Skip to main content
Erschienen in: Neurotherapeutics 1/2017

01.01.2017 | Review

Transcranial Magnetic Stimulation for the Assessment of Neurodegenerative Disease

verfasst von: Steve Vucic, Matthew C. Kiernan

Erschienen in: Neurotherapeutics | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

Transcranial magnetic stimulation (TMS) is a noninvasive technique that has provided important information about cortical function across an array of neurodegenerative disorders, including Alzheimer’s disease, frontotemporal dementia, Parkinson’s disease, and related extrapyramidal disorders. Application of TMS techniques in neurodegenerative diseases has provided important pathophysiological insights, leading to the development of pathogenic and diagnostic biomarkers that could be used in the clinical setting and therapeutic trials. Abnormalities of TMS outcome measures heralding cortical hyperexcitability, as evidenced by a reduction of short-interval intracortical inhibition and increased in motor-evoked potential amplitude, have been consistently identified as early and intrinsic features of amyotrophic lateral sclerosis (ALS), preceding and correlating with the ensuing neurodegeneration. Cortical hyperexcitability appears to form the pathogenic basis of ALS, mediated by trans-synaptic glutamate-mediated excitotoxic mechanisms. As a consequence of these research findings, TMS has been developed as a potential diagnostic biomarker, capable of identifying upper motor neuronal pathology, at earlier stages of the disease process, and thereby aiding in ALS diagnosis. Of further relevance, marked TMS abnormalities have been reported in other neurodegenerative diseases, which have varied from findings in ALS. With time and greater utilization by clinicians, TMS outcome measures may prove to be of utility in future therapeutic trial settings across the neurodegenerative disease spectrum, including the monitoring of neuroprotective, stem-cell, and genetic-based strategies, thereby enabling assessment of biological effectiveness at early stages of drug development.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Barker AT, Jalinous R, Freeston IL. (1985). Non-invasive magnetic stimulation of human motor cortex. Lancet 1, 1106-1107.PubMedCrossRef Barker AT, Jalinous R, Freeston IL. (1985). Non-invasive magnetic stimulation of human motor cortex. Lancet 1, 1106-1107.PubMedCrossRef
2.
Zurück zum Zitat Chen R, Cros D, Curra A, et al. (2008). The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 119, 504-532.PubMedCrossRef Chen R, Cros D, Curra A, et al. (2008). The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 119, 504-532.PubMedCrossRef
3.
Zurück zum Zitat Rossini PM, Burke D, Chen R, et al. (2015). Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126, 1071-1107.PubMedCrossRef Rossini PM, Burke D, Chen R, et al. (2015). Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126, 1071-1107.PubMedCrossRef
4.
Zurück zum Zitat Di Lazzaro V, Ziemann U, Lemon RN. (2008). State of the art: physiology of transcranial motor cortex stimulation. Brain Stimul 1, 345-362.PubMedCrossRef Di Lazzaro V, Ziemann U, Lemon RN. (2008). State of the art: physiology of transcranial motor cortex stimulation. Brain Stimul 1, 345-362.PubMedCrossRef
5.
Zurück zum Zitat Menon P, Geevasinga N, Yiannikas C, Howells J, Kiernan MC, Vucic S. (2015). Sensitivity and specificity of threshold tracking transcranial magnetic stimulation for diagnosis of amyotrophic lateral sclerosis: a prospective study. Lancet Neurol 14, 478-484.PubMedCrossRef Menon P, Geevasinga N, Yiannikas C, Howells J, Kiernan MC, Vucic S. (2015). Sensitivity and specificity of threshold tracking transcranial magnetic stimulation for diagnosis of amyotrophic lateral sclerosis: a prospective study. Lancet Neurol 14, 478-484.PubMedCrossRef
6.
Zurück zum Zitat Cantone M, Di Pino G, Capone F, et al. (2014). The contribution of transcranial magnetic stimulation in the diagnosis and in the management of dementia. Clin Neurophysiol 125, 1509-1532.PubMedCrossRef Cantone M, Di Pino G, Capone F, et al. (2014). The contribution of transcranial magnetic stimulation in the diagnosis and in the management of dementia. Clin Neurophysiol 125, 1509-1532.PubMedCrossRef
7.
Zurück zum Zitat Rossini PM, Barker AT, Berardelli A, et al. (1994). Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91, 79-92.PubMedCrossRef Rossini PM, Barker AT, Berardelli A, et al. (1994). Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91, 79-92.PubMedCrossRef
8.
Zurück zum Zitat Abdeen MA, Stuchly MA. (1994). Modeling of magnetic field stimulation of bent neurons. IEEE Trans Biomed Eng 41, 1092-1095.PubMedCrossRef Abdeen MA, Stuchly MA. (1994). Modeling of magnetic field stimulation of bent neurons. IEEE Trans Biomed Eng 41, 1092-1095.PubMedCrossRef
9.
Zurück zum Zitat Mills K. Magnetic stimulation and central conduction time. Amsterdam: Elsevier B.V.; 2004.CrossRef Mills K. Magnetic stimulation and central conduction time. Amsterdam: Elsevier B.V.; 2004.CrossRef
10.
Zurück zum Zitat Vucic S, Ziemann U, Eisen A, Hallett M, Kiernan MC. (2013). Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights. J Neurol Neurosurg Psychiatry 84, 1161-1170.PubMedCrossRef Vucic S, Ziemann U, Eisen A, Hallett M, Kiernan MC. (2013). Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights. J Neurol Neurosurg Psychiatry 84, 1161-1170.PubMedCrossRef
11.
Zurück zum Zitat Rudiak D, Marg E. (1994). Finding the depth of magnetic brain stimulation: a re-evaluation. Electroencephalogr Clin Neurophysiol 93, 358-371.PubMedCrossRef Rudiak D, Marg E. (1994). Finding the depth of magnetic brain stimulation: a re-evaluation. Electroencephalogr Clin Neurophysiol 93, 358-371.PubMedCrossRef
12.
Zurück zum Zitat Patton HD, Amassian VE. (1954). Single and multiple-unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol 17, 345-363.PubMed Patton HD, Amassian VE. (1954). Single and multiple-unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol 17, 345-363.PubMed
13.
Zurück zum Zitat Kaneko K, Fuchigami Y, Morita H, Ofuji A, Kawai S. (1997). Effect of coil position and stimulus intensity in transcranial magnetic stimulation on human brain. J Neurol Sci 147, 155-159.PubMedCrossRef Kaneko K, Fuchigami Y, Morita H, Ofuji A, Kawai S. (1997). Effect of coil position and stimulus intensity in transcranial magnetic stimulation on human brain. J Neurol Sci 147, 155-159.PubMedCrossRef
14.
Zurück zum Zitat Di Lazzaro V, Oliviero A, Profice P, et al. (1998). Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalogr Clin Neurophysiol 109, 397-401.PubMedCrossRef Di Lazzaro V, Oliviero A, Profice P, et al. (1998). Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalogr Clin Neurophysiol 109, 397-401.PubMedCrossRef
15.
Zurück zum Zitat Di Lazzaro V, Profice P, Ranieri F, et al. (2012). I-wave origin and modulation. Brain Stim 5, 512-525.CrossRef Di Lazzaro V, Profice P, Ranieri F, et al. (2012). I-wave origin and modulation. Brain Stim 5, 512-525.CrossRef
16.
Zurück zum Zitat Amassian VE, Stewart M, Quirk GJ, Rosenthal JL. (1987). Physiological basis of motor effects of a transient stimulus to cerebral cortex. Neurosurgery 20, 74-93.PubMed Amassian VE, Stewart M, Quirk GJ, Rosenthal JL. (1987). Physiological basis of motor effects of a transient stimulus to cerebral cortex. Neurosurgery 20, 74-93.PubMed
17.
Zurück zum Zitat Day BL, Dressler D, Maertens de Noordhout A, et al. (1989). Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol (Lond) 412, 449-473.CrossRef Day BL, Dressler D, Maertens de Noordhout A, et al. (1989). Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol (Lond) 412, 449-473.CrossRef
18.
19.
Zurück zum Zitat Rusu CV, Murakami M, Ziemann U, Triesch J. (2014). A model of TMS-induced I-waves in motor cortex. Brain Stimul 7, 401-414.PubMedCrossRef Rusu CV, Murakami M, Ziemann U, Triesch J. (2014). A model of TMS-induced I-waves in motor cortex. Brain Stimul 7, 401-414.PubMedCrossRef
20.
Zurück zum Zitat Werhahn KJ, Fong JK, Meyer BU, et al. (1994). The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseous muscle. Electroencephalogr Clin Neurophysiol 93, 138-146.PubMedCrossRef Werhahn KJ, Fong JK, Meyer BU, et al. (1994). The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseous muscle. Electroencephalogr Clin Neurophysiol 93, 138-146.PubMedCrossRef
21.
Zurück zum Zitat Kaneko K, Kawai S, Fuchigami Y, Morita H, Ofuji A. (1996). The effect of current direction induced by transcranial magnetic stimulation on the corticospinal excitability in human brain. Electroencephalogr Clin Neurophysiol 101, 478-482.PubMed Kaneko K, Kawai S, Fuchigami Y, Morita H, Ofuji A. (1996). The effect of current direction induced by transcranial magnetic stimulation on the corticospinal excitability in human brain. Electroencephalogr Clin Neurophysiol 101, 478-482.PubMed
22.
Zurück zum Zitat Sakai K, Ugawa Y, Terao Y, Hanajima R, Furubayashi T, Kanazawa I. (1997). Preferential activation of different I waves by transcranial magnetic stimulation with a figure-of-eight-shaped coil. Exp Brain Res 113, 24-32.PubMedCrossRef Sakai K, Ugawa Y, Terao Y, Hanajima R, Furubayashi T, Kanazawa I. (1997). Preferential activation of different I waves by transcranial magnetic stimulation with a figure-of-eight-shaped coil. Exp Brain Res 113, 24-32.PubMedCrossRef
23.
Zurück zum Zitat Di Lazzaro V, Oliviero A, Mazzone P, et al. (2003). Generation of I waves in the human: spinal recordings. Suppl Clin Neurophysiol 56, 143-152.PubMedCrossRef Di Lazzaro V, Oliviero A, Mazzone P, et al. (2003). Generation of I waves in the human: spinal recordings. Suppl Clin Neurophysiol 56, 143-152.PubMedCrossRef
24.
Zurück zum Zitat Di Lazzaro V, Oliviero A, Pilato F, et al. (2003). Corticospinal volleys evoked by transcranial stimulation of the brain in conscious humans. Neurol Res 25, 143-150.PubMedCrossRef Di Lazzaro V, Oliviero A, Pilato F, et al. (2003). Corticospinal volleys evoked by transcranial stimulation of the brain in conscious humans. Neurol Res 25, 143-150.PubMedCrossRef
25.
Zurück zum Zitat Rossini PM, Berardelli A, Deuschl G, et al. (1999). Applications of magnetic cortical stimulation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52, 171-185.PubMed Rossini PM, Berardelli A, Deuschl G, et al. (1999). Applications of magnetic cortical stimulation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52, 171-185.PubMed
26.
Zurück zum Zitat Fisher RJ, Nakamura Y, Bestmann S, Rothwell JC, Bostock H. (2002). Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Exp Brain Res 143, 240-248.PubMedCrossRef Fisher RJ, Nakamura Y, Bestmann S, Rothwell JC, Bostock H. (2002). Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Exp Brain Res 143, 240-248.PubMedCrossRef
27.
Zurück zum Zitat Vucic S, Howells J, Trevillion L, Kiernan MC. (2006). Assessment of cortical excitability using threshold tracking techniques. Muscle Nerve 33, 477-486.PubMedCrossRef Vucic S, Howells J, Trevillion L, Kiernan MC. (2006). Assessment of cortical excitability using threshold tracking techniques. Muscle Nerve 33, 477-486.PubMedCrossRef
28.
Zurück zum Zitat Brouwer B, Ashby P. (1990). Corticospinal projections to upper and lower limb spinal motoneurons in man. Electroencephalogr Clin Neurophysiol 76, 509-519.PubMedCrossRef Brouwer B, Ashby P. (1990). Corticospinal projections to upper and lower limb spinal motoneurons in man. Electroencephalogr Clin Neurophysiol 76, 509-519.PubMedCrossRef
29.
Zurück zum Zitat Chen R, Tam A, Butefisch C, et al. (1998). Intracortical inhibition and facilitation in different representations of the human motor cortex. J Neurophysiol 80, 2870-2881.PubMed Chen R, Tam A, Butefisch C, et al. (1998). Intracortical inhibition and facilitation in different representations of the human motor cortex. J Neurophysiol 80, 2870-2881.PubMed
30.
Zurück zum Zitat Macdonell RA, Shapiro BE, Chiappa KH, et al. (1991). Hemispheric threshold differences for motor evoked potentials produced by magnetic coil stimulation. Neurology 41, 1441-1444.PubMedCrossRef Macdonell RA, Shapiro BE, Chiappa KH, et al. (1991). Hemispheric threshold differences for motor evoked potentials produced by magnetic coil stimulation. Neurology 41, 1441-1444.PubMedCrossRef
31.
Zurück zum Zitat Epstein CM, Schwartzberg DG, Davey KR, Sudderth DB. (1990). Localizing the site of magnetic brain stimulation in humans. Neurology 40, 666-670.PubMedCrossRef Epstein CM, Schwartzberg DG, Davey KR, Sudderth DB. (1990). Localizing the site of magnetic brain stimulation in humans. Neurology 40, 666-670.PubMedCrossRef
32.
Zurück zum Zitat Ziemann U. (2004). TMS and drugs. Clin Neurophysiol 1717-1729. Ziemann U. (2004). TMS and drugs. Clin Neurophysiol 1717-1729.
33.
Zurück zum Zitat Di Lazzaro V, Oliviero A, Profice P, et al. (2003). Ketamine increases human motor cortex excitability to transcranial magnetic stimulation. J Physiol 547, 485-496.PubMedPubMedCentralCrossRef Di Lazzaro V, Oliviero A, Profice P, et al. (2003). Ketamine increases human motor cortex excitability to transcranial magnetic stimulation. J Physiol 547, 485-496.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Mavroudakis N, Caroyer JM, Brunko E, Zegers de Beyl D. (1994). Effects of diphenylhydantoin on motor potentials evoked with magnetic stimulation. Electroencephalogr Clin Neurophysiol 93, 428-433.PubMedCrossRef Mavroudakis N, Caroyer JM, Brunko E, Zegers de Beyl D. (1994). Effects of diphenylhydantoin on motor potentials evoked with magnetic stimulation. Electroencephalogr Clin Neurophysiol 93, 428-433.PubMedCrossRef
35.
Zurück zum Zitat Boroojerdi B, Battaglia F, Muellbacher W, Cohen LG. (2001). Mechanisms influencing stimulus-response properties of the human corticospinal system. Clin Neurophysiol 112, 931-937.PubMedCrossRef Boroojerdi B, Battaglia F, Muellbacher W, Cohen LG. (2001). Mechanisms influencing stimulus-response properties of the human corticospinal system. Clin Neurophysiol 112, 931-937.PubMedCrossRef
36.
Zurück zum Zitat Di Lazzaro V, Restuccia D, Oliviero A, et al. (1998). Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp Brain Res 119, 265-268.PubMedCrossRef Di Lazzaro V, Restuccia D, Oliviero A, et al. (1998). Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp Brain Res 119, 265-268.PubMedCrossRef
37.
Zurück zum Zitat Ziemann U. Cortical threshold and excitability measurements. In: Eisen A, ed. Clinical Neurophysiology of Motor Neuron Diseases Handbook of Clinical Neurophysiology. Amsterdam: Elsevier; 2004:317-335.CrossRef Ziemann U. Cortical threshold and excitability measurements. In: Eisen A, ed. Clinical Neurophysiology of Motor Neuron Diseases Handbook of Clinical Neurophysiology. Amsterdam: Elsevier; 2004:317-335.CrossRef
38.
Zurück zum Zitat Devanne H, Lavoie BA, Capaday C. (1997). Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114, 329-338.PubMedCrossRef Devanne H, Lavoie BA, Capaday C. (1997). Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114, 329-338.PubMedCrossRef
39.
Zurück zum Zitat Hess CW, Mills KR, Murray NM, Schriefer TN. (1987). Magnetic brain stimulation: central motor conduction studies in multiple sclerosis. Ann Neurol 22, 744-752.PubMedCrossRef Hess CW, Mills KR, Murray NM, Schriefer TN. (1987). Magnetic brain stimulation: central motor conduction studies in multiple sclerosis. Ann Neurol 22, 744-752.PubMedCrossRef
40.
Zurück zum Zitat Paulus W, Classen J, Cohen LG, et al. (2008). State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimul 1, 151-163.PubMedCrossRef Paulus W, Classen J, Cohen LG, et al. (2008). State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimul 1, 151-163.PubMedCrossRef
41.
42.
Zurück zum Zitat Claus D. (1990). Central motor conduction: method and normal results. Muscle Nerve 13, 1125-1132.PubMedCrossRef Claus D. (1990). Central motor conduction: method and normal results. Muscle Nerve 13, 1125-1132.PubMedCrossRef
43.
Zurück zum Zitat Mills KR, Murray NM. (1986). Electrical stimulation over the human vertebral column: which neural elements are excited? Electroencephalogr Clin Neurophysiol 63, 582-589.PubMedCrossRef Mills KR, Murray NM. (1986). Electrical stimulation over the human vertebral column: which neural elements are excited? Electroencephalogr Clin Neurophysiol 63, 582-589.PubMedCrossRef
44.
Zurück zum Zitat Vucic S, Cairns KD, Black KR, Chong PS, Cros D. (2006). Cervical nerve root stimulation. Part I: technical aspects and normal data. Clin Neurophysiol 117, 392-397.PubMedCrossRef Vucic S, Cairns KD, Black KR, Chong PS, Cros D. (2006). Cervical nerve root stimulation. Part I: technical aspects and normal data. Clin Neurophysiol 117, 392-397.PubMedCrossRef
45.
Zurück zum Zitat Cros D, Chiappa KH, Gominak S, et al. (1990). Cervical magnetic stimulation. Neurology 40, 1751-1756.PubMedCrossRef Cros D, Chiappa KH, Gominak S, et al. (1990). Cervical magnetic stimulation. Neurology 40, 1751-1756.PubMedCrossRef
46.
Zurück zum Zitat Cantello R, Gianelli M, Civardi C, Mutani R. (1992). Magnetic brain stimulation: the silent period after the motor evoked potential. Neurology 42, 1951-1959.PubMedCrossRef Cantello R, Gianelli M, Civardi C, Mutani R. (1992). Magnetic brain stimulation: the silent period after the motor evoked potential. Neurology 42, 1951-1959.PubMedCrossRef
47.
Zurück zum Zitat Inghilleri M, Berardelli A, Cruccu G, Manfredi M. (1993). Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol (Lond) 466, 521-534. Inghilleri M, Berardelli A, Cruccu G, Manfredi M. (1993). Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol (Lond) 466, 521-534.
48.
Zurück zum Zitat Triggs WJ, Kiers L, Cros D, Fang J, Chiappa KH. (1993). Facilitation of magnetic motor evoked potentials during the cortical stimulation silent period. Neurology 43, 2615-2620.PubMedCrossRef Triggs WJ, Kiers L, Cros D, Fang J, Chiappa KH. (1993). Facilitation of magnetic motor evoked potentials during the cortical stimulation silent period. Neurology 43, 2615-2620.PubMedCrossRef
49.
Zurück zum Zitat Wassermann EM, Pascual-Leone A, Valls-Sole J, Toro C, Cohen LG, Hallett M. (1993). Topography of the inhibitory and excitatory responses to transcranial magnetic stimulation in a hand muscle. Electroencephalogr Clin Neurophysiol 89, 424-433.PubMedCrossRef Wassermann EM, Pascual-Leone A, Valls-Sole J, Toro C, Cohen LG, Hallett M. (1993). Topography of the inhibitory and excitatory responses to transcranial magnetic stimulation in a hand muscle. Electroencephalogr Clin Neurophysiol 89, 424-433.PubMedCrossRef
50.
Zurück zum Zitat Avoli M, Hwa G, Louvel J, Kurcewicz I, Pumain R, Lacaille JC. (1997). Functional and pharmacological properties of GABA-mediated inhibition in the human neocortex. Can J Physiol Pharmacol 75, 526-534.PubMedCrossRef Avoli M, Hwa G, Louvel J, Kurcewicz I, Pumain R, Lacaille JC. (1997). Functional and pharmacological properties of GABA-mediated inhibition in the human neocortex. Can J Physiol Pharmacol 75, 526-534.PubMedCrossRef
51.
Zurück zum Zitat Chen R, Lozano AM, Ashby P. (1999). Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp Brain Res 128, 539-542.PubMedCrossRef Chen R, Lozano AM, Ashby P. (1999). Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp Brain Res 128, 539-542.PubMedCrossRef
52.
Zurück zum Zitat Ziemann U, Netz J, Szelenyi A, Homberg V. (1993). Spinal and supraspinal mechanisms contribute to the silent period in the contracting soleus muscle after transcranial magnetic stimulation of human motor cortex. Neurosci Lett 156, 167-171.PubMedCrossRef Ziemann U, Netz J, Szelenyi A, Homberg V. (1993). Spinal and supraspinal mechanisms contribute to the silent period in the contracting soleus muscle after transcranial magnetic stimulation of human motor cortex. Neurosci Lett 156, 167-171.PubMedCrossRef
53.
Zurück zum Zitat Connors BW, Malenka RC, Silva LR. (1988). Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat. J Physiol 406, 443-468.PubMedPubMedCentralCrossRef Connors BW, Malenka RC, Silva LR. (1988). Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat. J Physiol 406, 443-468.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Siebner HR, Dressnandt J, Auer C, Conrad B. (1998). Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia. Muscle Nerve 21, 1209-1212.PubMedCrossRef Siebner HR, Dressnandt J, Auer C, Conrad B. (1998). Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia. Muscle Nerve 21, 1209-1212.PubMedCrossRef
55.
Zurück zum Zitat Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J. (1999). Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol (Lond) 517, 591-597.CrossRef Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J. (1999). Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol (Lond) 517, 591-597.CrossRef
56.
Zurück zum Zitat Meyer BU, Roricht S, Grafin von Einsiedel H, Kruggel F, Weindl A. (1995). Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain 118, 429-440.PubMedCrossRef Meyer BU, Roricht S, Grafin von Einsiedel H, Kruggel F, Weindl A. (1995). Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain 118, 429-440.PubMedCrossRef
57.
Zurück zum Zitat Wahl M, Hubers A, Lauterbach-Soon B, et al. (2011). Motor callosal disconnection in early relapsing-remitting multiple sclerosis. Hum Brain Mapp 32, 846-855.PubMedCrossRef Wahl M, Hubers A, Lauterbach-Soon B, et al. (2011). Motor callosal disconnection in early relapsing-remitting multiple sclerosis. Hum Brain Mapp 32, 846-855.PubMedCrossRef
58.
Zurück zum Zitat Compta Y, Valls-Sole J, Valldeoriola F, Kumru H, Rumia J. (2006). The silent period of the thenar muscles to contralateral and ipsilateral deep brain stimulation. Clin Neurophysiol 117, 2512-2520.PubMedCrossRef Compta Y, Valls-Sole J, Valldeoriola F, Kumru H, Rumia J. (2006). The silent period of the thenar muscles to contralateral and ipsilateral deep brain stimulation. Clin Neurophysiol 117, 2512-2520.PubMedCrossRef
59.
Zurück zum Zitat Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD. (1992). Interhemispheric inhibition of the human motor cortex. J Physiol 453, 525-546.PubMedPubMedCentralCrossRef Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD. (1992). Interhemispheric inhibition of the human motor cortex. J Physiol 453, 525-546.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Ni Z, Gunraj C, Nelson AJ, et al. (2009). Two phases of interhemispheric inhibition between motor related cortical areas and the primary motor cortex in human. Cereb Cortex 19, 1654-1665.PubMedCrossRef Ni Z, Gunraj C, Nelson AJ, et al. (2009). Two phases of interhemispheric inhibition between motor related cortical areas and the primary motor cortex in human. Cereb Cortex 19, 1654-1665.PubMedCrossRef
61.
Zurück zum Zitat Irlbacher K, Brocke J, Mechow JV, Brandt SA. (2007). Effects of GABA(A) and GABA(B) agonists on interhemispheric inhibition in man. Clin Neurophysiol 118, 308-316.PubMedCrossRef Irlbacher K, Brocke J, Mechow JV, Brandt SA. (2007). Effects of GABA(A) and GABA(B) agonists on interhemispheric inhibition in man. Clin Neurophysiol 118, 308-316.PubMedCrossRef
62.
Zurück zum Zitat Kujirai T, Caramia MD, Rothwell JC, et al. (1993). Corticocortical inhibition in human motor cortex. J Physiol (Lond) 471, 501-519.CrossRef Kujirai T, Caramia MD, Rothwell JC, et al. (1993). Corticocortical inhibition in human motor cortex. J Physiol (Lond) 471, 501-519.CrossRef
63.
Zurück zum Zitat Nakamura H, Kitagawa H, Kawaguchi Y, Tsuji H. (1997). Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans. J Physiol (Lond) 498, 817-823.CrossRef Nakamura H, Kitagawa H, Kawaguchi Y, Tsuji H. (1997). Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans. J Physiol (Lond) 498, 817-823.CrossRef
64.
Zurück zum Zitat Ziemann U, Rothwell JC, Ridding MC. (1996). Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol (Lond) 496, 873-881.CrossRef Ziemann U, Rothwell JC, Ridding MC. (1996). Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol (Lond) 496, 873-881.CrossRef
65.
Zurück zum Zitat Hanajima R, Ugawa Y, Terao Y, et al. (1998). Paired-pulse magnetic stimulation of the human motor cortex: differences among I waves. J Physiol (Lond) 509, 607-618.CrossRef Hanajima R, Ugawa Y, Terao Y, et al. (1998). Paired-pulse magnetic stimulation of the human motor cortex: differences among I waves. J Physiol (Lond) 509, 607-618.CrossRef
66.
Zurück zum Zitat Kiers L, Cros D, Chiappa KH, Fang J. (1993). Variability of motor potentials evoked by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 89, 415-423.PubMedCrossRef Kiers L, Cros D, Chiappa KH, Fang J. (1993). Variability of motor potentials evoked by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 89, 415-423.PubMedCrossRef
67.
Zurück zum Zitat Awiszus F, Feistner H, Urbach D, Bostock H. (1999). Characterisation of paired-pulse transcranial magnetic stimulation conditions yielding intracortical inhibition or I-wave facilitation using a threshold-hunting paradigm. Exp Brain Res 129, 317-324.PubMedCrossRef Awiszus F, Feistner H, Urbach D, Bostock H. (1999). Characterisation of paired-pulse transcranial magnetic stimulation conditions yielding intracortical inhibition or I-wave facilitation using a threshold-hunting paradigm. Exp Brain Res 129, 317-324.PubMedCrossRef
68.
Zurück zum Zitat Vucic S, Cheah BC, Krishnan AV, Burke D, Kiernan MC. (2009). The effects of alterations in conditioning stimulus intensity on short interval intracortical inhibition. Brain Res 39-47. Vucic S, Cheah BC, Krishnan AV, Burke D, Kiernan MC. (2009). The effects of alterations in conditioning stimulus intensity on short interval intracortical inhibition. Brain Res 39-47.
69.
Zurück zum Zitat Vucic S, Cheah BC, Krishnan AV, Burke D, Kiernan MC. (2009). The effects of alterations in conditioning stimulus intensity on short interval intracortical inhibition. Brain Res 1273, 39-47.PubMedCrossRef Vucic S, Cheah BC, Krishnan AV, Burke D, Kiernan MC. (2009). The effects of alterations in conditioning stimulus intensity on short interval intracortical inhibition. Brain Res 1273, 39-47.PubMedCrossRef
70.
Zurück zum Zitat Di Lazzaro V, Oliviero A, Meglio M, et al. (2000). Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol 111, 794-799.PubMedCrossRef Di Lazzaro V, Oliviero A, Meglio M, et al. (2000). Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol 111, 794-799.PubMedCrossRef
71.
Zurück zum Zitat Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W. (1996). The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 127-135. Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W. (1996). The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 127-135.
72.
Zurück zum Zitat Ziemann U, Chen R, Cohen LG, Hallett M. (1998). Dextromethorphan decreases the excitability of the human motor cortex. Neurology 51, 1320-1324.PubMedCrossRef Ziemann U, Chen R, Cohen LG, Hallett M. (1998). Dextromethorphan decreases the excitability of the human motor cortex. Neurology 51, 1320-1324.PubMedCrossRef
73.
Zurück zum Zitat Ilic TV, Meintzschel F, Cleff U, Ruge D, Kessler KR, Ziemann U. (2002). Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. J Physiol (Lond) 545, 153-167.CrossRef Ilic TV, Meintzschel F, Cleff U, Ruge D, Kessler KR, Ziemann U. (2002). Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. J Physiol (Lond) 545, 153-167.CrossRef
74.
Zurück zum Zitat Di Lazzaro V, Pilato F, Dileone M, et al. (2006). GABAA receptor subtype specific enhancement of inhibition in human motor cortex. J Physiol 575, 721-726.PubMedPubMedCentralCrossRef Di Lazzaro V, Pilato F, Dileone M, et al. (2006). GABAA receptor subtype specific enhancement of inhibition in human motor cortex. J Physiol 575, 721-726.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Hanajima R, Furubayashi T, Iwata NK, et al. (2003). Further evidence to support different mechanisms underlying intracortical inhibition of the motor cortex. Exp Brain Res 151, 427-434.PubMedCrossRef Hanajima R, Furubayashi T, Iwata NK, et al. (2003). Further evidence to support different mechanisms underlying intracortical inhibition of the motor cortex. Exp Brain Res 151, 427-434.PubMedCrossRef
76.
Zurück zum Zitat Roshan L, Paradiso GO, Chen R. (2003). Two phases of short-interval intracortical inhibition. Exp Brain Res 151, 330-337.PubMedCrossRef Roshan L, Paradiso GO, Chen R. (2003). Two phases of short-interval intracortical inhibition. Exp Brain Res 151, 330-337.PubMedCrossRef
77.
78.
Zurück zum Zitat Tokimura H, Di Lazzaro V, Tokimura Y, et al. (2000). Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 523 Pt 2, 503-513.PubMedPubMedCentralCrossRef Tokimura H, Di Lazzaro V, Tokimura Y, et al. (2000). Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 523 Pt 2, 503-513.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Di Lazzaro V, Oliviero A, Profice P, et al. (2000). Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res 135, 455-461.PubMedCrossRef Di Lazzaro V, Oliviero A, Profice P, et al. (2000). Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res 135, 455-461.PubMedCrossRef
80.
Zurück zum Zitat Kiernan MC, Vucic S, Cheah BC, et al. (2011). Amyotrophic lateral sclerosis. Lancet 377, 942-955.PubMedCrossRef Kiernan MC, Vucic S, Cheah BC, et al. (2011). Amyotrophic lateral sclerosis. Lancet 377, 942-955.PubMedCrossRef
81.
Zurück zum Zitat Eisen A, Kim S, Pant B. (1992). Amyotrophic lateral sclerosis (ALS): a phylogenetic disease of the corticomotoneuron? Muscle Nerve 15, 219-224.PubMedCrossRef Eisen A, Kim S, Pant B. (1992). Amyotrophic lateral sclerosis (ALS): a phylogenetic disease of the corticomotoneuron? Muscle Nerve 15, 219-224.PubMedCrossRef
82.
Zurück zum Zitat Williamson TL, Cleveland DW. (1999). Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat Neurosci 2, 50-56.PubMedCrossRef Williamson TL, Cleveland DW. (1999). Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat Neurosci 2, 50-56.PubMedCrossRef
83.
Zurück zum Zitat Fischer LR, Culver DG, Tennant P, et al. (2004). Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185, 232-240.PubMedCrossRef Fischer LR, Culver DG, Tennant P, et al. (2004). Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185, 232-240.PubMedCrossRef
84.
Zurück zum Zitat Ravits J, Paul P, Jorg C. (2007). Focality of upper and lower motor neuron degeneration at the clinical onset of ALS. Neurology 68, 1571-1575.PubMedCrossRef Ravits J, Paul P, Jorg C. (2007). Focality of upper and lower motor neuron degeneration at the clinical onset of ALS. Neurology 68, 1571-1575.PubMedCrossRef
85.
Zurück zum Zitat Stefan K, Kunesch E, Benecke R, Classen J. (2001). Effects of riluzole on cortical excitability in patients with amyotrophic lateral sclerosis. Ann Neurol 49, 536-539.PubMedCrossRef Stefan K, Kunesch E, Benecke R, Classen J. (2001). Effects of riluzole on cortical excitability in patients with amyotrophic lateral sclerosis. Ann Neurol 49, 536-539.PubMedCrossRef
86.
Zurück zum Zitat Zanette G, Tamburin S, Manganotti P, Refatti N, Forgione A, Rizzuto N. (2002). Different mechanisms contribute to motor cortex hyperexcitability in amyotrophic lateral sclerosis. Clin Neurophysiol 113, 1688-1697.PubMedCrossRef Zanette G, Tamburin S, Manganotti P, Refatti N, Forgione A, Rizzuto N. (2002). Different mechanisms contribute to motor cortex hyperexcitability in amyotrophic lateral sclerosis. Clin Neurophysiol 113, 1688-1697.PubMedCrossRef
87.
Zurück zum Zitat Vucic S, Kiernan MC. (2006). Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain 129, 2436-2446.PubMedCrossRef Vucic S, Kiernan MC. (2006). Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain 129, 2436-2446.PubMedCrossRef
88.
Zurück zum Zitat Vucic S, Kiernan MC. (2008). Cortical excitability testing distinguishes Kennedy's disease from amyotrophic lateral sclerosis. Clin Neurophysiol 119, 1088-1096.PubMedCrossRef Vucic S, Kiernan MC. (2008). Cortical excitability testing distinguishes Kennedy's disease from amyotrophic lateral sclerosis. Clin Neurophysiol 119, 1088-1096.PubMedCrossRef
89.
Zurück zum Zitat Vucic S, Nicholson GA, Kiernan MC. (2008). Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain 131, 1540-1550.PubMedCrossRef Vucic S, Nicholson GA, Kiernan MC. (2008). Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain 131, 1540-1550.PubMedCrossRef
90.
Zurück zum Zitat Menon P, Kiernan MC, Vucic S. (2015). Cortical hyperexcitability precedes lower motor neuron dysfunction in ALS. Clin Neurophysiol 126, 803-809.PubMedCrossRef Menon P, Kiernan MC, Vucic S. (2015). Cortical hyperexcitability precedes lower motor neuron dysfunction in ALS. Clin Neurophysiol 126, 803-809.PubMedCrossRef
91.
Zurück zum Zitat Williams KL, Fifita JA, Vucic S, et al. (2013). Pathophysiological insights into ALS with C9ORF72 expansions. J Neurol Neurosurg Psychiatry 84:931-935.PubMedCrossRef Williams KL, Fifita JA, Vucic S, et al. (2013). Pathophysiological insights into ALS with C9ORF72 expansions. J Neurol Neurosurg Psychiatry 84:931-935.PubMedCrossRef
92.
Zurück zum Zitat Geevasinga N, Menon P, Nicholson GA, et al. (2015). Cortical Function in Asymptomatic Carriers and Patients With C9orf72 Amyotrophic Lateral Sclerosis. JAMA Neurol 72:1268-1274.PubMedPubMedCentralCrossRef Geevasinga N, Menon P, Nicholson GA, et al. (2015). Cortical Function in Asymptomatic Carriers and Patients With C9orf72 Amyotrophic Lateral Sclerosis. JAMA Neurol 72:1268-1274.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Vucic S, Kiernan MC. (2010). Upregulation of persistent sodium conductances in familial ALS. J Neurol Neurosurg Psychiatry 81, 222-227.PubMedCrossRef Vucic S, Kiernan MC. (2010). Upregulation of persistent sodium conductances in familial ALS. J Neurol Neurosurg Psychiatry 81, 222-227.PubMedCrossRef
94.
Zurück zum Zitat Nihei K, McKee AC, Kowall NW. (1993). Patterns of neuronal degeneration in the motor cortex of amyotrophic lateral sclerosis patients. Acta Neuropathol 86, 55-64.PubMedCrossRef Nihei K, McKee AC, Kowall NW. (1993). Patterns of neuronal degeneration in the motor cortex of amyotrophic lateral sclerosis patients. Acta Neuropathol 86, 55-64.PubMedCrossRef
95.
Zurück zum Zitat Zhang W, Zhang L, Liang B, et al. (2016). Hyperactive somatostatin interneurons contribute to excitotoxicity in neurodegenerative disorders. Nat Neurosci 19, 557-559.PubMedPubMedCentralCrossRef Zhang W, Zhang L, Liang B, et al. (2016). Hyperactive somatostatin interneurons contribute to excitotoxicity in neurodegenerative disorders. Nat Neurosci 19, 557-559.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Kimiskidis VK, Valentin A, Kalviainen R. (2014). Transcranial magnetic stimulation for the diagnosis and treatment of epilepsy. Curr Opin Neurol 27, 236-241.PubMedCrossRef Kimiskidis VK, Valentin A, Kalviainen R. (2014). Transcranial magnetic stimulation for the diagnosis and treatment of epilepsy. Curr Opin Neurol 27, 236-241.PubMedCrossRef
97.
Zurück zum Zitat Vucic S, Kiernan MC. (2007). Abnormalities in cortical and peripheral excitability in flail arm variant amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 78, 849-852.PubMedPubMedCentralCrossRef Vucic S, Kiernan MC. (2007). Abnormalities in cortical and peripheral excitability in flail arm variant amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 78, 849-852.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Menon P, Geevasinga N, Yiannikas C, Kiernan MC, Vucic S. (2016). Cortical contributions to the flail leg syndrome: Pathophysiological insights. Amyotroph Lateral Scler Frontotemporal Degener 17, 389-396.PubMedCrossRef Menon P, Geevasinga N, Yiannikas C, Kiernan MC, Vucic S. (2016). Cortical contributions to the flail leg syndrome: Pathophysiological insights. Amyotroph Lateral Scler Frontotemporal Degener 17, 389-396.PubMedCrossRef
99.
Zurück zum Zitat Geevasinga N, Menon P, Sue CM, et al. (2015). Cortical excitability changes distinguish the motor neuron disease phenotypes from hereditary spastic paraplegia. Eur J Neurol 22, 826-831.PubMedCrossRef Geevasinga N, Menon P, Sue CM, et al. (2015). Cortical excitability changes distinguish the motor neuron disease phenotypes from hereditary spastic paraplegia. Eur J Neurol 22, 826-831.PubMedCrossRef
100.
Zurück zum Zitat Vucic S, Cheah BC, Yiannikas C, Kiernan MC. (2011). Cortical excitability distinguishes ALS from mimic disorders. Clin Neurophysiol 122, 1860-1866.PubMedCrossRef Vucic S, Cheah BC, Yiannikas C, Kiernan MC. (2011). Cortical excitability distinguishes ALS from mimic disorders. Clin Neurophysiol 122, 1860-1866.PubMedCrossRef
101.
Zurück zum Zitat Vucic S, Lin CS-Y, Cheah BC, et al. (2013). Riluzole exerts central and peripheral modulating effects in amyotrophic lateral sclerosis. Brain 136, 1361-1370.PubMedCrossRef Vucic S, Lin CS-Y, Cheah BC, et al. (2013). Riluzole exerts central and peripheral modulating effects in amyotrophic lateral sclerosis. Brain 136, 1361-1370.PubMedCrossRef
102.
Zurück zum Zitat Wittstock M, Wolters A, Benecke R. (2007). Transcallosal inhibition in amyotrophic lateral sclerosis. Clin Neurophysiol 118, 301-307.PubMedCrossRef Wittstock M, Wolters A, Benecke R. (2007). Transcallosal inhibition in amyotrophic lateral sclerosis. Clin Neurophysiol 118, 301-307.PubMedCrossRef
103.
Zurück zum Zitat Karandreas N, Papadopoulou M, Kokotis P, Papapostolou A, Tsivgoulis G, Zambelis T. (2007). Impaired interhemispheric inhibition in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 8, 112-118.PubMedCrossRef Karandreas N, Papadopoulou M, Kokotis P, Papapostolou A, Tsivgoulis G, Zambelis T. (2007). Impaired interhemispheric inhibition in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 8, 112-118.PubMedCrossRef
104.
Zurück zum Zitat Devine MS, Kiernan MC, Heggie S, McCombe PA, Henderson RD. (2014). Study of motor asymmetry in ALS indicates an effect of limb dominance on onset and spread of weakness, and an important role for upper motor neurons. Amyotroph Lateral Scler Frontotemporal Degener 15, 481-487.PubMedCrossRef Devine MS, Kiernan MC, Heggie S, McCombe PA, Henderson RD. (2014). Study of motor asymmetry in ALS indicates an effect of limb dominance on onset and spread of weakness, and an important role for upper motor neurons. Amyotroph Lateral Scler Frontotemporal Degener 15, 481-487.PubMedCrossRef
105.
Zurück zum Zitat Wittstock M, Meister S, Walter U, Benecke R, Wolters A. (2011). Mirror movements in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 12, 393-397.PubMedCrossRef Wittstock M, Meister S, Walter U, Benecke R, Wolters A. (2011). Mirror movements in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 12, 393-397.PubMedCrossRef
106.
Zurück zum Zitat Caramia MD, Cicinelli P, Paradiso C, et al. (1991). 'Excitability changes of muscular responses to magnetic brain stimulation in patients with central motor disorders. Electroencephalogr Clin Neurophysiol 81, 243-250.PubMedCrossRef Caramia MD, Cicinelli P, Paradiso C, et al. (1991). 'Excitability changes of muscular responses to magnetic brain stimulation in patients with central motor disorders. Electroencephalogr Clin Neurophysiol 81, 243-250.PubMedCrossRef
107.
Zurück zum Zitat Kohara N, Kaji R, Kojima Y, et al. (1996). Abnormal excitability of the corticospinal pathway in patients with amyotrophic lateral sclerosis: a single motor unit study using transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 101, 32-41.PubMedCrossRef Kohara N, Kaji R, Kojima Y, et al. (1996). Abnormal excitability of the corticospinal pathway in patients with amyotrophic lateral sclerosis: a single motor unit study using transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 101, 32-41.PubMedCrossRef
108.
Zurück zum Zitat Mills KR, Nithi KA. (1997). Corticomotor threshold is reduced in early sporadic amyotrophic lateral sclerosis. Muscle Nerve 20, 1137-1141.PubMedCrossRef Mills KR, Nithi KA. (1997). Corticomotor threshold is reduced in early sporadic amyotrophic lateral sclerosis. Muscle Nerve 20, 1137-1141.PubMedCrossRef
109.
Zurück zum Zitat Eisen A, Weber M. (2001). The motor cortex and amyotrophic lateral sclerosis. Muscle Nerve 24, 564-573.PubMedCrossRef Eisen A, Weber M. (2001). The motor cortex and amyotrophic lateral sclerosis. Muscle Nerve 24, 564-573.PubMedCrossRef
110.
Zurück zum Zitat Vucic S, Nicholson GA, Kiernan MC. (2010). Cortical excitability in hereditary motor neuronopathy with pyramidal signs: comparison with ALS. J Neurol Neurosurg Psychiatry 81, 97-100.PubMedCrossRef Vucic S, Nicholson GA, Kiernan MC. (2010). Cortical excitability in hereditary motor neuronopathy with pyramidal signs: comparison with ALS. J Neurol Neurosurg Psychiatry 81, 97-100.PubMedCrossRef
111.
Zurück zum Zitat Vucic S, Cheah BC, Yiannikas C, Vincent A, Kiernan MC. (2010). Corticomotoneuronal function and hyperexcitability in acquired neuromyotonia. Brain 133, 2727-2733.PubMedPubMedCentralCrossRef Vucic S, Cheah BC, Yiannikas C, Vincent A, Kiernan MC. (2010). Corticomotoneuronal function and hyperexcitability in acquired neuromyotonia. Brain 133, 2727-2733.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Eisen A, Shytbel W, Murphy K, Hoirch M. (1990). Cortical magnetic stimulation in amyotrophic lateral sclerosis. Muscle Nerve 13, 146-151.PubMedCrossRef Eisen A, Shytbel W, Murphy K, Hoirch M. (1990). Cortical magnetic stimulation in amyotrophic lateral sclerosis. Muscle Nerve 13, 146-151.PubMedCrossRef
113.
Zurück zum Zitat Eisen A, Entezari-Taher M, Stewart H. (1996). Cortical projections to spinal motoneurons: changes with aging and amyotrophic lateral sclerosis. Neurology 46, 1396-1404.PubMedCrossRef Eisen A, Entezari-Taher M, Stewart H. (1996). Cortical projections to spinal motoneurons: changes with aging and amyotrophic lateral sclerosis. Neurology 46, 1396-1404.PubMedCrossRef
114.
Zurück zum Zitat Komissarow L, Rollnik JD, Bogdanova D, et al. (2004). Triple stimulation technique (TST) in amyotrophic lateral sclerosis. Clin Neurophysiol 115, 356-360.PubMedCrossRef Komissarow L, Rollnik JD, Bogdanova D, et al. (2004). Triple stimulation technique (TST) in amyotrophic lateral sclerosis. Clin Neurophysiol 115, 356-360.PubMedCrossRef
115.
Zurück zum Zitat Mills KR. (2003). The natural history of central motor abnormalities in amyotrophic lateral sclerosis. Brain 126, 2558-2566.PubMedCrossRef Mills KR. (2003). The natural history of central motor abnormalities in amyotrophic lateral sclerosis. Brain 126, 2558-2566.PubMedCrossRef
116.
Zurück zum Zitat Floyd AG, Yu QP, Piboolnurak P, et al. (2009). Transcranial magnetic stimulation in ALS: Utility of central motor conduction tests. Neurology 72, 498-504.PubMedPubMedCentralCrossRef Floyd AG, Yu QP, Piboolnurak P, et al. (2009). Transcranial magnetic stimulation in ALS: Utility of central motor conduction tests. Neurology 72, 498-504.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Turner MR, Osei-Lah AD, Hammers A, et al. (2005). Abnormal cortical excitability in sporadic but not homozygous D90A SOD1 ALS. J Neurol Neurosurg Psychiatry 76, 1279-1285.PubMedPubMedCentralCrossRef Turner MR, Osei-Lah AD, Hammers A, et al. (2005). Abnormal cortical excitability in sporadic but not homozygous D90A SOD1 ALS. J Neurol Neurosurg Psychiatry 76, 1279-1285.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Urban P, Wicht S, Hopf H. (2001). Sensitivity of transcranial magnetic stimulation of cortico-bulbar vs. cortico-spinal tract involvement in ALS. J Neurol 248, 850-855.PubMedCrossRef Urban P, Wicht S, Hopf H. (2001). Sensitivity of transcranial magnetic stimulation of cortico-bulbar vs. cortico-spinal tract involvement in ALS. J Neurol 248, 850-855.PubMedCrossRef
119.
Zurück zum Zitat Vucic S, Rothstein JD, Kiernan MC. (2014). Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies. Trends Neurosci 37, 433-442.PubMedCrossRef Vucic S, Rothstein JD, Kiernan MC. (2014). Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies. Trends Neurosci 37, 433-442.PubMedCrossRef
120.
Zurück zum Zitat Renton Alan E, Majounie E, Waite A, et al. (2011). A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron 72, 257-268.PubMedPubMedCentralCrossRef Renton Alan E, Majounie E, Waite A, et al. (2011). A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron 72, 257-268.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat DeJesus-Hernandez M, Mackenzie Ian R, Boeve Bradley F, et al. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of c9orf72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245-256.PubMedPubMedCentralCrossRef DeJesus-Hernandez M, Mackenzie Ian R, Boeve Bradley F, et al. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of c9orf72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245-256.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Majounie E, Renton AE, Mok K, et al. (2012). Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11, 323-330.PubMedPubMedCentralCrossRef Majounie E, Renton AE, Mok K, et al. (2012). Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11, 323-330.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Lillo P, Hodges JR. (2009). Frontotemporal dementia and motor neurone disease: overlapping clinic-pathological disorders. J Clin Neurosci 16, 1131-1135.PubMedCrossRef Lillo P, Hodges JR. (2009). Frontotemporal dementia and motor neurone disease: overlapping clinic-pathological disorders. J Clin Neurosci 16, 1131-1135.PubMedCrossRef
124.
Zurück zum Zitat Neumann M, Sampathu DM, Kwong LK, et al. (2006). Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130-133.PubMedCrossRef Neumann M, Sampathu DM, Kwong LK, et al. (2006). Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130-133.PubMedCrossRef
125.
Zurück zum Zitat Al-Sarraj S, King A, Troakes C, et al. (2011). P62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol 122, 691-702.PubMedCrossRef Al-Sarraj S, King A, Troakes C, et al. (2011). P62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol 122, 691-702.PubMedCrossRef
126.
Zurück zum Zitat Boillee S, Vande Velde C, Cleveland DW. (2006). ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52, 39-59.PubMedCrossRef Boillee S, Vande Velde C, Cleveland DW. (2006). ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52, 39-59.PubMedCrossRef
127.
Zurück zum Zitat Ionov ID. (2007). Survey of ALS-associated factors potentially promoting Ca(2+) overload of motor neurons. Amyotroph Lateral Scler 8, 260-265.PubMedCrossRef Ionov ID. (2007). Survey of ALS-associated factors potentially promoting Ca(2+) overload of motor neurons. Amyotroph Lateral Scler 8, 260-265.PubMedCrossRef
128.
Zurück zum Zitat Rothstein JD, Jin L, Dykes-Hoberg M, Kuncl RW. (1993). Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci U S A 90, 6591-6595.PubMedPubMedCentralCrossRef Rothstein JD, Jin L, Dykes-Hoberg M, Kuncl RW. (1993). Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci U S A 90, 6591-6595.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW. (1995). Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38, 73-84.PubMedCrossRef Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW. (1995). Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38, 73-84.PubMedCrossRef
130.
Zurück zum Zitat Trotti D, Rolfs A, Danbolt NC, Brown RH, Jr., Hediger MA. (1999). SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat Neurosci 2, 848.PubMedCrossRef Trotti D, Rolfs A, Danbolt NC, Brown RH, Jr., Hediger MA. (1999). SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat Neurosci 2, 848.PubMedCrossRef
131.
Zurück zum Zitat Boston-Howes W, Gibb SL, Williams EO, Pasinelli P, Brown RH, Jr., Trotti D. (2006). Caspase-3 cleaves and inactivates the glutamate transporter EAAT2. J Biol Chem 281, 14076-14084.PubMedCrossRef Boston-Howes W, Gibb SL, Williams EO, Pasinelli P, Brown RH, Jr., Trotti D. (2006). Caspase-3 cleaves and inactivates the glutamate transporter EAAT2. J Biol Chem 281, 14076-14084.PubMedCrossRef
132.
Zurück zum Zitat Gibb SL, Boston-Howes W, Lavina ZS, et al. (2007). A caspase-3-cleaved fragment of the glial glutamate transporter EAAT2 is sumoylated and targeted to promyelocytic leukemia nuclear bodies in mutant SOD1-linked amyotrophic lateral sclerosis. J Biol Chem 282, 32480-32490.PubMedCrossRef Gibb SL, Boston-Howes W, Lavina ZS, et al. (2007). A caspase-3-cleaved fragment of the glial glutamate transporter EAAT2 is sumoylated and targeted to promyelocytic leukemia nuclear bodies in mutant SOD1-linked amyotrophic lateral sclerosis. J Biol Chem 282, 32480-32490.PubMedCrossRef
133.
Zurück zum Zitat Rothstein JD, Patel S, Regan MR, et al. (2005). Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433, 73-77.PubMedCrossRef Rothstein JD, Patel S, Regan MR, et al. (2005). Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433, 73-77.PubMedCrossRef
134.
Zurück zum Zitat Pieri M, Carunchio I, Curcio L, Mercuri NB, Zona C. (2009). Increased persistent sodium current determines cortical hyperexcitability in a genetic model of amyotrophic lateral sclerosis. Exp Neurol 215, 368-379.PubMedCrossRef Pieri M, Carunchio I, Curcio L, Mercuri NB, Zona C. (2009). Increased persistent sodium current determines cortical hyperexcitability in a genetic model of amyotrophic lateral sclerosis. Exp Neurol 215, 368-379.PubMedCrossRef
135.
Zurück zum Zitat Saba L, Viscomi MT, Caioli S, et al. Altered functionality, morphology, and vesicular glutamate transporter expression of cortical motor neurons from a presymptomatic mouse model of amyotrophic lateral sclerosis. Cereb Cortex 2016;26:1512-1528.PubMedCrossRef Saba L, Viscomi MT, Caioli S, et al. Altered functionality, morphology, and vesicular glutamate transporter expression of cortical motor neurons from a presymptomatic mouse model of amyotrophic lateral sclerosis. Cereb Cortex 2016;26:1512-1528.PubMedCrossRef
136.
Zurück zum Zitat Jara JH, Villa SR, Khan NA, Bohn MC, Ozdinler PH. (2012). AAV2 mediated retrograde transduction of corticospinal motor neurons reveals initial and selective apical dendrite degeneration in ALS. Neurobiol Dis 47, 174-183.PubMedPubMedCentralCrossRef Jara JH, Villa SR, Khan NA, Bohn MC, Ozdinler PH. (2012). AAV2 mediated retrograde transduction of corticospinal motor neurons reveals initial and selective apical dendrite degeneration in ALS. Neurobiol Dis 47, 174-183.PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Kuo JJ, Siddique T, Fu R, Heckman CJ. (2005). Increased persistent Na(+) current and its effect on excitability in motoneurones cultured from mutant SOD1 mice. J Physiol (Lond) 563, 843-854.CrossRef Kuo JJ, Siddique T, Fu R, Heckman CJ. (2005). Increased persistent Na(+) current and its effect on excitability in motoneurones cultured from mutant SOD1 mice. J Physiol (Lond) 563, 843-854.CrossRef
138.
Zurück zum Zitat Ozdinler PH, Benn S, Yamamoto TH, Guzel M, Brown RH, Jr., Macklis JD. (2011). Corticospinal motor neurons and related subcerebral projection neurons undergo early and specific neurodegeneration in hSOD1G(9)(3)A transgenic ALS mice. J Neurosci 31, 4166-4177.PubMedPubMedCentralCrossRef Ozdinler PH, Benn S, Yamamoto TH, Guzel M, Brown RH, Jr., Macklis JD. (2011). Corticospinal motor neurons and related subcerebral projection neurons undergo early and specific neurodegeneration in hSOD1G(9)(3)A transgenic ALS mice. J Neurosci 31, 4166-4177.PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Wainger Brian J, Kiskinis E, Mellin C, et al. (2014). Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep 7, 1-11.PubMedPubMedCentralCrossRef Wainger Brian J, Kiskinis E, Mellin C, et al. (2014). Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep 7, 1-11.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Kwak S, Kawahara Y. (2005). Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis. J Mol Med 83, 110-120.PubMedCrossRef Kwak S, Kawahara Y. (2005). Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis. J Mol Med 83, 110-120.PubMedCrossRef
141.
Zurück zum Zitat Van Damme P, Braeken D, Callewaert G, Robberecht W, Van Den Bosch L. (2005). GluR2 deficiency accelerates motor neuron degeneration in a mouse model of amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 64, 605-612.PubMedCrossRef Van Damme P, Braeken D, Callewaert G, Robberecht W, Van Den Bosch L. (2005). GluR2 deficiency accelerates motor neuron degeneration in a mouse model of amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 64, 605-612.PubMedCrossRef
142.
Zurück zum Zitat van Es MA, Van Vught PW, Blauw HM, et al. (2007). ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study. Lancet Neurol 6, 869-877.PubMedCrossRef van Es MA, Van Vught PW, Blauw HM, et al. (2007). ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study. Lancet Neurol 6, 869-877.PubMedCrossRef
143.
Zurück zum Zitat Heath PR, Shaw PJ. (2002). Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 26, 438-458.PubMedCrossRef Heath PR, Shaw PJ. (2002). Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 26, 438-458.PubMedCrossRef
144.
Zurück zum Zitat Ince P, Stout N, Shaw P, et al. (1993). Parvalbumin and calbindin D-28k in the human motor system and in motor neuron disease. Neuropathol Appl Neurobiol 19, 291-299.PubMedCrossRef Ince P, Stout N, Shaw P, et al. (1993). Parvalbumin and calbindin D-28k in the human motor system and in motor neuron disease. Neuropathol Appl Neurobiol 19, 291-299.PubMedCrossRef
145.
Zurück zum Zitat Choi DW. (1987). Ionic dependence of glutamate neurotoxicity. J Neurosci 7, 369-379.PubMed Choi DW. (1987). Ionic dependence of glutamate neurotoxicity. J Neurosci 7, 369-379.PubMed
146.
Zurück zum Zitat Miller RJ, Murphy SN, Glaum SR. (1989). Neuronal Ca2+ channels and their regulation by excitatory amino acids. Ann N Y Acad Sci 568, 149-158.PubMedCrossRef Miller RJ, Murphy SN, Glaum SR. (1989). Neuronal Ca2+ channels and their regulation by excitatory amino acids. Ann N Y Acad Sci 568, 149-158.PubMedCrossRef
147.
Zurück zum Zitat Meldrum B, Garthwaite J. (1990). Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci 11, 379-387.PubMedCrossRef Meldrum B, Garthwaite J. (1990). Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci 11, 379-387.PubMedCrossRef
148.
Zurück zum Zitat Regan RF, Panter SS, Witz A, Tilly JL, Giffard RG. (1995). Ultrastructure of excitotoxic neuronal death in murine cortical culture. Brain Res 705, 188-198.PubMedCrossRef Regan RF, Panter SS, Witz A, Tilly JL, Giffard RG. (1995). Ultrastructure of excitotoxic neuronal death in murine cortical culture. Brain Res 705, 188-198.PubMedCrossRef
149.
Zurück zum Zitat Shaw P, Kuncl R. Current concepts in the pathogenesis of ALS. In: WR K, ed. Motor Neuron Disease. Lodon: WB Saunders; 2002:37-73. Shaw P, Kuncl R. Current concepts in the pathogenesis of ALS. In: WR K, ed. Motor Neuron Disease. Lodon: WB Saunders; 2002:37-73.
150.
Zurück zum Zitat Bondy SC, Lee DK. (1993). Oxidative stress induced by glutamate receptor agonists. Brain Res 610, 229-233.PubMedCrossRef Bondy SC, Lee DK. (1993). Oxidative stress induced by glutamate receptor agonists. Brain Res 610, 229-233.PubMedCrossRef
151.
Zurück zum Zitat Lees GJ. (1993). Contributory mechanisms in the causation of neurodegenerative disorders. Neuroscience 54, 287-322.PubMedCrossRef Lees GJ. (1993). Contributory mechanisms in the causation of neurodegenerative disorders. Neuroscience 54, 287-322.PubMedCrossRef
152.
Zurück zum Zitat Maher P, Davis JB. (1996). The role of monoamine metabolism in oxidative glutamate toxicity. J Neurosci 16, 6394-6401.PubMed Maher P, Davis JB. (1996). The role of monoamine metabolism in oxidative glutamate toxicity. J Neurosci 16, 6394-6401.PubMed
153.
Zurück zum Zitat Brooks BR, Miller RG, Swash M, Munsat TL. (2000). El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler 1, 293-299. Brooks BR, Miller RG, Swash M, Munsat TL. (2000). El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler 1, 293-299.
154.
Zurück zum Zitat de Carvalho M, Dengler R, Eisen A, et al. (2008). Electrodiagnostic criteria for diagnosis of ALS. Clin Neurophysiol 119, 497-503.PubMedCrossRef de Carvalho M, Dengler R, Eisen A, et al. (2008). Electrodiagnostic criteria for diagnosis of ALS. Clin Neurophysiol 119, 497-503.PubMedCrossRef
155.
Zurück zum Zitat Brooks B. (1994). El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial "Clinical limits of amyotrophic lateral sclerosis" workshop contributors. J Neurol Sci 124, 96-107.PubMedCrossRef Brooks B. (1994). El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial "Clinical limits of amyotrophic lateral sclerosis" workshop contributors. J Neurol Sci 124, 96-107.PubMedCrossRef
156.
Zurück zum Zitat Brooks B, Miller R, Swash M, Munsat T. (2000). El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1, 293-299.PubMedCrossRef Brooks B, Miller R, Swash M, Munsat T. (2000). El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1, 293-299.PubMedCrossRef
157.
Zurück zum Zitat Turner MR, Kiernan MC, Leigh PN, Talbot K. (2009). Biomarkers in amyotrophic lateral sclerosis. Lancet Neurol 8, 94-109.PubMedCrossRef Turner MR, Kiernan MC, Leigh PN, Talbot K. (2009). Biomarkers in amyotrophic lateral sclerosis. Lancet Neurol 8, 94-109.PubMedCrossRef
158.
Zurück zum Zitat Eisen A, Kiernan M, Mitsumoto H, Swash M. (2014). Amyotrophic lateral sclerosis: a long preclinical period? J Neurol Neurosurg Psychiatry 85, 1232-1238.PubMedCrossRef Eisen A, Kiernan M, Mitsumoto H, Swash M. (2014). Amyotrophic lateral sclerosis: a long preclinical period? J Neurol Neurosurg Psychiatry 85, 1232-1238.PubMedCrossRef
159.
Zurück zum Zitat Costa J, Swash M, de Carvalho M. (2012). Awaji criteria for the diagnosis of amyotrophic lateral sclerosis:a systematic review. Arch Neurol 69, 1410-1416.PubMedCrossRef Costa J, Swash M, de Carvalho M. (2012). Awaji criteria for the diagnosis of amyotrophic lateral sclerosis:a systematic review. Arch Neurol 69, 1410-1416.PubMedCrossRef
160.
Zurück zum Zitat Swash M. (2012). Why are upper motor neuron signs difficult to elicit in amyotrophic lateral sclerosis? J Neurol Neurosurg Psychiatry 83, 659-662.PubMedCrossRef Swash M. (2012). Why are upper motor neuron signs difficult to elicit in amyotrophic lateral sclerosis? J Neurol Neurosurg Psychiatry 83, 659-662.PubMedCrossRef
161.
Zurück zum Zitat Higashihara M, Sonoo M, Imafuku I, et al. (2012). Fasciculation potentials in amyotrophic lateral sclerosis and the diagnostic yield of the Awaji algorithm. Muscle Nerve 45, 175-182.PubMedCrossRef Higashihara M, Sonoo M, Imafuku I, et al. (2012). Fasciculation potentials in amyotrophic lateral sclerosis and the diagnostic yield of the Awaji algorithm. Muscle Nerve 45, 175-182.PubMedCrossRef
162.
Zurück zum Zitat Geevasinga N, Menon P, Yiannikas C, Kiernan MC, Vucic S. (2014). Diagnostic utility of cortical excitability studies in amyotrophic lateral sclerosis. Eur J Neurol 21, 1451-1457.PubMedCrossRef Geevasinga N, Menon P, Yiannikas C, Kiernan MC, Vucic S. (2014). Diagnostic utility of cortical excitability studies in amyotrophic lateral sclerosis. Eur J Neurol 21, 1451-1457.PubMedCrossRef
163.
Zurück zum Zitat Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V. (1996). Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 347, 1425-1431.PubMedCrossRef Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V. (1996). Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 347, 1425-1431.PubMedCrossRef
164.
Zurück zum Zitat Bensimon G, Lacomblez L, Meininger V. (1994). A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med 330, 585-591.PubMedCrossRef Bensimon G, Lacomblez L, Meininger V. (1994). A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med 330, 585-591.PubMedCrossRef
166.
Zurück zum Zitat Hodges JR. (2013). Alzheimer's disease and the frontotemporal dementias: contributions to clinico-pathological studies, diagnosis, and cognitive neuroscience. J Alzheimers Dis 33(Suppl. 1), S211-S217.PubMed Hodges JR. (2013). Alzheimer's disease and the frontotemporal dementias: contributions to clinico-pathological studies, diagnosis, and cognitive neuroscience. J Alzheimers Dis 33(Suppl. 1), S211-S217.PubMed
167.
Zurück zum Zitat Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Tonali PA. (2003). Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer's disease: evidence of impaired glutamatergic neurotransmission? Ann Neurol 53, 824.PubMedCrossRef Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Tonali PA. (2003). Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer's disease: evidence of impaired glutamatergic neurotransmission? Ann Neurol 53, 824.PubMedCrossRef
168.
Zurück zum Zitat Alagona G, Ferri R, Pennisi G, et al. (2004). Motor cortex excitability in Alzheimer's disease and in subcortical ischemic vascular dementia. Neurosci Lett 362, 95-98.PubMedCrossRef Alagona G, Ferri R, Pennisi G, et al. (2004). Motor cortex excitability in Alzheimer's disease and in subcortical ischemic vascular dementia. Neurosci Lett 362, 95-98.PubMedCrossRef
169.
Zurück zum Zitat Ferreri F, Pauri F, Pasqualetti P, Fini R, Dal Forno G, Rossini PM. (2003). Motor cortex excitability in Alzheimer's disease: a transcranial magnetic stimulation study. Ann Neurol 53, 102-108.PubMedCrossRef Ferreri F, Pauri F, Pasqualetti P, Fini R, Dal Forno G, Rossini PM. (2003). Motor cortex excitability in Alzheimer's disease: a transcranial magnetic stimulation study. Ann Neurol 53, 102-108.PubMedCrossRef
170.
Zurück zum Zitat Hoeppner J, Wegrzyn M, Thome J, et al. (2012). Intra- and inter-cortical motor excitability in Alzheimer's disease. J Neural Transm (Vienna) 119, 605-612.CrossRef Hoeppner J, Wegrzyn M, Thome J, et al. (2012). Intra- and inter-cortical motor excitability in Alzheimer's disease. J Neural Transm (Vienna) 119, 605-612.CrossRef
171.
Zurück zum Zitat Martorana A, Stefani A, Palmieri MG, et al. (2008). L-dopa modulates motor cortex excitability in Alzheimer's disease patients. J Neural Transm (Vienna) 115, 1313-1319.CrossRef Martorana A, Stefani A, Palmieri MG, et al. (2008). L-dopa modulates motor cortex excitability in Alzheimer's disease patients. J Neural Transm (Vienna) 115, 1313-1319.CrossRef
172.
Zurück zum Zitat Perretti A, Grossi D, Fragassi N, et al. (1996). Evaluation of the motor cortex by magnetic stimulation in patients with Alzheimer disease. J Neurol Sci 135, 31-37.PubMedCrossRef Perretti A, Grossi D, Fragassi N, et al. (1996). Evaluation of the motor cortex by magnetic stimulation in patients with Alzheimer disease. J Neurol Sci 135, 31-37.PubMedCrossRef
173.
Zurück zum Zitat Liepert J, Bar KJ, Meske U, Weiller C. (2001). Motor cortex disinhibition in Alzheimer's disease. Clin Neurophysiol 112, 1436-1441.PubMedCrossRef Liepert J, Bar KJ, Meske U, Weiller C. (2001). Motor cortex disinhibition in Alzheimer's disease. Clin Neurophysiol 112, 1436-1441.PubMedCrossRef
174.
Zurück zum Zitat Di Lazzaro V, Oliviero A, Tonali PA, et al. (2002). Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology 59, 392-397.PubMedCrossRef Di Lazzaro V, Oliviero A, Tonali PA, et al. (2002). Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology 59, 392-397.PubMedCrossRef
175.
Zurück zum Zitat Alberici A, Bonato C, Calabria M, et al. (2008). The contribution of TMS to frontotemporal dementia variants. Acta Neurol Scand 118, 275-280.PubMedCrossRef Alberici A, Bonato C, Calabria M, et al. (2008). The contribution of TMS to frontotemporal dementia variants. Acta Neurol Scand 118, 275-280.PubMedCrossRef
176.
Zurück zum Zitat Di Lazzaro V, Oliviero A, Pilato F, et al. (2004). Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer's disease. J Neurol Neurosurg Psychiatry 75, 555-559.PubMedCrossRef Di Lazzaro V, Oliviero A, Pilato F, et al. (2004). Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer's disease. J Neurol Neurosurg Psychiatry 75, 555-559.PubMedCrossRef
177.
Zurück zum Zitat Martorana A, Di Lorenzo F, Esposito Z, et al. (2013). Dopamine D(2)-agonist rotigotine effects on cortical excitability and central cholinergic transmission in Alzheimer's disease patients. Neuropharmacology 64, 108-113.PubMedCrossRef Martorana A, Di Lorenzo F, Esposito Z, et al. (2013). Dopamine D(2)-agonist rotigotine effects on cortical excitability and central cholinergic transmission in Alzheimer's disease patients. Neuropharmacology 64, 108-113.PubMedCrossRef
178.
Zurück zum Zitat Nardone R, Bratti A, Tezzon F. (2006). Motor cortex inhibitory circuits in dementia with Lewy bodies and in Alzheimer's disease. J Neural Transm (Vienna) 113, 1679-1684.CrossRef Nardone R, Bratti A, Tezzon F. (2006). Motor cortex inhibitory circuits in dementia with Lewy bodies and in Alzheimer's disease. J Neural Transm (Vienna) 113, 1679-1684.CrossRef
179.
Zurück zum Zitat Brem AK, Atkinson NJ, Seligson EE, Pascual-Leone A. (2013). Differential pharmacological effects on brain reactivity and plasticity in Alzheimer's disease. Front Psychiatry 4, 124.PubMedPubMedCentralCrossRef Brem AK, Atkinson NJ, Seligson EE, Pascual-Leone A. (2013). Differential pharmacological effects on brain reactivity and plasticity in Alzheimer's disease. Front Psychiatry 4, 124.PubMedPubMedCentralCrossRef
180.
Zurück zum Zitat Nardone R, Bergmann J, Kronbichler M, et al. (2008). Abnormal short latency afferent inhibition in early Alzheimer's disease: a transcranial magnetic demonstration. J Neural Transm (Vienna) 115, 1557-1562.CrossRef Nardone R, Bergmann J, Kronbichler M, et al. (2008). Abnormal short latency afferent inhibition in early Alzheimer's disease: a transcranial magnetic demonstration. J Neural Transm (Vienna) 115, 1557-1562.CrossRef
181.
Zurück zum Zitat Burrell JR, Halliday GM, Kril JJ, et al. The frontotemporal dementia-motor neuron disease continuum. Lancet 2016;388:919-931.PubMedCrossRef Burrell JR, Halliday GM, Kril JJ, et al. The frontotemporal dementia-motor neuron disease continuum. Lancet 2016;388:919-931.PubMedCrossRef
182.
Zurück zum Zitat Ahmed RM, Irish M, Piguet O, et al. (2016). Amyotrophic lateral sclerosis and frontotemporal dementia: distinct and overlapping changes in eating behaviour and metabolism. Lancet Neurol 15, 332-342.PubMedCrossRef Ahmed RM, Irish M, Piguet O, et al. (2016). Amyotrophic lateral sclerosis and frontotemporal dementia: distinct and overlapping changes in eating behaviour and metabolism. Lancet Neurol 15, 332-342.PubMedCrossRef
183.
Zurück zum Zitat Burrell JR, Kiernan MC, Vucic S, Hodges JR. (2011). Motor neuron dysfunction in frontotemporal dementia. Brain 134, 2582-2594.PubMedCrossRef Burrell JR, Kiernan MC, Vucic S, Hodges JR. (2011). Motor neuron dysfunction in frontotemporal dementia. Brain 134, 2582-2594.PubMedCrossRef
184.
Zurück zum Zitat Lillo P, Mioshi E, Burrell JR, Kiernan MC, Hodges JR, Hornberger M. (2012). Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLOS ONE 7, e43993.PubMedPubMedCentralCrossRef Lillo P, Mioshi E, Burrell JR, Kiernan MC, Hodges JR, Hornberger M. (2012). Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLOS ONE 7, e43993.PubMedPubMedCentralCrossRef
185.
Zurück zum Zitat Leon-Sarmiento FE, Rizzo-Sierra CV, Bayona EA, Bayona-Prieto J, Doty RL, Bara-Jimenez W. (2013). Novel mechanisms underlying inhibitory and facilitatory transcranial magnetic stimulation abnormalities in Parkinson's disease. Arch Med Res 44, 221-228.PubMedCrossRef Leon-Sarmiento FE, Rizzo-Sierra CV, Bayona EA, Bayona-Prieto J, Doty RL, Bara-Jimenez W. (2013). Novel mechanisms underlying inhibitory and facilitatory transcranial magnetic stimulation abnormalities in Parkinson's disease. Arch Med Res 44, 221-228.PubMedCrossRef
186.
Zurück zum Zitat Ni Z, Bahl N, Gunraj CA, Mazzella F, Chen R. (2013). Increased motor cortical facilitation and decreased inhibition in Parkinson disease. Neurology 80, 1746-1753.PubMedPubMedCentralCrossRef Ni Z, Bahl N, Gunraj CA, Mazzella F, Chen R. (2013). Increased motor cortical facilitation and decreased inhibition in Parkinson disease. Neurology 80, 1746-1753.PubMedPubMedCentralCrossRef
187.
Zurück zum Zitat Barbin L, Leux C, Sauleau P, et al. (2013). Non-homogeneous effect of levodopa on inhibitory circuits in Parkinson's disease and dyskinesia. Parkinsonism Relat Disord 19, 165-170.PubMedCrossRef Barbin L, Leux C, Sauleau P, et al. (2013). Non-homogeneous effect of levodopa on inhibitory circuits in Parkinson's disease and dyskinesia. Parkinsonism Relat Disord 19, 165-170.PubMedCrossRef
188.
Zurück zum Zitat MacKinnon CD, Gilley EA, Weis-McNulty A, Simuni T. (2005). Pathways mediating abnormal intracortical inhibition in Parkinson's disease. Ann Neurol 58, 516-524.PubMedCrossRef MacKinnon CD, Gilley EA, Weis-McNulty A, Simuni T. (2005). Pathways mediating abnormal intracortical inhibition in Parkinson's disease. Ann Neurol 58, 516-524.PubMedCrossRef
189.
Zurück zum Zitat Morita Y, Osaki Y, Doi Y. (2008). Transcranial magnetic stimulation for differential diagnostics in patients with parkinsonism. Acta Neurol Scand 118, 159-163.PubMedCrossRef Morita Y, Osaki Y, Doi Y. (2008). Transcranial magnetic stimulation for differential diagnostics in patients with parkinsonism. Acta Neurol Scand 118, 159-163.PubMedCrossRef
190.
Zurück zum Zitat Zarei M, Ibarretxe-Bilbao N, Compta Y, et al. (2013). Cortical thinning is associated with disease stages and dementia in Parkinson's disease. J Neurol Neurosurg Psychiatry 84, 875-881.PubMedPubMedCentralCrossRef Zarei M, Ibarretxe-Bilbao N, Compta Y, et al. (2013). Cortical thinning is associated with disease stages and dementia in Parkinson's disease. J Neurol Neurosurg Psychiatry 84, 875-881.PubMedPubMedCentralCrossRef
191.
Zurück zum Zitat Lindenbach D, Bishop C. (2013). Critical involvement of the motor cortex in the pathophysiology and treatment of Parkinson's disease. Neurosci Biobehav Rev 37, 2737-2750.PubMedCrossRef Lindenbach D, Bishop C. (2013). Critical involvement of the motor cortex in the pathophysiology and treatment of Parkinson's disease. Neurosci Biobehav Rev 37, 2737-2750.PubMedCrossRef
192.
Zurück zum Zitat Sailer A, Molnar GF, Paradiso G, Gunraj CA, Lang AE, Chen R. (2003). Short and long latency afferent inhibition in Parkinson's disease. Brain 126, 1883-1894.PubMedCrossRef Sailer A, Molnar GF, Paradiso G, Gunraj CA, Lang AE, Chen R. (2003). Short and long latency afferent inhibition in Parkinson's disease. Brain 126, 1883-1894.PubMedCrossRef
193.
Zurück zum Zitat Manganelli F, Vitale C, Santangelo G, et al. (2009). Functional involvement of central cholinergic circuits and visual hallucinations in Parkinson's disease. Brain 132, 2350-2355.PubMedPubMedCentralCrossRef Manganelli F, Vitale C, Santangelo G, et al. (2009). Functional involvement of central cholinergic circuits and visual hallucinations in Parkinson's disease. Brain 132, 2350-2355.PubMedPubMedCentralCrossRef
194.
Zurück zum Zitat Celebi O, Temucin CM, Elibol B, Saka E. (2012). Short latency afferent inhibition in Parkinson's disease patients with dementia. Mov Disord 27, 1052-1055.PubMedCrossRef Celebi O, Temucin CM, Elibol B, Saka E. (2012). Short latency afferent inhibition in Parkinson's disease patients with dementia. Mov Disord 27, 1052-1055.PubMedCrossRef
195.
Zurück zum Zitat Nardone R, Florio I, Lochner P, Tezzon F. (2005). Cholinergic cortical circuits in Parkinson's disease and in progressive supranuclear palsy: a transcranial magnetic stimulation study. Exp Brain Res 163, 128-131.PubMedCrossRef Nardone R, Florio I, Lochner P, Tezzon F. (2005). Cholinergic cortical circuits in Parkinson's disease and in progressive supranuclear palsy: a transcranial magnetic stimulation study. Exp Brain Res 163, 128-131.PubMedCrossRef
197.
Zurück zum Zitat Kuhn AA, Grosse P, Holtz K, Brown P, Meyer BU, Kupsch A. (2004). Patterns of abnormal motor cortex excitability in atypical parkinsonian syndromes. Clin Neurophysiol 115, 1786-1795.PubMedCrossRef Kuhn AA, Grosse P, Holtz K, Brown P, Meyer BU, Kupsch A. (2004). Patterns of abnormal motor cortex excitability in atypical parkinsonian syndromes. Clin Neurophysiol 115, 1786-1795.PubMedCrossRef
198.
Zurück zum Zitat Conte A, Belvisi D, Bologna M, et al. (2012). Abnormal cortical synaptic plasticity in primary motor area in progressive supranuclear palsy. Cereb Cortex 22, 693-700.PubMedCrossRef Conte A, Belvisi D, Bologna M, et al. (2012). Abnormal cortical synaptic plasticity in primary motor area in progressive supranuclear palsy. Cereb Cortex 22, 693-700.PubMedCrossRef
199.
Zurück zum Zitat Wittstock M, Pohley I, Walter U, Grossmann A, Benecke R, Wolters A. (2013). Interhemispheric inhibition in different phenotypes of progressive supranuclear palsy. J Neural Transm (Vienna) 120, 453-461.CrossRef Wittstock M, Pohley I, Walter U, Grossmann A, Benecke R, Wolters A. (2013). Interhemispheric inhibition in different phenotypes of progressive supranuclear palsy. J Neural Transm (Vienna) 120, 453-461.CrossRef
200.
201.
202.
Zurück zum Zitat Leiguarda RC, Merello M, Nouzeilles MI, Balej J, Rivero A, Nogués M. (2003). Limb-kinetic apraxia in corticobasal degeneration: Clinical and kinematic features. Mov Disord 18, 49-59.PubMedCrossRef Leiguarda RC, Merello M, Nouzeilles MI, Balej J, Rivero A, Nogués M. (2003). Limb-kinetic apraxia in corticobasal degeneration: Clinical and kinematic features. Mov Disord 18, 49-59.PubMedCrossRef
203.
Zurück zum Zitat Trompetto C, Buccolieri A, Marchese R, Marinelli L, Michelozzi G, Abbruzzese G. (2003). Impairment of transcallosal inhibition in patients with corticobasal degeneration. Clin Neurophysiol 114, 2181-2187.PubMedCrossRef Trompetto C, Buccolieri A, Marchese R, Marinelli L, Michelozzi G, Abbruzzese G. (2003). Impairment of transcallosal inhibition in patients with corticobasal degeneration. Clin Neurophysiol 114, 2181-2187.PubMedCrossRef
204.
Zurück zum Zitat Suppa A, Marsili L, Di Stasio F, et al. (2014). Primary motor cortex long-term plasticity in multiple system atrophy. Mov Disord 29, 97-104.PubMedCrossRef Suppa A, Marsili L, Di Stasio F, et al. (2014). Primary motor cortex long-term plasticity in multiple system atrophy. Mov Disord 29, 97-104.PubMedCrossRef
205.
Zurück zum Zitat Wolters A, Classen J, Kunesch E, Grossmann A, Benecke R. (2004). Measurements of transcallosally mediated cortical inhibition for differentiating parkinsonian syndromes. Mov Disord 19, 518-528.PubMedCrossRef Wolters A, Classen J, Kunesch E, Grossmann A, Benecke R. (2004). Measurements of transcallosally mediated cortical inhibition for differentiating parkinsonian syndromes. Mov Disord 19, 518-528.PubMedCrossRef
206.
Zurück zum Zitat Schippling S, Schneider SA, Bhatia KP, et al. (2009). Abnormal motor cortex excitability in preclinical and very early Huntington's disease. Biol Psychiatry 65, 959-965.PubMedPubMedCentralCrossRef Schippling S, Schneider SA, Bhatia KP, et al. (2009). Abnormal motor cortex excitability in preclinical and very early Huntington's disease. Biol Psychiatry 65, 959-965.PubMedPubMedCentralCrossRef
207.
Zurück zum Zitat Nardone R, Lochner P, Marth R, Ausserer H, Bratti A, Tezzon F. (2007). Abnormal intracortical facilitation in early-stage Huntington's disease. Clin Neurophysiol 118, 1149-1154.PubMedCrossRef Nardone R, Lochner P, Marth R, Ausserer H, Bratti A, Tezzon F. (2007). Abnormal intracortical facilitation in early-stage Huntington's disease. Clin Neurophysiol 118, 1149-1154.PubMedCrossRef
208.
Zurück zum Zitat Abbruzzese G, Buccolieri A, Marchese R, Trompetto C, Mandich P, Schieppati M. (1997). Intracortical inhibition and facilitation are abnormal in Huntington's disease: a paired magnetic stimulation study. Neurosci Lett 228, 87-90.PubMedCrossRef Abbruzzese G, Buccolieri A, Marchese R, Trompetto C, Mandich P, Schieppati M. (1997). Intracortical inhibition and facilitation are abnormal in Huntington's disease: a paired magnetic stimulation study. Neurosci Lett 228, 87-90.PubMedCrossRef
Metadaten
Titel
Transcranial Magnetic Stimulation for the Assessment of Neurodegenerative Disease
verfasst von
Steve Vucic
Matthew C. Kiernan
Publikationsdatum
01.01.2017
Verlag
Springer US
Erschienen in
Neurotherapeutics / Ausgabe 1/2017
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-016-0487-6

Weitere Artikel der Ausgabe 1/2017

Neurotherapeutics 1/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.