Skip to main content
Erschienen in: Neurotherapeutics 3/2015

01.07.2015 | Review

Angelman Syndrome

verfasst von: Seth S. Margolis, Gabrielle L. Sell, Mark A. Zbinden, Lynne M. Bird

Erschienen in: Neurotherapeutics | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

In this review we summarize the clinical and genetic aspects of Angelman syndrome (AS), its molecular and cellular underpinnings, and current treatment strategies. AS is a neurodevelopmental disorder characterized by severe cognitive disability, motor dysfunction, speech impairment, hyperactivity, and frequent seizures. AS is caused by disruption of the maternally expressed and paternally imprinted UBE3A, which encodes an E3 ubiquitin ligase. Four mechanisms that render the maternally inherited UBE3A nonfunctional are recognized, the most common of which is deletion of the maternal chromosomal region 15q11-q13. Remarkably, duplication of the same chromosomal region is one of the few characterized persistent genetic abnormalities associated with autistic spectrum disorder, occurring in >1–2 % of all cases of autism spectrum disorder. While the overall morphology of the brain and connectivity of neural projections appear largely normal in AS mouse models, major functional defects are detected at the level of context-dependent learning, as well as impaired maturation of hippocampal and neocortical circuits. While these findings demonstrate a crucial role for ubiquitin protein ligase E3A in synaptic development, the mechanisms by which deficiency of ubiquitin protein ligase E3A leads to AS pathophysiology in humans remain poorly understood. However, recent efforts have shown promise in restoring functions disrupted in AS mice, renewing hope that an effective treatment strategy can be found.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Williams CA, Beaudet AL, Clayton-Smith J, et al. Angelman syndrome 2005: updated consensus for diagnostic criteria. Am J Med Genet A 2006;140:413-418.PubMedCrossRef Williams CA, Beaudet AL, Clayton-Smith J, et al. Angelman syndrome 2005: updated consensus for diagnostic criteria. Am J Med Genet A 2006;140:413-418.PubMedCrossRef
3.
Zurück zum Zitat Dagli A, Buiting K, Williams CA. Molecular and clinical aspects of Angelman syndrome. Mol Syndromol 2012;2:100-112.PubMedCentralPubMed Dagli A, Buiting K, Williams CA. Molecular and clinical aspects of Angelman syndrome. Mol Syndromol 2012;2:100-112.PubMedCentralPubMed
4.
Zurück zum Zitat Williams CA, Driscoll DJ, Dagli AI. Clinical and genetic aspects of Angelman syndrome. Genet Med 2010;12:385-395.PubMedCrossRef Williams CA, Driscoll DJ, Dagli AI. Clinical and genetic aspects of Angelman syndrome. Genet Med 2010;12:385-395.PubMedCrossRef
5.
Zurück zum Zitat Williams CA. Looks like Angelman syndrome but isn’t—What is in the differential? RCPU Newsl 2011;22. Williams CA. Looks like Angelman syndrome but isn’t—What is in the differential? RCPU Newsl 2011;22.
6.
Zurück zum Zitat Tan WH, Bird LM, Thibert RL, Williams CA. If not Angelman, what is it? A review of Angelman-like syndromes. Am J Med Genet A 2014;164A:975-992.PubMedCrossRef Tan WH, Bird LM, Thibert RL, Williams CA. If not Angelman, what is it? A review of Angelman-like syndromes. Am J Med Genet A 2014;164A:975-992.PubMedCrossRef
7.
Zurück zum Zitat Kishino T, Lalande M, Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet 1997;15:70-73.PubMedCrossRef Kishino T, Lalande M, Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet 1997;15:70-73.PubMedCrossRef
8.
Zurück zum Zitat Peters SU, Horowitz L, Barbieri-Welge R, Taylor JL, Hundley RJ. Longitudinal follow-up of autism spectrum features and sensory behaviors in Angelman syndrome by deletion class. J Child Psychol Psychiatry 2012;53:152-159.PubMedCrossRef Peters SU, Horowitz L, Barbieri-Welge R, Taylor JL, Hundley RJ. Longitudinal follow-up of autism spectrum features and sensory behaviors in Angelman syndrome by deletion class. J Child Psychol Psychiatry 2012;53:152-159.PubMedCrossRef
9.
Zurück zum Zitat Gentile JK, Tan WH, Horowitz LT, et al. A neurodevelopmental survey of Angelman syndrome with genotype-phenotype correlations. J Dev Behav Pediatr 2010;31:592-601.PubMedCentralPubMed Gentile JK, Tan WH, Horowitz LT, et al. A neurodevelopmental survey of Angelman syndrome with genotype-phenotype correlations. J Dev Behav Pediatr 2010;31:592-601.PubMedCentralPubMed
10.
11.
Zurück zum Zitat Valente KD, Varela MC, Koiffmann CP, et al. Angelman syndrome caused by deletion: a genotype-phenotype correlation determined by breakpoint. Epilepsy Res 2013;105:234-239.PubMedCrossRef Valente KD, Varela MC, Koiffmann CP, et al. Angelman syndrome caused by deletion: a genotype-phenotype correlation determined by breakpoint. Epilepsy Res 2013;105:234-239.PubMedCrossRef
12.
Zurück zum Zitat Sahoo T, Peters SU, Madduri NS, et al. Microarray based comparative genomic hybridization testing in deletion bearing patients with Angelman syndrome: genotype–phenotype correlations. J Med Genet 2006;43:512-516.PubMedCentralPubMedCrossRef Sahoo T, Peters SU, Madduri NS, et al. Microarray based comparative genomic hybridization testing in deletion bearing patients with Angelman syndrome: genotype–phenotype correlations. J Med Genet 2006;43:512-516.PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Procter M, Chou LS, Tang W, Jama M, Mao R. Molecular diagnosis of Prader-Willi and Angelman syndromes by methylation-specific melting analysis and methylation-specific multiplex ligation-dependent probe amplification. Clin Chem 2006;52:1276-1283.PubMedCrossRef Procter M, Chou LS, Tang W, Jama M, Mao R. Molecular diagnosis of Prader-Willi and Angelman syndromes by methylation-specific melting analysis and methylation-specific multiplex ligation-dependent probe amplification. Clin Chem 2006;52:1276-1283.PubMedCrossRef
14.
Zurück zum Zitat Albrecht U, Sutcliffe JS, Cattanach BM, et al. Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nat Genet 1997;17:75-78.PubMedCrossRef Albrecht U, Sutcliffe JS, Cattanach BM, et al. Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nat Genet 1997;17:75-78.PubMedCrossRef
15.
Zurück zum Zitat Nakao M, Sutcliffe JS, Durtschi B, Mutirangura A, Ledbetter DH, Beaudet AL. Imprinting analysis of three genes in the Prader-Willi/Angelman region: SNRPN, E6-associated protein, and PAR-2 (D15S225E). Hum Mol Genet 1994;3:309-315.PubMedCrossRef Nakao M, Sutcliffe JS, Durtschi B, Mutirangura A, Ledbetter DH, Beaudet AL. Imprinting analysis of three genes in the Prader-Willi/Angelman region: SNRPN, E6-associated protein, and PAR-2 (D15S225E). Hum Mol Genet 1994;3:309-315.PubMedCrossRef
16.
Zurück zum Zitat Rougeulle C, Glatt H, Lalande M. The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat Genet 1997;17:14-15.PubMedCrossRef Rougeulle C, Glatt H, Lalande M. The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat Genet 1997;17:14-15.PubMedCrossRef
17.
Zurück zum Zitat Judson MC, Sosa-Pagan JO, Del Cid WA, Han JE, Philpot BD. Allelic specificity of Ube3a expression in the mouse brain during postnatal development. J Comp Neurol 2014;522:1874-1896.PubMedCentralPubMedCrossRef Judson MC, Sosa-Pagan JO, Del Cid WA, Han JE, Philpot BD. Allelic specificity of Ube3a expression in the mouse brain during postnatal development. J Comp Neurol 2014;522:1874-1896.PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Mabb AM, Judson MC, Zylka MJ, Philpot BD. Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci 2011;34:293-303.PubMedCentralPubMedCrossRef Mabb AM, Judson MC, Zylka MJ, Philpot BD. Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci 2011;34:293-303.PubMedCentralPubMedCrossRef
20.
Zurück zum Zitat Martins-Taylor K, Hsiao JS, Chen PF, et al. Imprinted expression of UBE3A in non-neuronal cells from a Prader-Willi syndrome patient with an atypical deletion. Hum Mol Genet 2014;23:2364-2373.PubMedCentralPubMedCrossRef Martins-Taylor K, Hsiao JS, Chen PF, et al. Imprinted expression of UBE3A in non-neuronal cells from a Prader-Willi syndrome patient with an atypical deletion. Hum Mol Genet 2014;23:2364-2373.PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Meng L, Person RE, Huang W, Zhu PJ, Costa-Mattioli M, Beaudet AL. Truncation of Ube3a-ATS unsilences paternal Ube3a and ameliorates behavioral defects in the Angelman syndrome mouse model. PLoS Genet 2013;9:e1004039.PubMedCentralPubMedCrossRef Meng L, Person RE, Huang W, Zhu PJ, Costa-Mattioli M, Beaudet AL. Truncation of Ube3a-ATS unsilences paternal Ube3a and ameliorates behavioral defects in the Angelman syndrome mouse model. PLoS Genet 2013;9:e1004039.PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Mertz LG, Thaulov P, Trillingsgaard A, et al. Neurodevelopmental outcome in Angelman syndrome: genotype-phenotype correlations. Res Dev Disabil 2014;35:1742-1747.PubMedCrossRef Mertz LG, Thaulov P, Trillingsgaard A, et al. Neurodevelopmental outcome in Angelman syndrome: genotype-phenotype correlations. Res Dev Disabil 2014;35:1742-1747.PubMedCrossRef
23.
Zurück zum Zitat Valente KD, Fridman C, Varela MC, et al. Angelman syndrome: uniparental paternal disomy 15 determines mild epilepsy, but has no influence on EEG patterns. Epilepsy Res 2005;67:163-168.PubMedCrossRef Valente KD, Fridman C, Varela MC, et al. Angelman syndrome: uniparental paternal disomy 15 determines mild epilepsy, but has no influence on EEG patterns. Epilepsy Res 2005;67:163-168.PubMedCrossRef
24.
Zurück zum Zitat Nakatani J, Tamada K, Hatanaka F, et al. Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 2009;137:1235-1246.PubMedCentralPubMedCrossRef Nakatani J, Tamada K, Hatanaka F, et al. Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 2009;137:1235-1246.PubMedCentralPubMedCrossRef
25.
Zurück zum Zitat Smith SE, Zhou YD, Zhang G, Jin Z, Stoppel DC, Anderson MP. Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci Transl Med 2011;3:103ra97.PubMedCentralPubMedCrossRef Smith SE, Zhou YD, Zhang G, Jin Z, Stoppel DC, Anderson MP. Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci Transl Med 2011;3:103ra97.PubMedCentralPubMedCrossRef
26.
Zurück zum Zitat Bhat S, Acharya UR, Adeli H, Bairy GM, Adeli A. Autism: cause factors, early diagnosis and therapies. Rev Neurosci 2014;25:841-850.PubMed Bhat S, Acharya UR, Adeli H, Bairy GM, Adeli A. Autism: cause factors, early diagnosis and therapies. Rev Neurosci 2014;25:841-850.PubMed
27.
Zurück zum Zitat Folstein SE, Rosen-Sheidley B. Genetics of autism: complex aetiology for a heterogeneous disorder. Nat Rev Genet 2001;2:943-955.PubMedCrossRef Folstein SE, Rosen-Sheidley B. Genetics of autism: complex aetiology for a heterogeneous disorder. Nat Rev Genet 2001;2:943-955.PubMedCrossRef
28.
Zurück zum Zitat Ozonoff S, Young GS, Carter A, et al. Recurrence risk for autism spectrum disorders: a Baby Siblings Research Consortium study. Pediatrics 2011;128:e488-e495.PubMedCentralPubMed Ozonoff S, Young GS, Carter A, et al. Recurrence risk for autism spectrum disorders: a Baby Siblings Research Consortium study. Pediatrics 2011;128:e488-e495.PubMedCentralPubMed
29.
Zurück zum Zitat Risch N, Hoffmann TJ, Anderson M, Croen LA, Grether JK, Windham GC. Familial recurrence of autism spectrum disorder: evaluating genetic and environmental contributions. Am J Psychiatry 2014;171:1206-1213.PubMedCrossRef Risch N, Hoffmann TJ, Anderson M, Croen LA, Grether JK, Windham GC. Familial recurrence of autism spectrum disorder: evaluating genetic and environmental contributions. Am J Psychiatry 2014;171:1206-1213.PubMedCrossRef
30.
31.
Zurück zum Zitat Wood CL, Warnell F, Johnson M, et al. Evidence for ASD recurrence rates and reproductive stoppage from large UK ASD research family databases. Autism Res 2015;8:73-81.PubMedCrossRef Wood CL, Warnell F, Johnson M, et al. Evidence for ASD recurrence rates and reproductive stoppage from large UK ASD research family databases. Autism Res 2015;8:73-81.PubMedCrossRef
32.
Zurück zum Zitat Sutcliffe JS, Jiang YH, Galijaard RJ, et al. The E6-Ap ubiquitin-protein ligase (UBE3A) gene is localized within a narrowed Angelman syndrome critical region. Genome Res 1997;7:368-377.PubMedCentralPubMed Sutcliffe JS, Jiang YH, Galijaard RJ, et al. The E6-Ap ubiquitin-protein ligase (UBE3A) gene is localized within a narrowed Angelman syndrome critical region. Genome Res 1997;7:368-377.PubMedCentralPubMed
33.
Zurück zum Zitat Cook EH, Jr., Lindgren V, Leventhal BL, et al. Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet 1997;60:928-934.PubMedCentralPubMed Cook EH, Jr., Lindgren V, Leventhal BL, et al. Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet 1997;60:928-934.PubMedCentralPubMed
34.
35.
Zurück zum Zitat Jiang YH, Armstrong D, Albrecht U, et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 1998;21:799-811.PubMedCrossRef Jiang YH, Armstrong D, Albrecht U, et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 1998;21:799-811.PubMedCrossRef
36.
Zurück zum Zitat Miura K, Kishino T, Li E, et al. Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice. Neurobiol Dis 2002;9:149-159.PubMedCrossRef Miura K, Kishino T, Li E, et al. Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice. Neurobiol Dis 2002;9:149-159.PubMedCrossRef
37.
Zurück zum Zitat Jiang YH, Pan Y, Zhu L, et al. Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3. PLoS One 2010;5:e12278.PubMedCentralPubMedCrossRef Jiang YH, Pan Y, Zhu L, et al. Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3. PLoS One 2010;5:e12278.PubMedCentralPubMedCrossRef
38.
Zurück zum Zitat Huang HS, Burns AJ, Nonneman RJ, et al. Behavioral deficits in an Angelman syndrome model: effects of genetic background and age. Behav Brain Res 2013;243:79-90.PubMedCentralPubMedCrossRef Huang HS, Burns AJ, Nonneman RJ, et al. Behavioral deficits in an Angelman syndrome model: effects of genetic background and age. Behav Brain Res 2013;243:79-90.PubMedCentralPubMedCrossRef
39.
Zurück zum Zitat Heck DH, Zhao Y, Roy S, LeDoux MS, Reiter LT. Analysis of cerebellar function in Ube3a-deficient mice reveals novel genotype-specific behaviors. Hum Mol Genet 2008;17:2181-2189.PubMedCentralPubMedCrossRef Heck DH, Zhao Y, Roy S, LeDoux MS, Reiter LT. Analysis of cerebellar function in Ube3a-deficient mice reveals novel genotype-specific behaviors. Hum Mol Genet 2008;17:2181-2189.PubMedCentralPubMedCrossRef
40.
Zurück zum Zitat Mulherkar SA, Jana NR. Loss of dopaminergic neurons and resulting behavioural deficits in mouse model of Angelman syndrome. Neurobiol Dis 2010;40:586-592.PubMedCrossRef Mulherkar SA, Jana NR. Loss of dopaminergic neurons and resulting behavioural deficits in mouse model of Angelman syndrome. Neurobiol Dis 2010;40:586-592.PubMedCrossRef
41.
Zurück zum Zitat Piochon C, Kloth AD, Grasselli G, et al. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism. Nat Commun 2014;5:5586.PubMedCentralPubMedCrossRef Piochon C, Kloth AD, Grasselli G, et al. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism. Nat Commun 2014;5:5586.PubMedCentralPubMedCrossRef
42.
Zurück zum Zitat van Woerden GM, Harris KD, Hojjati MR, et al. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation. Nat Neurosci 2007;10:280-282.PubMedCrossRef van Woerden GM, Harris KD, Hojjati MR, et al. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation. Nat Neurosci 2007;10:280-282.PubMedCrossRef
43.
Zurück zum Zitat Godavarthi SK, Dey P, Maheshwari M, Jana NR. Defective glucocorticoid hormone receptor signaling leads to increased stress and anxiety in a mouse model of Angelman syndrome. Hum Mol Genet 2012;21:1824-1834.PubMedCrossRef Godavarthi SK, Dey P, Maheshwari M, Jana NR. Defective glucocorticoid hormone receptor signaling leads to increased stress and anxiety in a mouse model of Angelman syndrome. Hum Mol Genet 2012;21:1824-1834.PubMedCrossRef
44.
Zurück zum Zitat Riday TT, Dankoski EC, Krouse MC, et al. Pathway-specific dopaminergic deficits in a mouse model of Angelman syndrome. J Clin Invest 2012;122:4544-4554.PubMedCentralPubMedCrossRef Riday TT, Dankoski EC, Krouse MC, et al. Pathway-specific dopaminergic deficits in a mouse model of Angelman syndrome. J Clin Invest 2012;122:4544-4554.PubMedCentralPubMedCrossRef
45.
Zurück zum Zitat Gustin RM, Bichell TJ, Bubser M, et al. Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome. Neurobiol Dis 2010;39:283-291.PubMedCentralPubMedCrossRef Gustin RM, Bichell TJ, Bubser M, et al. Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome. Neurobiol Dis 2010;39:283-291.PubMedCentralPubMedCrossRef
46.
Zurück zum Zitat Deacon RM. Digging and marble burying in mice: simple methods for in vivo identification of biological impacts. Nat Protoc 2006;1:122-124.PubMedCrossRef Deacon RM. Digging and marble burying in mice: simple methods for in vivo identification of biological impacts. Nat Protoc 2006;1:122-124.PubMedCrossRef
47.
48.
Zurück zum Zitat Dindot SV, Antalffy BA, Bhattacharjee MB, Beaudet AL. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet 2008;17:111-118.PubMedCrossRef Dindot SV, Antalffy BA, Bhattacharjee MB, Beaudet AL. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet 2008;17:111-118.PubMedCrossRef
49.
Zurück zum Zitat Kaphzan H, Hernandez P, Jung JI, et al. Reversal of impaired hippocampal long-term potentiation and contextual fear memory deficits in Angelman syndrome model mice by ErbB inhibitors. Biol Psychiatry 2012;72:182-190.PubMedCentralPubMedCrossRef Kaphzan H, Hernandez P, Jung JI, et al. Reversal of impaired hippocampal long-term potentiation and contextual fear memory deficits in Angelman syndrome model mice by ErbB inhibitors. Biol Psychiatry 2012;72:182-190.PubMedCentralPubMedCrossRef
50.
Zurück zum Zitat Kaphzan H, Buffington SA, Ramaraj AB, et al. Genetic reduction of the alpha1 subunit of Na/K-ATPase corrects multiple hippocampal phenotypes in Angelman syndrome. Cell Rep 2013;4:405-412.PubMedCentralPubMedCrossRef Kaphzan H, Buffington SA, Ramaraj AB, et al. Genetic reduction of the alpha1 subunit of Na/K-ATPase corrects multiple hippocampal phenotypes in Angelman syndrome. Cell Rep 2013;4:405-412.PubMedCentralPubMedCrossRef
51.
Zurück zum Zitat Wallace ML, Burette AC, Weinberg RJ, Philpot BD. Maternal loss of Ube3a produces an excitatory/inhibitory imbalance through neuron type-specific synaptic defects. Neuron 2012;74:793-800.PubMedCentralPubMedCrossRef Wallace ML, Burette AC, Weinberg RJ, Philpot BD. Maternal loss of Ube3a produces an excitatory/inhibitory imbalance through neuron type-specific synaptic defects. Neuron 2012;74:793-800.PubMedCentralPubMedCrossRef
52.
Zurück zum Zitat Martinez-Noel G, Galligan JT, Sowa ME, et al. Identification and proteomic analysis of distinct UBE3A/E6AP protein complexes. Mol Cell Biol 2012;32:3095-3106.PubMedCentralPubMedCrossRef Martinez-Noel G, Galligan JT, Sowa ME, et al. Identification and proteomic analysis of distinct UBE3A/E6AP protein complexes. Mol Cell Biol 2012;32:3095-3106.PubMedCentralPubMedCrossRef
53.
Zurück zum Zitat Shirakura M, Murakami K, Ichimura T, et al. E6AP ubiquitin ligase mediates ubiquitylation and degradation of hepatitis C virus core protein. J Virol 2007;81:1174-1185.PubMedCentralPubMedCrossRef Shirakura M, Murakami K, Ichimura T, et al. E6AP ubiquitin ligase mediates ubiquitylation and degradation of hepatitis C virus core protein. J Virol 2007;81:1174-1185.PubMedCentralPubMedCrossRef
54.
Zurück zum Zitat Li L, Li Z, Howley PM, Sacks DB. E6AP and calmodulin reciprocally regulate estrogen receptor stability. J Biol Chem 2006;281:1978-1985.PubMedCrossRef Li L, Li Z, Howley PM, Sacks DB. E6AP and calmodulin reciprocally regulate estrogen receptor stability. J Biol Chem 2006;281:1978-1985.PubMedCrossRef
55.
Zurück zum Zitat Kao WH, Beaudenon SL, Talis AL, Huibregtse JM, Howley PM. Human papillomavirus type 16 E6 induces self-ubiquitination of the E6AP ubiquitin-protein ligase. J Virol 2000;74:6408-6417.PubMedCentralPubMedCrossRef Kao WH, Beaudenon SL, Talis AL, Huibregtse JM, Howley PM. Human papillomavirus type 16 E6 induces self-ubiquitination of the E6AP ubiquitin-protein ligase. J Virol 2000;74:6408-6417.PubMedCentralPubMedCrossRef
56.
Zurück zum Zitat Huang L, Kinnucan E, Wang G, et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 1999;286:1321-1326.PubMedCrossRef Huang L, Kinnucan E, Wang G, et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 1999;286:1321-1326.PubMedCrossRef
57.
Zurück zum Zitat Oda H, Kumar S, Howley PM. Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination. Proc Natl Acad Sci U S A 1999;96:9557-9562.PubMedCentralPubMedCrossRef Oda H, Kumar S, Howley PM. Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination. Proc Natl Acad Sci U S A 1999;96:9557-9562.PubMedCentralPubMedCrossRef
58.
Zurück zum Zitat Talis AL, Huibregtse JM, Howley PM. The role of E6AP in the regulation of p53 protein levels in human papillomavirus (HPV)-positive and HPV-negative cells. J Biol Chem 1998;273:6439-6445.PubMedCrossRef Talis AL, Huibregtse JM, Howley PM. The role of E6AP in the regulation of p53 protein levels in human papillomavirus (HPV)-positive and HPV-negative cells. J Biol Chem 1998;273:6439-6445.PubMedCrossRef
59.
Zurück zum Zitat Matentzoglu K, Scheffner M. Ubiquitin ligase E6-AP and its role in human disease. Biochem Soc Trans 2008;36:797-801.PubMedCrossRef Matentzoglu K, Scheffner M. Ubiquitin ligase E6-AP and its role in human disease. Biochem Soc Trans 2008;36:797-801.PubMedCrossRef
60.
Zurück zum Zitat Cooper EM, Hudson AW, Amos J, Wagstaff J, Howley PM. Biochemical analysis of Angelman syndrome-associated mutations in the E3 ubiquitin ligase E6-associated protein. J Biol Chem 2004;279:41208-41217.PubMedCrossRef Cooper EM, Hudson AW, Amos J, Wagstaff J, Howley PM. Biochemical analysis of Angelman syndrome-associated mutations in the E3 ubiquitin ligase E6-associated protein. J Biol Chem 2004;279:41208-41217.PubMedCrossRef
61.
Zurück zum Zitat Margolis SS, Salogiannis J, Lipton DM, et al. EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell 2010;143:442-455.PubMedCentralPubMedCrossRef Margolis SS, Salogiannis J, Lipton DM, et al. EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell 2010;143:442-455.PubMedCentralPubMedCrossRef
62.
Zurück zum Zitat Greer PL, Hanayama R, Bloodgood BL, et al. The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 2010;140:704-716.PubMedCentralPubMedCrossRef Greer PL, Hanayama R, Bloodgood BL, et al. The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 2010;140:704-716.PubMedCentralPubMedCrossRef
64.
Zurück zum Zitat Jensen L, Farook MF, Reiter LT. Proteomic profiling in Drosophila reveals potential Dube3a regulation of the actin cytoskeleton and neuronal homeostasis. PLoS One 2013;8:e61952.PubMedCentralPubMedCrossRef Jensen L, Farook MF, Reiter LT. Proteomic profiling in Drosophila reveals potential Dube3a regulation of the actin cytoskeleton and neuronal homeostasis. PLoS One 2013;8:e61952.PubMedCentralPubMedCrossRef
66.
Zurück zum Zitat Thibert RL, Larson AM, Hsieh DT, Raby AR, Thiele EA. Neurologic manifestations of Angelman syndrome. Pediatr Neurol 2013;48:271-279.PubMedCrossRef Thibert RL, Larson AM, Hsieh DT, Raby AR, Thiele EA. Neurologic manifestations of Angelman syndrome. Pediatr Neurol 2013;48:271-279.PubMedCrossRef
67.
Zurück zum Zitat Thibert RL, Conant KD, Braun EK, et al. Epilepsy in Angelman syndrome: a questionnaire-based assessment of the natural history and current treatment options. Epilepsia 2009;50:2369-2376.PubMedCrossRef Thibert RL, Conant KD, Braun EK, et al. Epilepsy in Angelman syndrome: a questionnaire-based assessment of the natural history and current treatment options. Epilepsia 2009;50:2369-2376.PubMedCrossRef
68.
Zurück zum Zitat Bird LM, Tan WH, Bacino CA, et al. A therapeutic trial of pro-methylation dietary supplements in Angelman syndrome. Am J Med Genet A 2011;155A:2956-2963.PubMedCrossRef Bird LM, Tan WH, Bacino CA, et al. A therapeutic trial of pro-methylation dietary supplements in Angelman syndrome. Am J Med Genet A 2011;155A:2956-2963.PubMedCrossRef
69.
Zurück zum Zitat Peters SU, Bird LM, Kimonis V, et al. Double-blind therapeutic trial in Angelman syndrome using betaine and folic acid. Am J Med Genet A 2010;152A:1994-2001.PubMedCentralPubMedCrossRef Peters SU, Bird LM, Kimonis V, et al. Double-blind therapeutic trial in Angelman syndrome using betaine and folic acid. Am J Med Genet A 2010;152A:1994-2001.PubMedCentralPubMedCrossRef
70.
Zurück zum Zitat Picconi B, Centonze D, Rossi S, Bernardi G, Calabresi P. Therapeutic doses of L-dopa reverse hypersensitivity of corticostriatal D2-dopamine receptors and glutamatergic overactivity in experimental parkinsonism. Brain 2004;127:1661-1669.PubMedCrossRef Picconi B, Centonze D, Rossi S, Bernardi G, Calabresi P. Therapeutic doses of L-dopa reverse hypersensitivity of corticostriatal D2-dopamine receptors and glutamatergic overactivity in experimental parkinsonism. Brain 2004;127:1661-1669.PubMedCrossRef
71.
Zurück zum Zitat Brown AM, Deutch AY, Colbran RJ. Dopamine depletion alters phosphorylation of striatal proteins in a model of Parkinsonism. Eur J Neurosci 2005;22:247-256.PubMedCrossRef Brown AM, Deutch AY, Colbran RJ. Dopamine depletion alters phosphorylation of striatal proteins in a model of Parkinsonism. Eur J Neurosci 2005;22:247-256.PubMedCrossRef
72.
Zurück zum Zitat Harbord M. Levodopa responsive Parkinsonism in adults with Angelman Syndrome. J Clin Neurosci 2001;8:421-422.PubMedCrossRef Harbord M. Levodopa responsive Parkinsonism in adults with Angelman Syndrome. J Clin Neurosci 2001;8:421-422.PubMedCrossRef
73.
Zurück zum Zitat Grieco JC, Ciarlone SL, Gieron-Korthals M, et al. An open-label pilot trial of minocycline in children as a treatment for Angelman syndrome. BMC Neurol 2014;14:232.PubMedCentralPubMedCrossRef Grieco JC, Ciarlone SL, Gieron-Korthals M, et al. An open-label pilot trial of minocycline in children as a treatment for Angelman syndrome. BMC Neurol 2014;14:232.PubMedCentralPubMedCrossRef
74.
Zurück zum Zitat Huang HS, Allen JA, Mabb AM, et al. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature 2012;481:185-189.CrossRef Huang HS, Allen JA, Mabb AM, et al. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature 2012;481:185-189.CrossRef
75.
Zurück zum Zitat Meng L, Ward AJ, Chun S, Bennett CF, Beaudet AL, Rigo F. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 2015;518:409-412.PubMedCrossRef Meng L, Ward AJ, Chun S, Bennett CF, Beaudet AL, Rigo F. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 2015;518:409-412.PubMedCrossRef
77.
Zurück zum Zitat Powell WT, Coulson RL, Gonzales ML, et al. R-loop formation at Snord116 mediates topotecan inhibition of Ube3a-antisense and allele-specific chromatin decondensation. Proc Natl Acad Sci U S A 2013;110:13938-13943.PubMedCentralPubMedCrossRef Powell WT, Coulson RL, Gonzales ML, et al. R-loop formation at Snord116 mediates topotecan inhibition of Ube3a-antisense and allele-specific chromatin decondensation. Proc Natl Acad Sci U S A 2013;110:13938-13943.PubMedCentralPubMedCrossRef
78.
Zurück zum Zitat Mandel-Brehm C, Salogiannis J, Dhamne SC, Rotenberg A, Greenberg ME. Seizure-like activity in a juvenile Angelman syndrome mouse model is attenuated by reducing Arc expression. Proc Natl Acad Sci U S A 2015;112(16):5129-5134. Mandel-Brehm C, Salogiannis J, Dhamne SC, Rotenberg A, Greenberg ME. Seizure-like activity in a juvenile Angelman syndrome mouse model is attenuated by reducing Arc expression. Proc Natl Acad Sci U S A 2015;112(16):5129-5134.
Metadaten
Titel
Angelman Syndrome
verfasst von
Seth S. Margolis
Gabrielle L. Sell
Mark A. Zbinden
Lynne M. Bird
Publikationsdatum
01.07.2015
Verlag
Springer US
Erschienen in
Neurotherapeutics / Ausgabe 3/2015
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-015-0361-y

Weitere Artikel der Ausgabe 3/2015

Neurotherapeutics 3/2015 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Neu im Fachgebiet Neurologie

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.