Skip to main content

Advertisement

Log in

Nanomedicine for gene therapy

  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Viruses are promising vehicles that result in high gene expression level, but issues of safety and virulent nature prevented its extensive use. Therefore, nonviral approach was investigated with the intervention of nanomedicine. The science of nanomedicine offered an excellent platform for therapeutic delivery as they provide options to include functionalities and engineer the system. As the term ‘nano’ refers to the generation of a very small dimension structure, their unique physicochemical characteristics with increased surface area/volume ratio made them potential vectors to perform gene therapy. Various forms of nanoparticles are continued to be synthesised, and this review discusses the immediate barriers that nanoparticles have to encounter both during systemic movement in the body and intracellular trafficking to deliver the genes at the site of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Check E. Gene therapy: a tragic setback. Nature. 2002;420:116–8.

    Article  PubMed  CAS  Google Scholar 

  2. Doroudchi MM, Greenberg KP, Liu J, Silka KA, Boyden JA, Lockridge AC, Janani AR, Boye SE, Boye SL, Gordon GM, Matteo BC, Sampath AP, Hauswirth WW, Horsager A. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther. 2011;19(7):1220–9.

    Article  PubMed  CAS  Google Scholar 

  3. Apolonia L, Waddingto SN, Fernandes C, Ward NJ, Bouma G, Blundell MP, Thrasher AJ, Collins MK, Philpot NJ. Stable gene transfer to muscle using non integrating lentiviral vectors. Mol Ther. 2007;15(11):1947–54.

    Article  PubMed  CAS  Google Scholar 

  4. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346–58.

    Article  PubMed  CAS  Google Scholar 

  5. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci US A. 1987;84:7413e7.

    Article  Google Scholar 

  6. Miller AD. Cationic liposomes for gene therapy. Angew Chem. 1998;37:1768e85.

    Google Scholar 

  7. Fenske DB, Cullis PR. Liposomal nanomedicines. Expert Opin Drug Deliv. 2008;5:25–44.

    Article  PubMed  CAS  Google Scholar 

  8. Tseng YC, Mozumdar S, Huang L. Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev. 2009;61:721–31.

    Article  PubMed  CAS  Google Scholar 

  9. Zelphati O, Szoka Jr FC. Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci USA. 1996;93:11493–8.

    Article  PubMed  CAS  Google Scholar 

  10. Obata Y, Tajima S, Takeoka S. Evaluation of pH-responsive liposomes containing amino acid-based zwitterionic lipids for improving intracellular drug delivery in vitro and in vivo. J Control Release. 2010;142:267.

    Article  PubMed  CAS  Google Scholar 

  11. Oja CD, Semple SC, Chonn A, Cullis PR. Influence of dose on liposome clearance: critical role of blood proteins. Biochim Biophys Acta. 1996;1281:31–7.

    Article  PubMed  Google Scholar 

  12. Van Etten EWM, Kate MTT, Snijders SV, Baker-Woudenberg IAJM. Administration of liposomal agents and blood clearance capacity of the mononuclear phagocyte system. Antimicrob Agents Chemother. 1998;42(7):1677–81.

    PubMed  Google Scholar 

  13. Zhang Y, Liu JY, Yang F, et al. A new strategy for assembling multifunctional nanocomposites with iron oxide and amino-terminated PAMAM dendrimers. J Mater Sci Mater Med. 2009;20:2433–40.

    Article  PubMed  CAS  Google Scholar 

  14. Navarro G, de Ilarduya CT. Activated and non-activated PAMAM dendrimers for gene delivery in vitro and in vivo. Nanomedicine. 2009;5:287–97.

    Article  PubMed  CAS  Google Scholar 

  15. Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev. 2005;57:2215–37.

    Article  PubMed  CAS  Google Scholar 

  16. Heiden TCK, Dengler E, Kao WJ, Heideman W, Peterson RE. Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol Appl Pharmacol. 2007;225:70–9.

    Article  PubMed  Google Scholar 

  17. Jones CF, Campbell RA, Brooks AE, Assemi S, Tadjiki S, Thiagarajan G, Mulcock C,Weyrich AS, Brooks BD, Ghandehari H, Grainger DW. Cationic PAMAM Dendrimers Aggressively Initiate Blood Clot Formation. ACS Nano. 2012 Oct 24. [Epub ahead of print]

  18. Laporte L, Rea JC, Shea LD. Design of modular non-viral gene therapy vectors. Biomater. 2006;27:947–54.

    Article  Google Scholar 

  19. Lam AP, Dean DA. Progress and prospects: nuclear import of nonviral vectors. Gene Ther. 2010;17:439–47.

    Article  PubMed  CAS  Google Scholar 

  20. Perez-Martinez FC, Guerra J, Posadas I, Cena V. Barriers to non-viral vector mediated gene delivery in the nervous system. Pharm Res. 2011;28(8):1843–58.

    Article  PubMed  CAS  Google Scholar 

  21. Kim SS, Garg H, Joshi A, Manjunath N. Strategies for targeted nonviral delivery of siRNAs in vivo. Trends Mol Med. 2009;15(11):491–500.

    Article  PubMed  CAS  Google Scholar 

  22. Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit J-P. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomater. 2008;29(24–25):3477–96.

    Article  CAS  Google Scholar 

  23. Bergen JM, Park I-K, Homer PJ, Pun SH. Nonviral approaches for neurnal delivery of nucleic acids. Pharm Res. 2008;25(5):983–98.

    Article  PubMed  CAS  Google Scholar 

  24. Ko, T.Y., Kale, A., Torchilin, V. Self-assembling micelle-like nanoparticles for systemic gene delivery. US 2010/0285111 A1; 2010

  25. Bikram M. Reducible polymers for non-viral gene delivery. EP2396365 A2; 2011

  26. Luten J, Nostrum CF V, Smedt SCD, Hennink WE. Biodegradable polymers as non-viral carriers for plasmid DNA delivery. J Control Releas. 2008;126:97–110.

    Article  CAS  Google Scholar 

  27. Arscott PG, Li AZ, Bloomfield VA. Condensation of DNA by trivalent cations. 1. Effects of DNA length and topology on the size and shape of condensed particles. Biopolym. 1990;30:619–30.

    Article  CAS  Google Scholar 

  28. Rejman J, Oberlev V, Zuhorn I, Hoekstrad D. Size-dependent internalization of particles via pathways of clathrin and caveolae mediated endocytosis. Biochem J. 2004;377(1):159–69.

    Article  PubMed  CAS  Google Scholar 

  29. Rettig GR, Rice KG. Non-viral gene delivery: from the needle to the nucleus. Expert Opin Biol Ther. 2007;7(6):799–808.

    Article  PubMed  CAS  Google Scholar 

  30. Sheridan C. Gene therapy finds its niche. Nat Biotechnol. 2011;29:121–129

    Google Scholar 

  31. Zhang XX, McIntosh TJ, Grinstaff MW. Functional lipids and lipoplexes for improved gene delivery. Biochimie. 2012;94:42e58.

    Google Scholar 

  32. Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007;2(8):469–78.

    Article  PubMed  CAS  Google Scholar 

  33. Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm. 2008;5(4):487–95.

    Article  PubMed  CAS  Google Scholar 

  34. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA. 2007;104:2050–5.

    Article  PubMed  CAS  Google Scholar 

  35. Vauthier C, Persson B, Lindner P, Cabane B. Protein adsorption and complement activation for di-block copolymer nanoparticles. Biomater. 2011;32:1646–56.

    Article  CAS  Google Scholar 

  36. Andersson J, Nilsson EK, Lambris JD, Nilsson B. Binding of C3 fragments on top of adsorbed plasma proteins during complement activation on a model biomaterial surface. Biomater. 2005;26:1477–85.

    Article  CAS  Google Scholar 

  37. Hu Y, Xie J, Tong YW, Wang C-H. Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. J Control Releas. 2007;118:7–17.

    Article  CAS  Google Scholar 

  38. Saeed AO, Magnusson JP, Moradi E, Soliman M, Wang W, Stolnik S, Thurecht JK, Howdle SM, Alexander C. Modular construction of multifunctional bioresponsive cell-targeted nanoparticles for gene delivery. Bioconjug Chem. 2011;22:156–68.

    Article  PubMed  CAS  Google Scholar 

  39. Lai TC, Kataoka K, Kwon GS. Pluronic-based cationic block copolymer for forming pDNA polyplexes with enhanced cellular uptake and improved transfection efficiency. Biomater. 2011;32:4594–603.

    Article  CAS  Google Scholar 

  40. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Del Rev. 2009;61:428–37.

    Article  CAS  Google Scholar 

  41. Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Releas. 2010;148:135–46.

    Article  CAS  Google Scholar 

  42. Kaul G, Mansoor A. Tumor targeted gene delivery using poly (ethylene glycol)-modified gelatine nanoparticles: invitro and invivo studies. Pharm Res. 2005;22(6):951–61.

    Article  PubMed  CAS  Google Scholar 

  43. Byrne JD, Betancourt T, Peppas LB. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Del Rev. 2008;60:1615–26.

    Article  CAS  Google Scholar 

  44. Rao Y, Rückert C, Saenger W, Haucke V. The early steps of endocytosis: from cargo selection to membrane deformation. Eur J Cell Biol. 2012;91:226–33.

    Article  PubMed  CAS  Google Scholar 

  45. Adler AF, Leong KW. Emerging links between surface nanotechnology and enocytosis: impact on nonniral gene delivery. NanoToday. 2010;5:553–69.

    Article  PubMed  CAS  Google Scholar 

  46. Belting M, Sandgren S, Wittrup A. Nuclear delivery of macro- molecules: barriers and carriers. Adv Drug Deliv Rev. 2005;57:505–27.

    Article  PubMed  CAS  Google Scholar 

  47. McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2011;12:517–33.

    Article  PubMed  CAS  Google Scholar 

  48. Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharm Rev. 2006;58(1):32–45.

    Article  PubMed  CAS  Google Scholar 

  49. Lakadamyali M, Rust MJ, Zhuang X. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell. 2006;124:997–1009.

    Article  PubMed  CAS  Google Scholar 

  50. Daniels TR, Delgado T, Helguera G, Penichet ML. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol. 2006;121:159–76.

    Article  PubMed  CAS  Google Scholar 

  51. Hansen CG, Nichols BJ. Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol. 2010;20(4):177–86.

    Article  PubMed  CAS  Google Scholar 

  52. Oba MK, Aoyagi K, Miyata K, Matsumoto Y, Itaka K, Nishiyama N, Yamasaki Y, Koyama H, Kataoka K. Polyplex micelles with cyclic RGD peptide ligands and disulfide cross-links directing to the enhanced transfection via controlled intracellular trafficking. Mol Pharm. 2008;5:1080–92.

    Article  PubMed  CAS  Google Scholar 

  53. Liu C, Yu W, Chen Z, Zhang J, Zhang N. Enhanced gene transfection efficiency in CD13-positive vascular endothelial cells with targeted poly (lactic acid)-poly (ethylene glycol) nanoparticles through caveolae-mediated endocytosis. J Control Releas. 2010;151(2):162–75.

    Article  Google Scholar 

  54. Jones AT. Macropinocytosis: searching for an endocytic identity and role in the uptake of cell penetrating peptides. J Cell Mol Med. 2007;11:670–84.

    Article  PubMed  CAS  Google Scholar 

  55. Mercer J, Helenius A. Virus entry by macropinocytosis. Nat Cell Biol. 2009;11:510–20.

    Article  PubMed  CAS  Google Scholar 

  56. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Releas. 2010;145:182–95.

    Article  CAS  Google Scholar 

  57. Nam HY, Kwon SM, Chung H, Lee S-Y, Kwon S-H, Jeon H, Kim Y, Park JH, Kim J, Her S, Oh Y-K, Kwon IC, Kim K, Jeong SY. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J Control Releas. 2009;135:259–67.

    Article  CAS  Google Scholar 

  58. Cho YW, Kim J-D, Park K. Polycation gene delivery systems: escape from endosomes to cytosol. J Pharm Pharmacol. 2003;55:721–34.

    Article  PubMed  CAS  Google Scholar 

  59. Park MR, Han KO, Han IK, Cho MH, Nah JW, Choi YJ, Cho CS. Degradable polyethylenimine-alt-poly (ethylene glycol) copolymers as novel gene carriers. J Control Releas. 2005;105:367–80.

    Article  CAS  Google Scholar 

  60. Thomas M, Lu JJ, Ge Q, Zhang C, Chen J, Klibanov AM. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc Natl Acad Sci USA. 2005;102(16).

  61. Alex SM, Rekha MR, Sharma CP. Spermine grafted galactosylated chitosan for improved nanoparticle mediated gene delivery. Int J Pharm. 2011;410:125–37.

    Article  PubMed  CAS  Google Scholar 

  62. Swami A, Aggarwal A, Pathak A, Patnaik S, Kumar P, Singh Y, Gupta KC. Imidazolyl-PEI modified nanoparticles for enhanced gene delivery. Int J Pharm. 2007;335:180–92.

    Article  PubMed  CAS  Google Scholar 

  63. Manickam DS, Oupicky D. Multiblock reducible copolypeptides containing histidine-rich and nuclear localization sequences for gene delivery. Bioconjug Chem. 2006;17:1395–403.

    Article  PubMed  CAS  Google Scholar 

  64. Lee H, Jeong JH, Park TG. A new gene delivery formulation of polyethylenimine/DNA complexes coated with PEG conjugated fusogenic peptide. J Control Releas. 2001;76:183–92.

    Article  CAS  Google Scholar 

  65. Itaka K, Harada A, Yamasaki Y, Nakamura K, Kawaguchi H, Kataoka K. In situ single cell observation by fluorescence resonance energy transfer reveals fast intra-cytoplasmic delivery and easy release of plasmid DNA complexed with linear polyethylenimine. J Gene Med. 2004;6:76–84.

    Article  PubMed  CAS  Google Scholar 

  66. Marika R, Satu A, Urtti A, Reinisalo M, Ranta V-P. Intracellular DNA release and elimination correlate poorly with transgene expression after non-viral transfection. J Control Releas. 2009;136:226–31.

    Article  Google Scholar 

  67. Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med. 2005;7:657–63.

    Article  PubMed  CAS  Google Scholar 

  68. Thomas JJ, Rekha MR, Sharma CP. Unraveling the intracellular efficacy of dextran–histidine polycation as an efficient nonviral gene delivery system. Mol Pharm. 2012;9(1):121–34.

    Article  PubMed  CAS  Google Scholar 

  69. Kreppel F, Kochanek S. Long-term transgene expression in proliferating cells mediated by episomally maintained high-capacity adenovirus vectors. J Virol. 2004;78:9–22.

    Article  PubMed  CAS  Google Scholar 

  70. Escriou V, Carriere M, Scherman D, Wils P. NLS bioconjugate for targeting therapeutic genes to the nucleus. Adv Drug Deliv Rev. 2003;55:295–306.

    Article  PubMed  CAS  Google Scholar 

  71. Jeon O, Lim HW, Lee M, Song SJ, Kim BS. Poly (l-lactide-co-glycolide) nanospheres conjugated with a nuclear localization signal for delivery of plasmid DNA. J Drug Target. 2007;15:190–8.

    Article  PubMed  CAS  Google Scholar 

  72. Opanasopita P, Rojanarata T, Apirakaramwong A, Ngawhirunpata T, Uracha Ruktanonchai U. Nuclear localization signal peptides enhance transfection efficiency of chitosan/DNA complexes. Int J Pharm. 2010;382:291–5.

    Article  Google Scholar 

  73. Ozpolat B, Sood AK, Berestein GL. Nanomedicine based approaches for the delivery of siRNA in cancer. J Intern Med. 2009;267:44–53.

    Article  Google Scholar 

  74. Okamura K, Balla S, Martin R, Liu N, Lai EC. Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nat Struct Mol Biol. 2008;15:581–90.

    Article  PubMed  CAS  Google Scholar 

  75. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101:25–33.

    Article  PubMed  CAS  Google Scholar 

  76. Jere D, Jiang HL, Kim Y-K, Arote R, Choi Y-J, Yun C-H, Cho M-H, Cho C-S. Chitosan-graft-polyethylenimine for Akt1 siRNA delivery to lung cancer cells. Int J Pharm. 2009;378:194–200.

    Article  PubMed  CAS  Google Scholar 

  77. Li C, Penet M-F, Wildes F, Takagi T, Chen Z, Winnard Jr PT, Artemov D, Bhujwalla ZM. Nanoplex delivery of siRNA and prodrug enzyme for multimodality image guided molecular pathway targeted cancer therapy. ACS Nano. 2010;4(11):6707–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to thank the Director, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST) and the Head of BMT Wing of SCTIMST for providing facilities for the completion of this review. One of the authors (S.M.A) is grateful to the CSIR-SRF fellowship, provided by Council for Scientific and Industrial Research (CSIR), New Delhi. This work was supported by the Department of Science & Technology, Government of India through the project “Facility for Nano/Microparticle Based Biomaterials—Advanced Drug Delivery Systems (FADDS)” number 8013, under the Drugs & Pharmaceuticals Research Programme, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra P. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alex, S.M., Sharma, C.P. Nanomedicine for gene therapy. Drug Deliv. and Transl. Res. 3, 437–445 (2013). https://doi.org/10.1007/s13346-012-0120-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-012-0120-0

Keywords

Navigation