Skip to main content
Erschienen in: Neurotherapeutics 2/2012

01.04.2012 | Review

Novel Animal Models of Pediatric Epilepsy

verfasst von: Stéphane Auvin, Eduardo Pineda, Don Shin, Pierre Gressens, Andrey Mazarati

Erschienen in: Neurotherapeutics | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

When mimicking epileptic processes in a laboratory setting, it is important to understand the differences between experimental models of seizures and epilepsy. Because human epilepsy is defined by the appearance of multiple spontaneous recurrent seizures, the induction of a single acute seizure without recurrence does not constitute an adequate epilepsy model. Animal models of epilepsy might be useful for various tasks. They allow for the investigation of pathophysiological mechanisms of the disease, the evaluation, or the development of new antiepileptic treatments, and the study of the consequences of recurrent seizures and neurological and psychiatric comorbidities. Although clinical relevance is always an issue, the development of models of pediatric epilepsies is particularly challenging due to the existence of several key differences in the dynamics of human and rodent brain maturation. Another important consideration in modeling pediatric epilepsy is that “children are not little adults,” and therefore a mere application of models of adult epilepsies to the immature specimens is irrelevant. Herein, we review the models of pediatric epilepsy. First, we illustrate the differences between models of pediatric epilepsy and models of the adulthood consequences of a precipitating insult in early life. Next, we focus on new animal models of specific forms of epilepsies that occur in the developing brain. We conclude by emphasizing the deficiencies in the existing animal models and the need for several new models.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Berg AT, Berkovic SF, Brodie MJ, al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 2010;51:676–685.PubMedCrossRef Berg AT, Berkovic SF, Brodie MJ, al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 2010;51:676–685.PubMedCrossRef
3.
Zurück zum Zitat Fisher RS, van Emde BW, Blume W, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005;46:470–472.PubMedCrossRef Fisher RS, van Emde BW, Blume W, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005;46:470–472.PubMedCrossRef
4.
Zurück zum Zitat ILAE. Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia 1981;22:489–501.CrossRef ILAE. Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia 1981;22:489–501.CrossRef
5.
Zurück zum Zitat ILAE. Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 1989;30:389–399.CrossRef ILAE. Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 1989;30:389–399.CrossRef
6.
Zurück zum Zitat Berg AT, Shinnar S, Levy SR, Testa FM. Newly diagnosed epilepsy in children: presentation at diagnosis. Epilepsia 1999;40:445–452.PubMedCrossRef Berg AT, Shinnar S, Levy SR, Testa FM. Newly diagnosed epilepsy in children: presentation at diagnosis. Epilepsia 1999;40:445–452.PubMedCrossRef
7.
Zurück zum Zitat King M, Newton M, Jackson G, et al. Epileptology of the first-seizure presentation: a clinical, electroencephalographic, and magnetic resonnance imaging study of 300 consecutive patients. Lancet 1998;352:1007–1011.PubMedCrossRef King M, Newton M, Jackson G, et al. Epileptology of the first-seizure presentation: a clinical, electroencephalographic, and magnetic resonnance imaging study of 300 consecutive patients. Lancet 1998;352:1007–1011.PubMedCrossRef
8.
Zurück zum Zitat Berg AT, Shinnar S, Levy SR, Testa FM, Smith-Rapaport S, Beckerman B. How well can epilepsy syndromes be identified at diagnosis? A reassessment 2 years after initial diagnosis. Epilepsia 2000;41:1269–1275.PubMedCrossRef Berg AT, Shinnar S, Levy SR, Testa FM, Smith-Rapaport S, Beckerman B. How well can epilepsy syndromes be identified at diagnosis? A reassessment 2 years after initial diagnosis. Epilepsia 2000;41:1269–1275.PubMedCrossRef
9.
Zurück zum Zitat Picot MC, Baldy-Moulinier M, Daures JP, Dujols P, Crespel A. The prevalence of epilepsy and pharmacoresistant epilepsy in adults: A population-based study in a Western European country. Epilepsia 2008;49:1230–1238.PubMedCrossRef Picot MC, Baldy-Moulinier M, Daures JP, Dujols P, Crespel A. The prevalence of epilepsy and pharmacoresistant epilepsy in adults: A population-based study in a Western European country. Epilepsia 2008;49:1230–1238.PubMedCrossRef
10.
Zurück zum Zitat Stafstrom CE, Sutula TP. Models of epilepsy in the developing and adult brain: implications for neuroprotection. Epilepsy Behav 2005;7(suppl 3):S18-S24.PubMedCrossRef Stafstrom CE, Sutula TP. Models of epilepsy in the developing and adult brain: implications for neuroprotection. Epilepsy Behav 2005;7(suppl 3):S18-S24.PubMedCrossRef
12.
Zurück zum Zitat Engel J, Schwartzkroin PA. What should be modeled? In: Pitkanen A, Schwartzkroin PA, Moshe SL, eds. Models of seizures and epilepsy. Amsterdam: Elsevier, 2006:1–14. Engel J, Schwartzkroin PA. What should be modeled? In: Pitkanen A, Schwartzkroin PA, Moshe SL, eds. Models of seizures and epilepsy. Amsterdam: Elsevier, 2006:1–14.
13.
Zurück zum Zitat Stafstrom CE, Moshe SL, Swann JW, Nehlig A, Jacobs MP, Schwartzkroin PA. Models of pediatric epilepsies: startegies and opportunities. Epilepsia 2006;47:1407–1414.PubMedCrossRef Stafstrom CE, Moshe SL, Swann JW, Nehlig A, Jacobs MP, Schwartzkroin PA. Models of pediatric epilepsies: startegies and opportunities. Epilepsia 2006;47:1407–1414.PubMedCrossRef
14.
Zurück zum Zitat Sarkisian MR. Overview of the current animal models for human seizure and epileptic disorders. Epilepsy Behav 2001;2:201–216.PubMedCrossRef Sarkisian MR. Overview of the current animal models for human seizure and epileptic disorders. Epilepsy Behav 2001;2:201–216.PubMedCrossRef
15.
Zurück zum Zitat Pitkanen A, Kharatishvili I, Karhunen H, et al. Epileptogenesis in experimental models. Epilepsia 2007;48(suppl 2):13–20.PubMedCrossRef Pitkanen A, Kharatishvili I, Karhunen H, et al. Epileptogenesis in experimental models. Epilepsia 2007;48(suppl 2):13–20.PubMedCrossRef
16.
Zurück zum Zitat Baram TZ, Jensen FE, Brooks-Kayal A. Does acquired epileptogenesis in the immature brain require neuronal death. Epilepsy Curr 2011;11:21–26.PubMedCrossRef Baram TZ, Jensen FE, Brooks-Kayal A. Does acquired epileptogenesis in the immature brain require neuronal death. Epilepsy Curr 2011;11:21–26.PubMedCrossRef
17.
Zurück zum Zitat Dudek FE, Ekstrand JJ, Staley KJ. Is neuronal death necessary for acquired epileptogenesis in the immature brain? Epilepsy Curr 2010;10:95–99.PubMedCrossRef Dudek FE, Ekstrand JJ, Staley KJ. Is neuronal death necessary for acquired epileptogenesis in the immature brain? Epilepsy Curr 2010;10:95–99.PubMedCrossRef
18.
Zurück zum Zitat Dubé C, Baram TZ. Complex febrile seizure-An experimental model in immature rodents. In: Pitkanen A, Schwartzkroin PA, Moshe SL, eds. Models of seizures and epilepsy. Oxford, UK: Elsevier, 2006:333–340. Dubé C, Baram TZ. Complex febrile seizure-An experimental model in immature rodents. In: Pitkanen A, Schwartzkroin PA, Moshe SL, eds. Models of seizures and epilepsy. Oxford, UK: Elsevier, 2006:333–340.
20.
Zurück zum Zitat Kadam SD, White AM, Staley KJ, Dudek FE. Continuous electroencephalographic monitoring with radio-telemetry in a rat model of perinatal hypoxia-ischemia reveals progressive post-stroke epilepsy. J Neurosci 2010;30:404–415.PubMedCrossRef Kadam SD, White AM, Staley KJ, Dudek FE. Continuous electroencephalographic monitoring with radio-telemetry in a rat model of perinatal hypoxia-ischemia reveals progressive post-stroke epilepsy. J Neurosci 2010;30:404–415.PubMedCrossRef
21.
Zurück zum Zitat Rakhade SN, Klein PM, Huynh T, et al. Development of later life spontaneous seizures in a rodent model of hypoxia-induced neonatal seizures. Epilepsia 2011;52:753–765.PubMedCrossRef Rakhade SN, Klein PM, Huynh T, et al. Development of later life spontaneous seizures in a rodent model of hypoxia-induced neonatal seizures. Epilepsia 2011;52:753–765.PubMedCrossRef
22.
Zurück zum Zitat Sankar R, Shin DH, Liu H, Mazarati A, Pereira de Vasconcelos, Wasterlain CG. Patterns of status epilepticus-induced neuronal injury during development and long-term consequences. J Neurosci 1998;18:8382–8393.PubMed Sankar R, Shin DH, Liu H, Mazarati A, Pereira de Vasconcelos, Wasterlain CG. Patterns of status epilepticus-induced neuronal injury during development and long-term consequences. J Neurosci 1998;18:8382–8393.PubMed
23.
Zurück zum Zitat Raol YS, Budreck EC, Brooks-Kayal AR. Epilepsy after early-life seizures can be independent of hippocampal injury. Ann Neurol 2003;53:503–511.PubMedCrossRef Raol YS, Budreck EC, Brooks-Kayal AR. Epilepsy after early-life seizures can be independent of hippocampal injury. Ann Neurol 2003;53:503–511.PubMedCrossRef
24.
Zurück zum Zitat Toth Z, Yan XX, Haftoglou S, Ribak CE, Baram TZ. Seizure-induced neuronal injury: vulnerability to febrile seizures in an immature rat model. J Neurosci 1998;18:4285–4294.PubMed Toth Z, Yan XX, Haftoglou S, Ribak CE, Baram TZ. Seizure-induced neuronal injury: vulnerability to febrile seizures in an immature rat model. J Neurosci 1998;18:4285–4294.PubMed
25.
Zurück zum Zitat Bender RA, Dube C, Gonzalez-Vega R, Mina EW, Baram TZ. Mossy fiber plasticity and enhanced hippocampal excitability, without hippocampal cell loss or altered neurogenesis, in an animal model of prolonged febrile seizures. Hippocampus 2003;13:399–412.PubMedCrossRef Bender RA, Dube C, Gonzalez-Vega R, Mina EW, Baram TZ. Mossy fiber plasticity and enhanced hippocampal excitability, without hippocampal cell loss or altered neurogenesis, in an animal model of prolonged febrile seizures. Hippocampus 2003;13:399–412.PubMedCrossRef
26.
Zurück zum Zitat Dubé C, Richichi C, Bender RA, Chung G, Litt B, Baram TZ. Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis. Brain 2006;129:911–922.PubMedCrossRef Dubé C, Richichi C, Bender RA, Chung G, Litt B, Baram TZ. Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis. Brain 2006;129:911–922.PubMedCrossRef
27.
Zurück zum Zitat Dubé C, Ravizza T, Hamamura M, Qinqin Z, Keebaugh A, Fok K et al. Epileptogenesis provked by prolonged exêrimental febrile seizures: mechanisms and biomarkers. J Neurosci 2010;30:7484–7494.PubMedCrossRef Dubé C, Ravizza T, Hamamura M, Qinqin Z, Keebaugh A, Fok K et al. Epileptogenesis provked by prolonged exêrimental febrile seizures: mechanisms and biomarkers. J Neurosci 2010;30:7484–7494.PubMedCrossRef
28.
Zurück zum Zitat Auvin S, Mazarati A, Shin D, Sankar R. Inflammation enhances epileptogenesis in the developing rat brain. Neurobiol Dis 2010;40:303–310.PubMedCrossRef Auvin S, Mazarati A, Shin D, Sankar R. Inflammation enhances epileptogenesis in the developing rat brain. Neurobiol Dis 2010;40:303–310.PubMedCrossRef
29.
Zurück zum Zitat Auvin S, Catteau B, Ganga-Zandzou PS, Ythier H. Atypical varicella with palm and sole involvement. Int J Dermatol 2002;41:903–905.PubMedCrossRef Auvin S, Catteau B, Ganga-Zandzou PS, Ythier H. Atypical varicella with palm and sole involvement. Int J Dermatol 2002;41:903–905.PubMedCrossRef
30.
Zurück zum Zitat Auvin S, Vallee L. [Febrile seizures: current understanding of pathophysiological mechanisms]. Arch Pediatr 2009;16:450–456.PubMedCrossRef Auvin S, Vallee L. [Febrile seizures: current understanding of pathophysiological mechanisms]. Arch Pediatr 2009;16:450–456.PubMedCrossRef
31.
Zurück zum Zitat Ohtahara S, Yamatogi Y. Epileptic encephalopathies in early infancy with suppression-burst. J Clin Neurophysiol 2003;20:398–407.PubMedCrossRef Ohtahara S, Yamatogi Y. Epileptic encephalopathies in early infancy with suppression-burst. J Clin Neurophysiol 2003;20:398–407.PubMedCrossRef
32.
Zurück zum Zitat Molinari F, Raas-Rothschild A, Rio M, et al. Impaired mitochondrial glutamate transport in autosomal recessive neonatal myoclonic epilepsy. Am J Hum Genet 2005;76:334–339.PubMedCrossRef Molinari F, Raas-Rothschild A, Rio M, et al. Impaired mitochondrial glutamate transport in autosomal recessive neonatal myoclonic epilepsy. Am J Hum Genet 2005;76:334–339.PubMedCrossRef
33.
Zurück zum Zitat Milh M, Becq H, Villeneuve N, Ben-Ari Y, Aniksztejn L. Inhibition of glutamate transporters results in a "suppression-burst" pattern and partial seizures in the newborn rat. Epilepsia 2007;48:169–174.PubMedCrossRef Milh M, Becq H, Villeneuve N, Ben-Ari Y, Aniksztejn L. Inhibition of glutamate transporters results in a "suppression-burst" pattern and partial seizures in the newborn rat. Epilepsia 2007;48:169–174.PubMedCrossRef
34.
Zurück zum Zitat Shimamoto K, Lebrun B, Yasuda-Kamatani Y, et al. DL-threo-beta-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Mol Pharmacol 1998;53:195–201.PubMed Shimamoto K, Lebrun B, Yasuda-Kamatani Y, et al. DL-threo-beta-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Mol Pharmacol 1998;53:195–201.PubMed
35.
36.
Zurück zum Zitat Riikonen R. Infantile spasms: therapy and outcome. J Child Neurol 2004;19:401–404.PubMed Riikonen R. Infantile spasms: therapy and outcome. J Child Neurol 2004;19:401–404.PubMed
37.
Zurück zum Zitat Rantala H, Putkonen T. Occurrence, outcome, and prognostic factors of infantile spasms and Lennox-Gastaut syndrome. Epilepsia 1999;40:286–289.PubMedCrossRef Rantala H, Putkonen T. Occurrence, outcome, and prognostic factors of infantile spasms and Lennox-Gastaut syndrome. Epilepsia 1999;40:286–289.PubMedCrossRef
38.
Zurück zum Zitat Riikonen R. Long-term otucome of West syndrome: a study of adults with a history of infantile spasms. Epilepsia 1996;37:367–372.PubMedCrossRef Riikonen R. Long-term otucome of West syndrome: a study of adults with a history of infantile spasms. Epilepsia 1996;37:367–372.PubMedCrossRef
39.
Zurück zum Zitat Koo B, Hwang PA, Logan WJ. Infantile spasms: outcome and prognostic factors of cryptogenic and symptomatic groups. Neurology 1993;43:2322–2327.PubMed Koo B, Hwang PA, Logan WJ. Infantile spasms: outcome and prognostic factors of cryptogenic and symptomatic groups. Neurology 1993;43:2322–2327.PubMed
40.
Zurück zum Zitat Brunson KL, Eghbal-Ahmadi M, Baram TZ. How do the many etiologies of West syndrome lead to excitability and seizures? The corticotropin releasing hormone excess hypothesis. Brain Dev 2001;23:533–538.PubMedCrossRef Brunson KL, Eghbal-Ahmadi M, Baram TZ. How do the many etiologies of West syndrome lead to excitability and seizures? The corticotropin releasing hormone excess hypothesis. Brain Dev 2001;23:533–538.PubMedCrossRef
41.
Zurück zum Zitat Baram TZ, Schultz L. Corticotropin-releasing hormone is a rapid and potent convulsant in the infant rat. Brain Res Dev Brain Res 1991;61:97–101.PubMedCrossRef Baram TZ, Schultz L. Corticotropin-releasing hormone is a rapid and potent convulsant in the infant rat. Brain Res Dev Brain Res 1991;61:97–101.PubMedCrossRef
42.
Zurück zum Zitat Baram TZ, Schultz L. ACTH does not control neonatal seizures induced by administration of exogenous corticotropin-releasing hormone. Epilepsia 1995;36:174–178.PubMedCrossRef Baram TZ, Schultz L. ACTH does not control neonatal seizures induced by administration of exogenous corticotropin-releasing hormone. Epilepsia 1995;36:174–178.PubMedCrossRef
43.
Zurück zum Zitat Brunson KL, Khan N, Eghbal-Ahmadi M, Baram TZ. Corticotropin (ACTH) acts directly on amygdala neurons to down-regulate corticotropin-releasing hormone gene expression. Ann Neurol 2001;49:304–312.PubMedCrossRef Brunson KL, Khan N, Eghbal-Ahmadi M, Baram TZ. Corticotropin (ACTH) acts directly on amygdala neurons to down-regulate corticotropin-releasing hormone gene expression. Ann Neurol 2001;49:304–312.PubMedCrossRef
44.
Zurück zum Zitat Kabova R, Liptakova S, Slamberova R, Pometlova M, Velisek L. Age-specific N-methyl-D-aspartate-induced seizures: perspectives for the West syndrome model. Epilepsia 1999;40:1357–1369.PubMedCrossRef Kabova R, Liptakova S, Slamberova R, Pometlova M, Velisek L. Age-specific N-methyl-D-aspartate-induced seizures: perspectives for the West syndrome model. Epilepsia 1999;40:1357–1369.PubMedCrossRef
45.
Zurück zum Zitat Mares P, Velisek L. N-methyl-D-aspartate (NMDA)-induced seizures in developing rats. Brain Res Dev Brain Res 1992;65:185–189.PubMedCrossRef Mares P, Velisek L. N-methyl-D-aspartate (NMDA)-induced seizures in developing rats. Brain Res Dev Brain Res 1992;65:185–189.PubMedCrossRef
46.
Zurück zum Zitat Stafstrom CE, Sasaki-Adams DM. NMDA-induced seizures in developing rats cause long-term learning impairment and increased seizure susceptibility. Epilepsy Res 2003;53:129–137.PubMedCrossRef Stafstrom CE, Sasaki-Adams DM. NMDA-induced seizures in developing rats cause long-term learning impairment and increased seizure susceptibility. Epilepsy Res 2003;53:129–137.PubMedCrossRef
47.
Zurück zum Zitat Yum MS, Chachua T, Veliskova J, Velisek L. Prenatal stress promotes development of spasms in infant rats. Epilepsia 2012;53:e46-e49.PubMedCrossRef Yum MS, Chachua T, Veliskova J, Velisek L. Prenatal stress promotes development of spasms in infant rats. Epilepsia 2012;53:e46-e49.PubMedCrossRef
48.
Zurück zum Zitat Chachua T, Yum MS, Veliskova J, Velisek L. Validation of the rat model of cryptogenic infantile spasms. Epilepsia 2011;52:1666–1677.PubMedCrossRef Chachua T, Yum MS, Veliskova J, Velisek L. Validation of the rat model of cryptogenic infantile spasms. Epilepsia 2011;52:1666–1677.PubMedCrossRef
49.
Zurück zum Zitat Velisek L, Jehle K, Asche S, Veliskova J. Model of infantile spasms induced by N-methyl-D-aspartic acid in prenatally impaired brain. Ann Neurol 2007;61:109–119.PubMedCrossRef Velisek L, Jehle K, Asche S, Veliskova J. Model of infantile spasms induced by N-methyl-D-aspartic acid in prenatally impaired brain. Ann Neurol 2007;61:109–119.PubMedCrossRef
50.
Zurück zum Zitat Galvan CD, Hrachovy RA, Smith KL, Swann JW. Blockade of neuronal activity during hippocampal development produces a chronic focal epilepsy in the rat. J Neurosci 2000;20:2904–2916.PubMed Galvan CD, Hrachovy RA, Smith KL, Swann JW. Blockade of neuronal activity during hippocampal development produces a chronic focal epilepsy in the rat. J Neurosci 2000;20:2904–2916.PubMed
51.
Zurück zum Zitat Galvan CD, Wenzel JH, Dineley KT, et al. Postsynaptic contributions to hippocampal network hyperexcitability induced by chronic activity blockade in vivo. Eur J Neurosci 2003;18:1861–1872.PubMedCrossRef Galvan CD, Wenzel JH, Dineley KT, et al. Postsynaptic contributions to hippocampal network hyperexcitability induced by chronic activity blockade in vivo. Eur J Neurosci 2003;18:1861–1872.PubMedCrossRef
52.
Zurück zum Zitat Frost JD Jr., Lee CL, Hrachovy RA, Swann JW. High frequency EEG activity associated with ictal events in an animal model of infantile spasms. Epilepsia 2011;52:53–62.PubMedCrossRef Frost JD Jr., Lee CL, Hrachovy RA, Swann JW. High frequency EEG activity associated with ictal events in an animal model of infantile spasms. Epilepsia 2011;52:53–62.PubMedCrossRef
53.
Zurück zum Zitat Lee CL, Frost JD Jr., Swann JW, Hrachovy RA. A new animal model of infantile spasms with unprovoked persistent seizures. Epilepsia 2008;49:298–307.PubMedCrossRef Lee CL, Frost JD Jr., Swann JW, Hrachovy RA. A new animal model of infantile spasms with unprovoked persistent seizures. Epilepsia 2008;49:298–307.PubMedCrossRef
54.
Zurück zum Zitat Scantlebury MH, Galanopoulou AS, Chudomelova L, Raffo E, Betancourth D, Moshe SL. A model of symptomatic infantile spasms syndrome. Neurobiol Dis 2010;37:604–612.PubMedCrossRef Scantlebury MH, Galanopoulou AS, Chudomelova L, Raffo E, Betancourth D, Moshe SL. A model of symptomatic infantile spasms syndrome. Neurobiol Dis 2010;37:604–612.PubMedCrossRef
55.
Zurück zum Zitat Raffo E, Coppola A, Ono T, Briggs SW, Galanopoulou AS. A pulse rapamycin therapy for infantile spasms and associated cognitive decline. Neurobiol Dis 2011;43:322–329.PubMedCrossRef Raffo E, Coppola A, Ono T, Briggs SW, Galanopoulou AS. A pulse rapamycin therapy for infantile spasms and associated cognitive decline. Neurobiol Dis 2011;43:322–329.PubMedCrossRef
56.
Zurück zum Zitat Ono T, Moshe SL, Galanopoulou AS. Carisbamate acutely suppresses spasms in a rat model of symptomatic infantile spasms. Epilepsia 2011;52:1678–1684.PubMedCrossRef Ono T, Moshe SL, Galanopoulou AS. Carisbamate acutely suppresses spasms in a rat model of symptomatic infantile spasms. Epilepsia 2011;52:1678–1684.PubMedCrossRef
57.
Zurück zum Zitat Galdzicki Z, Siarey RJ. Understanding mental retardation in Down's syndrome using trisomy 16 mouse models. Genes Brain Behav 2003;2:167–178.PubMedCrossRef Galdzicki Z, Siarey RJ. Understanding mental retardation in Down's syndrome using trisomy 16 mouse models. Genes Brain Behav 2003;2:167–178.PubMedCrossRef
58.
Zurück zum Zitat Cortez MA, Shen L, Wu Y, et al. Infantile spasms and Down syndrome: a new animal model. Pediatr Res 2009;65:499–503.PubMedCrossRef Cortez MA, Shen L, Wu Y, et al. Infantile spasms and Down syndrome: a new animal model. Pediatr Res 2009;65:499–503.PubMedCrossRef
59.
Zurück zum Zitat Snead OC, III, Depaulis A, Vergnes M, Marescaux C. Absence epilepsy: advances in experimental animal models. Adv Neurol 1999;79:253–278.PubMed Snead OC, III, Depaulis A, Vergnes M, Marescaux C. Absence epilepsy: advances in experimental animal models. Adv Neurol 1999;79:253–278.PubMed
60.
Zurück zum Zitat Cortez MA, Sadeghnia HR, Aleem IS, et al. A new animal model of infantile spasms: ACTH and antiepileptic drug profiles. 2007;A211 Pediatr Res. 2009 May;65(5):499–503. Cortez MA, Sadeghnia HR, Aleem IS, et al. A new animal model of infantile spasms: ACTH and antiepileptic drug profiles. 2007;A211 Pediatr Res. 2009 May;65(5):499–503.
61.
Zurück zum Zitat Stafstrom CE, Konkol RJ. Infantile spasms in children with Down syndrome. Dev Med Child Neurol 1994;36:576–585.PubMedCrossRef Stafstrom CE, Konkol RJ. Infantile spasms in children with Down syndrome. Dev Med Child Neurol 1994;36:576–585.PubMedCrossRef
62.
Zurück zum Zitat Auvin S, Lamblin MD, Pandit F, Vallee L, Bouvet-Mourcia A. Infantile epileptic encephalopathy with late-onset spasms: report of 19 patients. Epilepsia 2010;51:1290–1296.PubMedCrossRef Auvin S, Lamblin MD, Pandit F, Vallee L, Bouvet-Mourcia A. Infantile epileptic encephalopathy with late-onset spasms: report of 19 patients. Epilepsia 2010;51:1290–1296.PubMedCrossRef
63.
Zurück zum Zitat Eisermann MM, Ville D, Soufflet C, O et al. Cryptogenic late-onset epileptic spasms: an overlooked syndrome of early childhood? Epilepsia 2006;47:1035–1042.PubMedCrossRef Eisermann MM, Ville D, Soufflet C, O et al. Cryptogenic late-onset epileptic spasms: an overlooked syndrome of early childhood? Epilepsia 2006;47:1035–1042.PubMedCrossRef
64.
Zurück zum Zitat Eisermann MM, DeLaRaillere A, Dellatolas G, et al. Infantile spasms in Down syndrome — effects of delayed anticonvulsive treatment. Epilepsy Res 2003;55:21–27.PubMedCrossRef Eisermann MM, DeLaRaillere A, Dellatolas G, et al. Infantile spasms in Down syndrome — effects of delayed anticonvulsive treatment. Epilepsy Res 2003;55:21–27.PubMedCrossRef
65.
Zurück zum Zitat Hirose S, Mitsudome A. X-linked mental retardation and epilepsy: pathogenetic significance of ARX mutations. Brain Dev 2003;25:161–165.PubMedCrossRef Hirose S, Mitsudome A. X-linked mental retardation and epilepsy: pathogenetic significance of ARX mutations. Brain Dev 2003;25:161–165.PubMedCrossRef
66.
Zurück zum Zitat Kitamura K, Yanazawa M, Sugiyama N, et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 2002;32:359–369.PubMedCrossRef Kitamura K, Yanazawa M, Sugiyama N, et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 2002;32:359–369.PubMedCrossRef
67.
Zurück zum Zitat Price MG, Yoo JW, Burgess DL, et al. A triplet repeat expansion genetic mouse model of infantile spasms syndrome, Arx(GCG)10+7, with interneuronopathy, spasms in infancy, persistent seizures, and adult cognitive and behavioral impairment. J Neurosci 2009;29:8752–8763.PubMedCrossRef Price MG, Yoo JW, Burgess DL, et al. A triplet repeat expansion genetic mouse model of infantile spasms syndrome, Arx(GCG)10+7, with interneuronopathy, spasms in infancy, persistent seizures, and adult cognitive and behavioral impairment. J Neurosci 2009;29:8752–8763.PubMedCrossRef
68.
Zurück zum Zitat Blumcke I, Thom M, Aronica E, et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 2011;52:158–174.PubMedCrossRef Blumcke I, Thom M, Aronica E, et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 2011;52:158–174.PubMedCrossRef
69.
Zurück zum Zitat Hirabayashi S, Binnie CD, Janota I, Polkey CE. Surgical treatment of epilepsy due to cortical dysplasia: clinical and EEG findings. J Neurol Neurosurg Psychiatry 1993;56:765–770.PubMedCrossRef Hirabayashi S, Binnie CD, Janota I, Polkey CE. Surgical treatment of epilepsy due to cortical dysplasia: clinical and EEG findings. J Neurol Neurosurg Psychiatry 1993;56:765–770.PubMedCrossRef
70.
Zurück zum Zitat Francione S, Vigliano P, Tassi L, et al. Surgery for drug resistant partial epilepsy in children with focal cortical dysplasia: anatomical-clinical correlations and neurophysiological data in 10 patients. J Neurol Neurosurg Psychiatry 2003;74:1493–1501.PubMedCrossRef Francione S, Vigliano P, Tassi L, et al. Surgery for drug resistant partial epilepsy in children with focal cortical dysplasia: anatomical-clinical correlations and neurophysiological data in 10 patients. J Neurol Neurosurg Psychiatry 2003;74:1493–1501.PubMedCrossRef
71.
Zurück zum Zitat Russo GL, Tassi L, Cossu M, et al. Focal cortical resection in malformations of cortical development. Epileptic Disord 2003;5(suppl 2):S115-S123.PubMed Russo GL, Tassi L, Cossu M, et al. Focal cortical resection in malformations of cortical development. Epileptic Disord 2003;5(suppl 2):S115-S123.PubMed
72.
Zurück zum Zitat Scantlebury MH, Ouellet PL, Psarropoulou C, Carmant L. Freeze lesion-induced focal cortical dysplasia predisposes to atypical hyperthermic seizures in the immature rat. Epilepsia 2004;45:592–600.PubMedCrossRef Scantlebury MH, Ouellet PL, Psarropoulou C, Carmant L. Freeze lesion-induced focal cortical dysplasia predisposes to atypical hyperthermic seizures in the immature rat. Epilepsia 2004;45:592–600.PubMedCrossRef
73.
Zurück zum Zitat Baraban SC, Wenzel HJ, Hochman DW, Schwartzkroin PA. Characterization of heterotopic cell clusters in the hippocampus of rats exposed to methylazoxymethanol in utero. Epilepsy Res 2000;39:87–102.PubMedCrossRef Baraban SC, Wenzel HJ, Hochman DW, Schwartzkroin PA. Characterization of heterotopic cell clusters in the hippocampus of rats exposed to methylazoxymethanol in utero. Epilepsy Res 2000;39:87–102.PubMedCrossRef
74.
Zurück zum Zitat Colacitti C, Sancini G, Franceschetti S, et al. Altered connections between neocortical and heterotopic areas in methylazoxymethanol-treated rat. Epilepsy Res 1998;32:49–62.PubMedCrossRef Colacitti C, Sancini G, Franceschetti S, et al. Altered connections between neocortical and heterotopic areas in methylazoxymethanol-treated rat. Epilepsy Res 1998;32:49–62.PubMedCrossRef
75.
Zurück zum Zitat Castro PA, Cooper EC, Lowenstein DH, Baraban SC. Hippocampal heterotopia lack functional Kv4.2 potassium channels in the methylazoxymethanol model of cortical malformations and epilepsy. J Neurosci 2001;21:6626–6634.PubMed Castro PA, Cooper EC, Lowenstein DH, Baraban SC. Hippocampal heterotopia lack functional Kv4.2 potassium channels in the methylazoxymethanol model of cortical malformations and epilepsy. J Neurosci 2001;21:6626–6634.PubMed
76.
Zurück zum Zitat Tschuluun N, Jurgen WH, Doisy ET, Schwartzkroin PA. Initiation of epileptiform activity in a rat model of periventricular nodular heterotopia. Epilepsia 2011;52:2304–2314.PubMedCrossRef Tschuluun N, Jurgen WH, Doisy ET, Schwartzkroin PA. Initiation of epileptiform activity in a rat model of periventricular nodular heterotopia. Epilepsia 2011;52:2304–2314.PubMedCrossRef
77.
Zurück zum Zitat de Feo MR, Mecarelli O, Ricci GF. Seizure susceptibility in immature rats with micrencephaly induced by prenatal exposure to methylazoxymethanol acetate. Pharmacol Res 1995;31:109–114.PubMedCrossRef de Feo MR, Mecarelli O, Ricci GF. Seizure susceptibility in immature rats with micrencephaly induced by prenatal exposure to methylazoxymethanol acetate. Pharmacol Res 1995;31:109–114.PubMedCrossRef
78.
Zurück zum Zitat Chevassus-au-Louis N, Ben-Ari Y, Vergnes M. Decreased seizure threshold and more rapid rate of kindling in rats with cortical malformation induced by prenatal treatment with methylazoxymethanol. Brain Res 1998;812:252–255.PubMedCrossRef Chevassus-au-Louis N, Ben-Ari Y, Vergnes M. Decreased seizure threshold and more rapid rate of kindling in rats with cortical malformation induced by prenatal treatment with methylazoxymethanol. Brain Res 1998;812:252–255.PubMedCrossRef
79.
Zurück zum Zitat Setkowicz Z, Janicka D, Kowalczyk A, Turlej A, Janeczko K. Congenital brain dysplasias of different genesis can differently affect susceptibility to pilocarpine- or kainic acid-induced seizures in the rat. Epilepsy Res 2005;67:123–131.PubMedCrossRef Setkowicz Z, Janicka D, Kowalczyk A, Turlej A, Janeczko K. Congenital brain dysplasias of different genesis can differently affect susceptibility to pilocarpine- or kainic acid-induced seizures in the rat. Epilepsy Res 2005;67:123–131.PubMedCrossRef
80.
Zurück zum Zitat Germano IM, Zhang YF, Sperber EF, Moshe SL. Neuronal migration disorders increase susceptibility to hyperthermia-induced seizures in developing rats. Epilepsia 1996;37:902–910.PubMedCrossRef Germano IM, Zhang YF, Sperber EF, Moshe SL. Neuronal migration disorders increase susceptibility to hyperthermia-induced seizures in developing rats. Epilepsia 1996;37:902–910.PubMedCrossRef
81.
Zurück zum Zitat Harrington EP, Moddel G, Najm IM, Baraban SC. Altered glutamate receptor - ctransporter expression and spontaneous seizures in rats exposed to methylazoxymethanol in utero. Epilepsia 2007;48:158–168.PubMedCrossRef Harrington EP, Moddel G, Najm IM, Baraban SC. Altered glutamate receptor - ctransporter expression and spontaneous seizures in rats exposed to methylazoxymethanol in utero. Epilepsia 2007;48:158–168.PubMedCrossRef
82.
Zurück zum Zitat Park KI, Chu K, Jung KH, et al. Role of cortical dysplasia in epileptogenesis following prolonged febrile seizure. Epilepsia 2010;51:1809–1819.PubMedCrossRef Park KI, Chu K, Jung KH, et al. Role of cortical dysplasia in epileptogenesis following prolonged febrile seizure. Epilepsia 2010;51:1809–1819.PubMedCrossRef
83.
Zurück zum Zitat Choi IS, Cho JH, Lee MG, Choi BJ. Pilocarpine-induced seizure susceptibility in rats following prenatal methylazoxymethanol treatment. Biol Pharm Bull 2005;28:1408–1413.PubMedCrossRef Choi IS, Cho JH, Lee MG, Choi BJ. Pilocarpine-induced seizure susceptibility in rats following prenatal methylazoxymethanol treatment. Biol Pharm Bull 2005;28:1408–1413.PubMedCrossRef
84.
Zurück zum Zitat Hicks SP, D'amato CJ. Low dose radiation of the developing brain. Science 1963;141:903–905.PubMedCrossRef Hicks SP, D'amato CJ. Low dose radiation of the developing brain. Science 1963;141:903–905.PubMedCrossRef
85.
Zurück zum Zitat Hossain M, Chetana M, Devi PU. Late effect of prenatal irradiation on the hippocampal histology and brain weight in adult mice. Int J Dev Neurosci 2005;23:307–313.PubMedCrossRef Hossain M, Chetana M, Devi PU. Late effect of prenatal irradiation on the hippocampal histology and brain weight in adult mice. Int J Dev Neurosci 2005;23:307–313.PubMedCrossRef
86.
Zurück zum Zitat Roper SN. In utero irradiation of rats as a model of human cerebrocortical dysgenesis: a review. Epilepsy Res 1998;32:63–74.PubMedCrossRef Roper SN. In utero irradiation of rats as a model of human cerebrocortical dysgenesis: a review. Epilepsy Res 1998;32:63–74.PubMedCrossRef
87.
Zurück zum Zitat Setkowicz Z, Majcher K, Janicka D, et al. Brains with different degrees of dysplasia show different patterns of neurodegenerative changes following pilocarpine-induced seizures. Histologic evidence of tissue damage correlated with MRI data. Neurol Res 2006;28:453–460.PubMedCrossRef Setkowicz Z, Majcher K, Janicka D, et al. Brains with different degrees of dysplasia show different patterns of neurodegenerative changes following pilocarpine-induced seizures. Histologic evidence of tissue damage correlated with MRI data. Neurol Res 2006;28:453–460.PubMedCrossRef
88.
Zurück zum Zitat Rosen GD, Burstein D, Galaburda AM. Changes in efferent and afferent connectivity in rats with induced cerebrocortical microgyria. J Comp Neurol 2000;418:423–440.PubMedCrossRef Rosen GD, Burstein D, Galaburda AM. Changes in efferent and afferent connectivity in rats with induced cerebrocortical microgyria. J Comp Neurol 2000;418:423–440.PubMedCrossRef
89.
Zurück zum Zitat Hablitz JJ, DeFazio T. Excitability changes in freeze-induced neocortical microgyria. Epilepsy Res 1998;32:75–82.PubMedCrossRef Hablitz JJ, DeFazio T. Excitability changes in freeze-induced neocortical microgyria. Epilepsy Res 1998;32:75–82.PubMedCrossRef
90.
Zurück zum Zitat Jacobs KM, Hwang BJ, Prince DA. Focal epileptogenesis in a rat model of polymicrogyria. J Neurophysiol 1999;81:159–173.PubMed Jacobs KM, Hwang BJ, Prince DA. Focal epileptogenesis in a rat model of polymicrogyria. J Neurophysiol 1999;81:159–173.PubMed
91.
Zurück zum Zitat Zilles K, Qu MS, Kohling R, Speckmann EJ. Ionotropic glutamate and GABA receptors in human epileptic neocortical tissue: quantitative in vitro receptor autoradiography. Neuroscience 1999;94:1051–1061.PubMedCrossRef Zilles K, Qu MS, Kohling R, Speckmann EJ. Ionotropic glutamate and GABA receptors in human epileptic neocortical tissue: quantitative in vitro receptor autoradiography. Neuroscience 1999;94:1051–1061.PubMedCrossRef
92.
Zurück zum Zitat Redecker C, Luhmann HJ, Hagemann G, Fritschy JM, Witte OW. Differential downregulation of GABAA receptor subunits in widespread brain regions in the freeze-lesion model of focal cortical malformations. J Neurosci 2000;20:5045–5053.PubMed Redecker C, Luhmann HJ, Hagemann G, Fritschy JM, Witte OW. Differential downregulation of GABAA receptor subunits in widespread brain regions in the freeze-lesion model of focal cortical malformations. J Neurosci 2000;20:5045–5053.PubMed
93.
Zurück zum Zitat Scantlebury MH, Gibbs SA, Foadjo B, Lema P, Psarropoulou C, Carmant L. Febrile seizures in the predisposed brain: a new model of temporal lobe epilepsy. Ann Neurol 2005;58:41–49.PubMedCrossRef Scantlebury MH, Gibbs SA, Foadjo B, Lema P, Psarropoulou C, Carmant L. Febrile seizures in the predisposed brain: a new model of temporal lobe epilepsy. Ann Neurol 2005;58:41–49.PubMedCrossRef
94.
Zurück zum Zitat Fauser S, Huppertz HJ, Bast T, et al. Clinical characteristics in focal cortical dysplasia: a retrospective evaluation in a series of 120 patients. Brain 2006;129:1907–1916.PubMedCrossRef Fauser S, Huppertz HJ, Bast T, et al. Clinical characteristics in focal cortical dysplasia: a retrospective evaluation in a series of 120 patients. Brain 2006;129:1907–1916.PubMedCrossRef
95.
Zurück zum Zitat Garami A, Zwartkruis FJ, Nobukuni T, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 2003;11:1457–1466.PubMedCrossRef Garami A, Zwartkruis FJ, Nobukuni T, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 2003;11:1457–1466.PubMedCrossRef
96.
Zurück zum Zitat Van Slegtenhorst M, Nellist M, Nagelkerken B, et al. Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum Mol Genet 1998;7:1053–1057.PubMedCrossRef Van Slegtenhorst M, Nellist M, Nagelkerken B, et al. Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum Mol Genet 1998;7:1053–1057.PubMedCrossRef
97.
98.
Zurück zum Zitat Eker R. Familial renal adenomas in Wistar rats; a preliminary report. Acta Pathol Microbiol Scand 1954;34:554–562.PubMedCrossRef Eker R. Familial renal adenomas in Wistar rats; a preliminary report. Acta Pathol Microbiol Scand 1954;34:554–562.PubMedCrossRef
99.
Zurück zum Zitat Eker R, Mossige J, Johannessen JV, Aars H. Hereditary renal adenomas and adenocarcinomas in rats. Diagn Histopathol 1981;4:99–110.PubMed Eker R, Mossige J, Johannessen JV, Aars H. Hereditary renal adenomas and adenocarcinomas in rats. Diagn Histopathol 1981;4:99–110.PubMed
100.
Zurück zum Zitat Yeung RS, Xiao GH, Jin F, Lee WC, Testa JR, Knudson AG. Predisposition to renal carcinoma in the Eker rat is determined by germ-line mutation of the tuberous sclerosis 2 (TSC2) gene. Proc Natl Acad Sci U S A 1994;91:11413–11416.PubMedCrossRef Yeung RS, Xiao GH, Jin F, Lee WC, Testa JR, Knudson AG. Predisposition to renal carcinoma in the Eker rat is determined by germ-line mutation of the tuberous sclerosis 2 (TSC2) gene. Proc Natl Acad Sci U S A 1994;91:11413–11416.PubMedCrossRef
101.
Zurück zum Zitat Yeung RS, Katsetos CD, Klein-Szanto A. Subependymal astrocytic hamartomas in the Eker rat model of tuberous sclerosis. Am J Pathol 1997;151:1477–1486.PubMed Yeung RS, Katsetos CD, Klein-Szanto A. Subependymal astrocytic hamartomas in the Eker rat model of tuberous sclerosis. Am J Pathol 1997;151:1477–1486.PubMed
102.
Zurück zum Zitat Wenzel HJ, Patel LS, Robbins CA, Emmi A, Yeung RS, Schwartzkroin PA. Morphology of cerebral lesions in the Eker rat model of tuberous sclerosis. Acta Neuropathol 2004;108:97–108.PubMedCrossRef Wenzel HJ, Patel LS, Robbins CA, Emmi A, Yeung RS, Schwartzkroin PA. Morphology of cerebral lesions in the Eker rat model of tuberous sclerosis. Acta Neuropathol 2004;108:97–108.PubMedCrossRef
103.
Zurück zum Zitat Kwiatkowski DJ, Zhang H, Bandura JL, et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum Mol Genet 2002;11:525–534.PubMedCrossRef Kwiatkowski DJ, Zhang H, Bandura JL, et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum Mol Genet 2002;11:525–534.PubMedCrossRef
104.
Zurück zum Zitat Kobayashi T, Minowa O, Kuno J, Mitani H, Hino O, Noda T. Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ-line Tsc2 mutation in mice. Cancer Res 1999;59:1206–1211.PubMed Kobayashi T, Minowa O, Kuno J, Mitani H, Hino O, Noda T. Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ-line Tsc2 mutation in mice. Cancer Res 1999;59:1206–1211.PubMed
105.
Zurück zum Zitat Kobayashi T, Minowa O, Sugitani Y, et al. A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc Natl Acad Sci U S A 2001;98:8762–8767.PubMedCrossRef Kobayashi T, Minowa O, Sugitani Y, et al. A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc Natl Acad Sci U S A 2001;98:8762–8767.PubMedCrossRef
106.
Zurück zum Zitat Young DM, Schenk AK, Yang SB, Jan YN, Jan LY. Altered ultrasonic vocalizations in a tuberous sclerosis mouse model of autism. Proc Natl Acad Sci U S A 2010;107:11074–11079.PubMedCrossRef Young DM, Schenk AK, Yang SB, Jan YN, Jan LY. Altered ultrasonic vocalizations in a tuberous sclerosis mouse model of autism. Proc Natl Acad Sci U S A 2010;107:11074–11079.PubMedCrossRef
107.
Zurück zum Zitat Uhlmann EJ, Apicelli AJ, Baldwin RL, et al. Heterozygosity for the tuberous sclerosis complex (TSC) gene products results in increased astrocyte numbers and decreased p27-Kip1 expression in TSC2+/− cells. Oncogene 2002;21:4050–4059.PubMedCrossRef Uhlmann EJ, Apicelli AJ, Baldwin RL, et al. Heterozygosity for the tuberous sclerosis complex (TSC) gene products results in increased astrocyte numbers and decreased p27-Kip1 expression in TSC2+/− cells. Oncogene 2002;21:4050–4059.PubMedCrossRef
108.
Zurück zum Zitat Uhlmann EJ, Wong M, Baldwin RL, et al. Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 2002;52:285–296.PubMedCrossRef Uhlmann EJ, Wong M, Baldwin RL, et al. Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 2002;52:285–296.PubMedCrossRef
109.
Zurück zum Zitat Wong M, Ess KC, Uhlmann EJ, et al. Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model. Ann Neurol 2003;54:251–256.PubMedCrossRef Wong M, Ess KC, Uhlmann EJ, et al. Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model. Ann Neurol 2003;54:251–256.PubMedCrossRef
110.
Zurück zum Zitat Zeng LH, Xu L, Gutmann DH, Wong M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol 2008;63:444–453.PubMedCrossRef Zeng LH, Xu L, Gutmann DH, Wong M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol 2008;63:444–453.PubMedCrossRef
111.
Zurück zum Zitat Zeng LH, Rensing NR, Zhang B, Gutmann DH, Gambello MJ, Wong M. Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex. Hum Mol Genet 2011;20:445–454.PubMedCrossRef Zeng LH, Rensing NR, Zhang B, Gutmann DH, Gambello MJ, Wong M. Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex. Hum Mol Genet 2011;20:445–454.PubMedCrossRef
112.
Zurück zum Zitat Wang Y, Greenwood JS, Calcagnotto ME, Kirsch HE, Barbaro NM, Baraban SC. Neocortical hyperexcitability in a human case of tuberous sclerosis complex and mice lacking neuronal expression of TSC1. Ann Neurol 2007;61:139–152.PubMedCrossRef Wang Y, Greenwood JS, Calcagnotto ME, Kirsch HE, Barbaro NM, Baraban SC. Neocortical hyperexcitability in a human case of tuberous sclerosis complex and mice lacking neuronal expression of TSC1. Ann Neurol 2007;61:139–152.PubMedCrossRef
113.
Zurück zum Zitat Meikle L, Talos DM, Onda H, et al. A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci 2007;27:5546–5558.PubMedCrossRef Meikle L, Talos DM, Onda H, et al. A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci 2007;27:5546–5558.PubMedCrossRef
114.
Zurück zum Zitat Racine RJ. Modification of seizure activity by electrical stimulation: cortical areas. Electroencephalogr Clin Neurophysiol 1975;38:1–12.PubMedCrossRef Racine RJ. Modification of seizure activity by electrical stimulation: cortical areas. Electroencephalogr Clin Neurophysiol 1975;38:1–12.PubMedCrossRef
115.
116.
Zurück zum Zitat Moshe SL, Albala BJ. Kindling in developing rats: persistence of seizures into adulthood. Brain Res 1982;256:67–71.PubMed Moshe SL, Albala BJ. Kindling in developing rats: persistence of seizures into adulthood. Brain Res 1982;256:67–71.PubMed
117.
Zurück zum Zitat Lothman EW, Hatlelid JM, Zorumski CF, Conry JA, Moon PF, Perlin JB. Kindling with rapidly recurring hippocampal seizures. Brain Res 1985;360:83–91.PubMedCrossRef Lothman EW, Hatlelid JM, Zorumski CF, Conry JA, Moon PF, Perlin JB. Kindling with rapidly recurring hippocampal seizures. Brain Res 1985;360:83–91.PubMedCrossRef
118.
Zurück zum Zitat Michelson HB, Lothman EW. An ontogenetic study of kindling using rapidly recurring hippocampal seizures. Brain Res Dev Brain Res 1991;61:79–85.PubMedCrossRef Michelson HB, Lothman EW. An ontogenetic study of kindling using rapidly recurring hippocampal seizures. Brain Res Dev Brain Res 1991;61:79–85.PubMedCrossRef
119.
Zurück zum Zitat Sankar R, Auvin S, Kwon Y, Pineda E, Shin D, Mazarati A. Evaluation of development-specific targets for antiepileptogenic therapy using rapid kindling. Epilepsia. 2010 Jul;51 Suppl 3:39–42. Sankar R, Auvin S, Kwon Y, Pineda E, Shin D, Mazarati A. Evaluation of development-specific targets for antiepileptogenic therapy using rapid kindling. Epilepsia. 2010 Jul;51 Suppl 3:39–42.
120.
Zurück zum Zitat Wang C, Shimizu-Okabe C, Watanabe K, et al. Developmental changes in KCC1, KCC2, and NKCC1 mRNA expressions in the rat brain. Brain Res Dev Brain Res 2002;139:59–66.PubMedCrossRef Wang C, Shimizu-Okabe C, Watanabe K, et al. Developmental changes in KCC1, KCC2, and NKCC1 mRNA expressions in the rat brain. Brain Res Dev Brain Res 2002;139:59–66.PubMedCrossRef
121.
Zurück zum Zitat Ben-Ari Y. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 2002;3:728–739.PubMedCrossRef Ben-Ari Y. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 2002;3:728–739.PubMedCrossRef
122.
Zurück zum Zitat Dzhala VI, Talos DM, Sdrulla DA, et al. NKCC1 transporter facilitates seizures in the developing brain. Nat Med 2005;11:1205–1213.PubMedCrossRef Dzhala VI, Talos DM, Sdrulla DA, et al. NKCC1 transporter facilitates seizures in the developing brain. Nat Med 2005;11:1205–1213.PubMedCrossRef
123.
Zurück zum Zitat Dzhala VI, Brumback AC, Staley KJ. Bumetanide enhances phenobarbital efficacy in a neonatal seizure model. Ann Neurol 2008;63:222–235.PubMedCrossRef Dzhala VI, Brumback AC, Staley KJ. Bumetanide enhances phenobarbital efficacy in a neonatal seizure model. Ann Neurol 2008;63:222–235.PubMedCrossRef
124.
Zurück zum Zitat Mazarati A, Shin D, Sankar R. Bumetanide inhibits rapid kindling in neonatal rats. Epilepsia 2009;50:2117–2122.PubMedCrossRef Mazarati A, Shin D, Sankar R. Bumetanide inhibits rapid kindling in neonatal rats. Epilepsia 2009;50:2117–2122.PubMedCrossRef
125.
Zurück zum Zitat Shah MM, Mistry M, Marsh SJ, Brown DA, Delmas P. Molecular correlates of the M-current in cultured rat hippocampal neurons. J Physiol 2002;544:29–37.PubMedCrossRef Shah MM, Mistry M, Marsh SJ, Brown DA, Delmas P. Molecular correlates of the M-current in cultured rat hippocampal neurons. J Physiol 2002;544:29–37.PubMedCrossRef
126.
Zurück zum Zitat Okada M, Wada K, Kamata A, Murakami T, Zhu G, Kaneko S. Impaired M-current and neuronal excitability. Epilepsia 2002;43(suppl 9):36–38.PubMedCrossRef Okada M, Wada K, Kamata A, Murakami T, Zhu G, Kaneko S. Impaired M-current and neuronal excitability. Epilepsia 2002;43(suppl 9):36–38.PubMedCrossRef
127.
Zurück zum Zitat Singh NA, Westenskow P, Charlier C, et al. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain 2003;126:2726–2737.PubMedCrossRef Singh NA, Westenskow P, Charlier C, et al. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain 2003;126:2726–2737.PubMedCrossRef
128.
Zurück zum Zitat Qiu C, Johnson BN, Tallent MK. K + M-current regulates the transition to seizures in immature and adult hippocampus. Epilepsia 2007;48:2047–2058.PubMedCrossRef Qiu C, Johnson BN, Tallent MK. K + M-current regulates the transition to seizures in immature and adult hippocampus. Epilepsia 2007;48:2047–2058.PubMedCrossRef
129.
Zurück zum Zitat Main MJ, Cryan JE, Dupere JR, Cox B, Clare JJ, Burbidge SA. Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine. Mol Pharmacol 2000;58:253–262.PubMed Main MJ, Cryan JE, Dupere JR, Cox B, Clare JJ, Burbidge SA. Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine. Mol Pharmacol 2000;58:253–262.PubMed
130.
Zurück zum Zitat Mazarati A, Wu J, Shin D, Kwon YS, Sankar R. Antiepileptogenic and antiictogenic effects of retigabine under conditions of rapid kindling: an ontogenic study. Epilepsia 2008;49:1777–1786.PubMedCrossRef Mazarati A, Wu J, Shin D, Kwon YS, Sankar R. Antiepileptogenic and antiictogenic effects of retigabine under conditions of rapid kindling: an ontogenic study. Epilepsia 2008;49:1777–1786.PubMedCrossRef
131.
Zurück zum Zitat Lothman EW, Bertram EH, III. Epileptogenic effects of status epilepticus. Epilepsia 1993;34(suppl 1):S59-S70.PubMedCrossRef Lothman EW, Bertram EH, III. Epileptogenic effects of status epilepticus. Epilepsia 1993;34(suppl 1):S59-S70.PubMedCrossRef
132.
Zurück zum Zitat Lothman EW, Williamson JM. Closely spaced recurrent hippocampal seizures elicit two types of heightened epileptogenesis: a rapidly developing, transient kindling and a slowly developing, enduring kindling. Brain Res 1994;649:71–84.PubMedCrossRef Lothman EW, Williamson JM. Closely spaced recurrent hippocampal seizures elicit two types of heightened epileptogenesis: a rapidly developing, transient kindling and a slowly developing, enduring kindling. Brain Res 1994;649:71–84.PubMedCrossRef
133.
134.
Zurück zum Zitat Dravet C, Bureau M, Dalla BB, Guerrini R. Severe myoclonic epilepsy in infancy (Dravet syndrome) 30 years later. Epilepsia 2011;52(suppl 2):1–2.PubMedCrossRef Dravet C, Bureau M, Dalla BB, Guerrini R. Severe myoclonic epilepsy in infancy (Dravet syndrome) 30 years later. Epilepsia 2011;52(suppl 2):1–2.PubMedCrossRef
135.
Zurück zum Zitat Catterall WA. Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 2010;67:915–928.PubMedCrossRef Catterall WA. Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 2010;67:915–928.PubMedCrossRef
136.
Zurück zum Zitat Depienne C, Trouillard O, Saint-Martin C, et al. Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients. J Med Genet 2009;46:183–191.PubMedCrossRef Depienne C, Trouillard O, Saint-Martin C, et al. Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients. J Med Genet 2009;46:183–191.PubMedCrossRef
137.
Zurück zum Zitat Oakley JC, Kalume F, Yu FH, Scheuer T, Catterall WA. Temperature- and age-dependent seizures in a mouse model of severe myoclonic epilepsy in infancy. Proc Natl Acad Sci U S A 2009;106:3994–3999.PubMedCrossRef Oakley JC, Kalume F, Yu FH, Scheuer T, Catterall WA. Temperature- and age-dependent seizures in a mouse model of severe myoclonic epilepsy in infancy. Proc Natl Acad Sci U S A 2009;106:3994–3999.PubMedCrossRef
138.
Zurück zum Zitat Ogiwara I, Miyamoto H, Morita N, et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci 2007;27:5903–5914.PubMedCrossRef Ogiwara I, Miyamoto H, Morita N, et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci 2007;27:5903–5914.PubMedCrossRef
139.
Zurück zum Zitat Genton P, Velizarova R, Dravet C. Dravet syndrome: the long-term outcome. Epilepsia 2011;52(suppl 2):44–49.PubMedCrossRef Genton P, Velizarova R, Dravet C. Dravet syndrome: the long-term outcome. Epilepsia 2011;52(suppl 2):44–49.PubMedCrossRef
140.
Zurück zum Zitat Yu FH, Mantegazza M, Westenbroek RE, et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci 2006;9:1142–1149.PubMedCrossRef Yu FH, Mantegazza M, Westenbroek RE, et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci 2006;9:1142–1149.PubMedCrossRef
141.
Zurück zum Zitat Kalume F, Yu FH, Westenbroek RE, Scheuer T, Catterall WA. Reduced sodium current in Purkinje neurons from Nav1.1 mutant mice: implications for ataxia in severe myoclonic epilepsy in infancy. J Neurosci 2007;27:11065–11074.PubMedCrossRef Kalume F, Yu FH, Westenbroek RE, Scheuer T, Catterall WA. Reduced sodium current in Purkinje neurons from Nav1.1 mutant mice: implications for ataxia in severe myoclonic epilepsy in infancy. J Neurosci 2007;27:11065–11074.PubMedCrossRef
142.
Zurück zum Zitat Dutton SB, Sawyer NT, Kalume F, et al. Protective effect of the ketogenic diet in Scn1a mutant mice. Epilepsia 2011;52:2050–2056.PubMedCrossRef Dutton SB, Sawyer NT, Kalume F, et al. Protective effect of the ketogenic diet in Scn1a mutant mice. Epilepsia 2011;52:2050–2056.PubMedCrossRef
143.
Zurück zum Zitat Caraballo RH, Cersosimo RO, Sakr D, Cresta A, Escobal N, Fejerman N. Ketogenic diet in patients with Dravet syndrome. Epilepsia 2005;46:1539–1544.PubMedCrossRef Caraballo RH, Cersosimo RO, Sakr D, Cresta A, Escobal N, Fejerman N. Ketogenic diet in patients with Dravet syndrome. Epilepsia 2005;46:1539–1544.PubMedCrossRef
144.
Zurück zum Zitat Korff C, Laux L, Kelley K, Goldstein J, Koh S, Nordli D Jr. Dravet syndrome (severe myoclonic epilepsy in infancy): a retrospective study of 16 patients. J Child Neurol 2007;22:185–194.PubMedCrossRef Korff C, Laux L, Kelley K, Goldstein J, Koh S, Nordli D Jr. Dravet syndrome (severe myoclonic epilepsy in infancy): a retrospective study of 16 patients. J Child Neurol 2007;22:185–194.PubMedCrossRef
145.
Zurück zum Zitat Nabbout R, Copioli C, Chipaux M, et al. Ketogenic diet also benefits Dravet syndrome patients receiving stiripentol: a prospective pilot study. Epilepsia 2011;52:e54-e57.PubMedCrossRef Nabbout R, Copioli C, Chipaux M, et al. Ketogenic diet also benefits Dravet syndrome patients receiving stiripentol: a prospective pilot study. Epilepsia 2011;52:e54-e57.PubMedCrossRef
146.
Zurück zum Zitat van Luijtelaar EL, Drinkenburg WH, van Rijn CM, Coenen AM. Rat models of genetic absence epilepsy: what do EEG spike-wave discharges tell us about drug effects? Methods Find Exp Clin Pharmacol 2002;24(suppl D):65–70.PubMed van Luijtelaar EL, Drinkenburg WH, van Rijn CM, Coenen AM. Rat models of genetic absence epilepsy: what do EEG spike-wave discharges tell us about drug effects? Methods Find Exp Clin Pharmacol 2002;24(suppl D):65–70.PubMed
147.
Zurück zum Zitat Guerrini R, Dravet C, Genton P, Belmonte A, Kaminska A, Dulac O. Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia 1998;39:508–512.PubMedCrossRef Guerrini R, Dravet C, Genton P, Belmonte A, Kaminska A, Dulac O. Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia 1998;39:508–512.PubMedCrossRef
148.
Zurück zum Zitat Burke JF, Mogg AE. Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res 1985;13:6265–6272.PubMedCrossRef Burke JF, Mogg AE. Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res 1985;13:6265–6272.PubMedCrossRef
149.
Zurück zum Zitat Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 1996;2:467–469.PubMedCrossRef Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 1996;2:467–469.PubMedCrossRef
150.
Zurück zum Zitat Bedwell DM, Kaenjak A, Benos DJ, et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 1997;3:1280–1284.PubMedCrossRef Bedwell DM, Kaenjak A, Benos DJ, et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 1997;3:1280–1284.PubMedCrossRef
151.
Zurück zum Zitat Barton-Davis ER, Cordier L, Shoturma DI, Leland SE, Sweeney HL. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 1999;104:375–381.PubMedCrossRef Barton-Davis ER, Cordier L, Shoturma DI, Leland SE, Sweeney HL. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 1999;104:375–381.PubMedCrossRef
Metadaten
Titel
Novel Animal Models of Pediatric Epilepsy
verfasst von
Stéphane Auvin
Eduardo Pineda
Don Shin
Pierre Gressens
Andrey Mazarati
Publikationsdatum
01.04.2012
Verlag
Springer-Verlag
Erschienen in
Neurotherapeutics / Ausgabe 2/2012
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-012-0119-8

Weitere Artikel der Ausgabe 2/2012

Neurotherapeutics 2/2012 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Neu im Fachgebiet Neurologie

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.