal. 2011;23:1515–27.CrossRefPubMed Hers I, Vincent EE, Tavare JM. Akt signalling in health and disease. Cell Signal. 2011;23:1515–27.CrossRefPubMed
35.
Zurück zum Zitat Guo H, German P, Bai S, Barnes S, Guo W, Qi X, et al. The pi3k/akt pathway and renal cell carcinoma. J Genet Genomics = Yi Chuan Xue Bao. 2015;42:343–53.CrossRefPubMed Guo H, German P, Bai S, Barnes S, Guo W, Qi X, et al. The pi3k/akt pathway and renal cell carcinoma. J Genet Genomics = Yi Chuan Xue Bao. 2015;42:343–53.CrossRefPubMed
36.
Zurück zum Zitat Xia P, Xu XY. Pi3k/akt/mtor signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res. 2015;5:1602–9.PubMedPubMedCentral Xia P, Xu XY. Pi3k/akt/mtor signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res. 2015;5:1602–9.PubMedPubMedCentral
37.
Zurück zum Zitat Petrulea MS, Plantinga TS, Smit JW, Georgescu CE, Netea-Maier RT. Pi3k/akt/mtor: a promising therapeutic target for non-medullary thyroid carcinoma. Cancer Treat Rev. 2015;41:707–13. Petrulea MS, Plantinga TS, Smit JW, Georgescu CE, Netea-Maier RT. Pi3k/akt/mtor: a promising therapeutic target for non-medullary thyroid carcinoma. Cancer Treat Rev. 2015;41:707–13.
38.
Zurück zum Zitat Xing M. Genetic alterations in the phosphatidylinositol-3 kinase/akt pathway in thyroid cancer. Thyroid Off J Am Thyroid Assoc. 2010;20:697–706.CrossRef Xing M. Genetic alterations in the phosphatidylinositol-3 kinase/akt pathway in thyroid cancer. Thyroid Off J Am Thyroid Assoc. 2010;20:697–706.CrossRef
Metadaten
Titel
miR-29a suppresses growth and metastasis in papillary thyroid carcinoma by targeting AKT3
verfasst von
Rui Li
Jia Liu
Qun Li
Guang Chen
Xiaofang Yu
Publikationsdatum
19.10.2015
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 3/2016
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4165-9

Weitere Artikel der Ausgabe 3/2016

Tumor Biology 3/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.