Skip to main content
Erschienen in: Cellular Oncology 4/2016

08.04.2016 | Review

Non-coding RNAs in pancreatic cancer: challenges and opportunities for clinical application

verfasst von: V. Taucher, H. Mangge, J. Haybaeck

Erschienen in: Cellular Oncology | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

Background

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a dismal prognosis for which new therapeutic strategies are desperately needed. Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), may yield new therapeutic concepts for the treatment of PDAC. A vast number of miRNAs, including the well-studied miR-21, miR-155 and miR-34, has been shown to regulate PDAC growth, invasion and metastasis in vitro and in vivo by targeting members of key signaling pathways. In addition, other miRNAs and lncRNAs, such as HOTTIP and MALAT-1, have been shown to influence the malignant behavior of PDAC cells.

Methods

Here, we discuss several ncRNAs that may be used either as new therapeutic agents or as targets of new therapeutic agents. Furthermore, we discuss the problem of proper delivery of nucleotide-based agents and novel methods that may be used to circumvent this problem.

Conclusions

Although the number of reports addressing the role of ncRNAs in PDAC virtually grows by the day, there are still many steps to be taken before the application of ncRNA-based therapies will become reality in clinical practice.
Literatur
1.
Zurück zum Zitat M. Malvezzi, P. Bertuccio, F. Levi, C. La Vecchia, E. Negri, European cancer mortality predictions for the year 2014. Ann. Oncol. 25, 1650–1656 (2014)PubMedCrossRef M. Malvezzi, P. Bertuccio, F. Levi, C. La Vecchia, E. Negri, European cancer mortality predictions for the year 2014. Ann. Oncol. 25, 1650–1656 (2014)PubMedCrossRef
2.
Zurück zum Zitat D.P. Ryan, T.S. Hong, N. Bardeesy, Pancreatic adenocarcinoma. N. Engl. J. Med. 371, 1039–1049 (2014)PubMedCrossRef D.P. Ryan, T.S. Hong, N. Bardeesy, Pancreatic adenocarcinoma. N. Engl. J. Med. 371, 1039–1049 (2014)PubMedCrossRef
3.
Zurück zum Zitat T. Furukawa, R. Fujisaki, Y. Yoshida, N. Kanai, M. Sunamura, T. Abe, K. Takeda, S. Matsuno, A. Horii, Distinct progression pathways involving the dysfunction of DUSP6/MKP-3 in pancreatic intraepithelial neoplasia and intraductal papillary-mucinous neoplasms of the pancreas. Mod. Pathol. 18, 1034–1042 (2005)PubMedCrossRef T. Furukawa, R. Fujisaki, Y. Yoshida, N. Kanai, M. Sunamura, T. Abe, K. Takeda, S. Matsuno, A. Horii, Distinct progression pathways involving the dysfunction of DUSP6/MKP-3 in pancreatic intraepithelial neoplasia and intraductal papillary-mucinous neoplasms of the pancreas. Mod. Pathol. 18, 1034–1042 (2005)PubMedCrossRef
4.
Zurück zum Zitat S.A. Hahn, A.T. Hoque, C.A. Moskaluk, L.T. da Costa, M. Schutte, E. Rozenblum, A.B. Seymour, C.L. Weinstein, C.J. Yeo, R.H. Hruban, S.E. Kern, Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res. 56, 490–494 (1996)PubMed S.A. Hahn, A.T. Hoque, C.A. Moskaluk, L.T. da Costa, M. Schutte, E. Rozenblum, A.B. Seymour, C.L. Weinstein, C.J. Yeo, R.H. Hruban, S.E. Kern, Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res. 56, 490–494 (1996)PubMed
5.
Zurück zum Zitat J.M. Bailey, A.M. Hendley, K.J. Lafaro, M.A. Pruski, N.C. Jones, J. Alsina, M. Younes, A. Maitra, F. McAllister, C.A. Iacobuzio-Donahue, S.D. Leach, p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells. Oncogene (2015). doi:10.1038/onc.2015.441 J.M. Bailey, A.M. Hendley, K.J. Lafaro, M.A. Pruski, N.C. Jones, J. Alsina, M. Younes, A. Maitra, F. McAllister, C.A. Iacobuzio-Donahue, S.D. Leach, p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells. Oncogene (2015). doi:10.​1038/​onc.​2015.​441
6.
Zurück zum Zitat E.G. Chiorean, A.L. Coveler, Pancreatic cancer: optimizing treatment options, new, and emerging targeted therapies. Drug Des. Devel. Ther. 9, 3529–3545 (2015)PubMedPubMedCentralCrossRef E.G. Chiorean, A.L. Coveler, Pancreatic cancer: optimizing treatment options, new, and emerging targeted therapies. Drug Des. Devel. Ther. 9, 3529–3545 (2015)PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat C.P. Christov, T.J. Gardiner, D. Szuts, T. Krude, Functional requirement of noncoding Y RNAs for human chromosomal DNA replication. Mol. Cell. Biol. 26, 6993–7004 (2006)PubMedPubMedCentralCrossRef C.P. Christov, T.J. Gardiner, D. Szuts, T. Krude, Functional requirement of noncoding Y RNAs for human chromosomal DNA replication. Mol. Cell. Biol. 26, 6993–7004 (2006)PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat S. Kishore, S. Stamm, Regulation of alternative splicing by snoRNAs. Cold Spring Harb. Symp. Quant. Biol. 71, 329–334 (2006)PubMedCrossRef S. Kishore, S. Stamm, Regulation of alternative splicing by snoRNAs. Cold Spring Harb. Symp. Quant. Biol. 71, 329–334 (2006)PubMedCrossRef
9.
Zurück zum Zitat A.T. Zhang, A.R. Langley, C.P. Christov, E. Kheir, T. Shafee, T.J. Gardiner, T. Krude, Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication. J. Cell Sci. 124, 2058–2069 (2011)PubMedPubMedCentralCrossRef A.T. Zhang, A.R. Langley, C.P. Christov, E. Kheir, T. Shafee, T.J. Gardiner, T. Krude, Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication. J. Cell Sci. 124, 2058–2069 (2011)PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Y. Zhu, V. Stribinskis, K.S. Ramos, Y. Li, Sequence analysis of RNase MRP RNA reveals its origination from eukaryotic RNase P RNA. RNA 12, 699–706 (2006)PubMedPubMedCentralCrossRef Y. Zhu, V. Stribinskis, K.S. Ramos, Y. Li, Sequence analysis of RNase MRP RNA reveals its origination from eukaryotic RNase P RNA. RNA 12, 699–706 (2006)PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat A. Huttenhofer, P. Schattner, N. Polacek, Non-coding RNAs: hope or hype? Trends Genet. 21, 289–297 (2005)PubMedCrossRef A. Huttenhofer, P. Schattner, N. Polacek, Non-coding RNAs: hope or hype? Trends Genet. 21, 289–297 (2005)PubMedCrossRef
12.
Zurück zum Zitat P. Kapranov, J. Cheng, S. Dike, D.A. Nix, R. Duttagupta, A.T. Willingham, P.F. Stadler, J. Hertel, J. Hackermuller, I.L. Hofacker, I. Bell, E. Cheung, J. Drenkow, E. Dumais, S. Patel, G. Helt, M. Ganesh, S. Ghosh, A. Piccolboni, V. Sementchenko, H. Tammana, T.R. Gingeras, RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007)PubMedCrossRef P. Kapranov, J. Cheng, S. Dike, D.A. Nix, R. Duttagupta, A.T. Willingham, P.F. Stadler, J. Hertel, J. Hackermuller, I.L. Hofacker, I. Bell, E. Cheung, J. Drenkow, E. Dumais, S. Patel, G. Helt, M. Ganesh, S. Ghosh, A. Piccolboni, V. Sementchenko, H. Tammana, T.R. Gingeras, RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007)PubMedCrossRef
13.
Zurück zum Zitat R.J. Taft, K.C. Pang, T.R. Mercer, M. Dinger, J.S. Mattick, Non-coding RNAs: regulators of disease. J. Pathol. 220, 126–139 (2010)PubMedCrossRef R.J. Taft, K.C. Pang, T.R. Mercer, M. Dinger, J.S. Mattick, Non-coding RNAs: regulators of disease. J. Pathol. 220, 126–139 (2010)PubMedCrossRef
14.
Zurück zum Zitat R. Tanaka, M. Tomosugi, M. Horinaka, Y. Sowa, T. Sakai, Metformin causes G1-phase arrest via down-regulation of MiR-221 and enhances TRAIL sensitivity through DR5 up-regulation in pancreatic cancer cells. PLoS One 10, e0125779 (2015)PubMedPubMedCentralCrossRef R. Tanaka, M. Tomosugi, M. Horinaka, Y. Sowa, T. Sakai, Metformin causes G1-phase arrest via down-regulation of MiR-221 and enhances TRAIL sensitivity through DR5 up-regulation in pancreatic cancer cells. PLoS One 10, e0125779 (2015)PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat D. Nalls, S.N. Tang, M. Rodova, R.K. Srivastava, S. Shankar, Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One 6, e24099 (2011)PubMedPubMedCentralCrossRef D. Nalls, S.N. Tang, M. Rodova, R.K. Srivastava, S. Shankar, Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One 6, e24099 (2011)PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat L. Buscail, B. Bournet, F. Vernejoul, G. Cambois, H. Lulka, N. Hanoun, M. Dufresne, A. Meulle, A. Vignolle-Vidoni, L. Ligat, N. Saint-Laurent, F. Pont, S. Dejean, M. Gayral, F. Martins, J. Torrisani, O. Barbey, F. Gross, R. Guimbaud, P. Otal, F. Lopez, G. Tiraby, P. Cordelier, First-in-man phase I clinical trial of gene therapy for advanced pancreatic cancer: safety, biodistribution and preliminary clinical findings. Mol. Ther. 23, 202–214 (2015) L. Buscail, B. Bournet, F. Vernejoul, G. Cambois, H. Lulka, N. Hanoun, M. Dufresne, A. Meulle, A. Vignolle-Vidoni, L. Ligat, N. Saint-Laurent, F. Pont, S. Dejean, M. Gayral, F. Martins, J. Torrisani, O. Barbey, F. Gross, R. Guimbaud, P. Otal, F. Lopez, G. Tiraby, P. Cordelier, First-in-man phase I clinical trial of gene therapy for advanced pancreatic cancer: safety, biodistribution and preliminary clinical findings. Mol. Ther. 23, 202–214 (2015)
18.
Zurück zum Zitat D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)PubMedCrossRef D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)PubMedCrossRef
19.
Zurück zum Zitat K. Chen, N. Rajewsky, The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet. 8, 93–103 (2007)PubMedCrossRef K. Chen, N. Rajewsky, The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet. 8, 93–103 (2007)PubMedCrossRef
20.
Zurück zum Zitat A. Tanzer, P.F. Stadler, Molecular evolution of a microRNA cluster. J. Mol. Biol. 339, 327–335 (2004)PubMedCrossRef A. Tanzer, P.F. Stadler, Molecular evolution of a microRNA cluster. J. Mol. Biol. 339, 327–335 (2004)PubMedCrossRef
22.
23.
Zurück zum Zitat I. Fkih M’hamed, M. Privat, F. Ponelle, F. Penault-Llorca, A. Kenani, Y.J. Bignon, Identification of miR-10b, miR-26a, miR-146a and miR-153 as potential triple-negative breast cancer biomarkers. Cell. Oncol. 38, 433–442 (2015)CrossRef I. Fkih M’hamed, M. Privat, F. Ponelle, F. Penault-Llorca, A. Kenani, Y.J. Bignon, Identification of miR-10b, miR-26a, miR-146a and miR-153 as potential triple-negative breast cancer biomarkers. Cell. Oncol. 38, 433–442 (2015)CrossRef
24.
Zurück zum Zitat E. Yiannakopoulou, Targeting epigenetic mechanisms and microRNAs by aspirin and other non steroidal anti-inflammatory agents--implications for cancer treatment and chemoprevention. Cell. Oncol. 37, 167–178 (2014)CrossRef E. Yiannakopoulou, Targeting epigenetic mechanisms and microRNAs by aspirin and other non steroidal anti-inflammatory agents--implications for cancer treatment and chemoprevention. Cell. Oncol. 37, 167–178 (2014)CrossRef
25.
Zurück zum Zitat C. Salazar, R. Nagadia, P. Pandit, J. Cooper-White, N. Banerjee, N. Dimitrova, W.B. Coman, C. Punyadeera, A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell. Oncol. 37, 331–338 (2014)CrossRef C. Salazar, R. Nagadia, P. Pandit, J. Cooper-White, N. Banerjee, N. Dimitrova, W.B. Coman, C. Punyadeera, A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell. Oncol. 37, 331–338 (2014)CrossRef
26.
Zurück zum Zitat K.J. Peterson, M.R. Dietrich, M.A. McPeek, MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. Bioessays 31, 736–747 (2009)PubMedCrossRef K.J. Peterson, M.R. Dietrich, M.A. McPeek, MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. Bioessays 31, 736–747 (2009)PubMedCrossRef
27.
Zurück zum Zitat Y. Lee, M. Kim, J. Han, K.H. Yeom, S. Lee, S.H. Baek, V.N. Kim, MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004)PubMedPubMedCentralCrossRef Y. Lee, M. Kim, J. Han, K.H. Yeom, S. Lee, S.H. Baek, V.N. Kim, MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004)PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat R.I. Gregory, T.P. Chendrimada, R. Shiekhattar, MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol. Biol. 342, 33–47 (2006)PubMed R.I. Gregory, T.P. Chendrimada, R. Shiekhattar, MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol. Biol. 342, 33–47 (2006)PubMed
29.
Zurück zum Zitat E. Lund, J.E. Dahlberg, Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb. Symp. Quant. Biol. 71, 59–66 (2006)PubMedCrossRef E. Lund, J.E. Dahlberg, Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb. Symp. Quant. Biol. 71, 59–66 (2006)PubMedCrossRef
30.
Zurück zum Zitat E. Prodromaki, A. Korpetinou, E. Giannopoulou, E. Vlotinou, M. Chatziathanasiadou, N.I. Papachristou, C.D. Scopa, H. Papadaki, H.P. Kalofonos, D.J. Papachristou, Expression of the microRNA regulators Drosha, Dicer and Ago2 in non-small cell lung carcinomas. Cell. Oncol. 38, 307–317 (2015)CrossRef E. Prodromaki, A. Korpetinou, E. Giannopoulou, E. Vlotinou, M. Chatziathanasiadou, N.I. Papachristou, C.D. Scopa, H. Papadaki, H.P. Kalofonos, D.J. Papachristou, Expression of the microRNA regulators Drosha, Dicer and Ago2 in non-small cell lung carcinomas. Cell. Oncol. 38, 307–317 (2015)CrossRef
31.
Zurück zum Zitat X.J. Wang, J.L. Reyes, N.H. Chua, T. Gaasterland, Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol. 5, R65 (2004)PubMedPubMedCentralCrossRef X.J. Wang, J.L. Reyes, N.H. Chua, T. Gaasterland, Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol. 5, R65 (2004)PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat A. Eulalio, E. Huntzinger, T. Nishihara, J. Rehwinkel, M. Fauser, E. Izaurralde, Deadenylation is a widespread effect of miRNA regulation. RNA 15, 21–32 (2009)PubMedPubMedCentralCrossRef A. Eulalio, E. Huntzinger, T. Nishihara, J. Rehwinkel, M. Fauser, E. Izaurralde, Deadenylation is a widespread effect of miRNA regulation. RNA 15, 21–32 (2009)PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat A.A. Bazzini, M.T. Lee, A.J. Giraldez, Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012)PubMedPubMedCentralCrossRef A.A. Bazzini, M.T. Lee, A.J. Giraldez, Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012)PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat B.P. Lewis, I.H. Shih, M.W. Jones-Rhoades, D.P. Bartel, C.B. Burge, Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003)PubMedCrossRef B.P. Lewis, I.H. Shih, M.W. Jones-Rhoades, D.P. Bartel, C.B. Burge, Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003)PubMedCrossRef
35.
Zurück zum Zitat W.G. Zhao, S.N. Yu, Z.H. Lu, Y.H. Ma, Y.M. Gu, J. Chen, The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 31, 1726–1733 (2010)PubMedCrossRef W.G. Zhao, S.N. Yu, Z.H. Lu, Y.H. Ma, Y.M. Gu, J. Chen, The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 31, 1726–1733 (2010)PubMedCrossRef
36.
Zurück zum Zitat M.C. du Rieu, J. Torrisani, J. Selves, T. Al Saati, A. Souque, M. Dufresne, G.J. Tsongalis, A.A. Suriawinata, N. Carrere, L. Buscail, P. Cordelier, MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma precursor lesions. Clin. Chem. 56, 603–612 (2010)PubMedCrossRef M.C. du Rieu, J. Torrisani, J. Selves, T. Al Saati, A. Souque, M. Dufresne, G.J. Tsongalis, A.A. Suriawinata, N. Carrere, L. Buscail, P. Cordelier, MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma precursor lesions. Clin. Chem. 56, 603–612 (2010)PubMedCrossRef
37.
Zurück zum Zitat S. Ye, L. Yang, X. Zhao, W. Song, W. Wang, S. Zheng, Bioinformatics method to predict two regulation mechanism: TF-miRNA-mRNA and lncRNA-miRNA-mRNA in pancreatic cancer. Cell Biochem. Biophys. 70, 1849–1858 (2014)PubMedCrossRef S. Ye, L. Yang, X. Zhao, W. Song, W. Wang, S. Zheng, Bioinformatics method to predict two regulation mechanism: TF-miRNA-mRNA and lncRNA-miRNA-mRNA in pancreatic cancer. Cell Biochem. Biophys. 70, 1849–1858 (2014)PubMedCrossRef
38.
Zurück zum Zitat N. Habbe, J.B. Koorstra, J.T. Mendell, G.J. Offerhaus, J.K. Ryu, G. Feldmann, M.E. Mullendore, M.G. Goggins, S.M. Hong, A. Maitra, MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol. Ther. 8, 340–346 (2009)PubMedPubMedCentralCrossRef N. Habbe, J.B. Koorstra, J.T. Mendell, G.J. Offerhaus, J.K. Ryu, G. Feldmann, M.E. Mullendore, M.G. Goggins, S.M. Hong, A. Maitra, MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol. Ther. 8, 340–346 (2009)PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat J.K. Ryu, S.M. Hong, C.A. Karikari, R.H. Hruban, M.G. Goggins, A. Maitra, Aberrant MicroRNA-155 expression is an early event in the multistep progression of pancreatic adenocarcinoma. Pancreatology 10, 66–73 (2010)PubMedPubMedCentralCrossRef J.K. Ryu, S.M. Hong, C.A. Karikari, R.H. Hruban, M.G. Goggins, A. Maitra, Aberrant MicroRNA-155 expression is an early event in the multistep progression of pancreatic adenocarcinoma. Pancreatology 10, 66–73 (2010)PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat C. Yu, M. Wang, Z. Li, J. Xiao, F. Peng, X. Guo, Y. Deng, J. Jiang, C. Sun, MicroRNA-138-5p regulates pancreatic cancer cell growth through targeting FOXC1. Cell. Oncol. 38, 173–181 (2015) C. Yu, M. Wang, Z. Li, J. Xiao, F. Peng, X. Guo, Y. Deng, J. Jiang, C. Sun, MicroRNA-138-5p regulates pancreatic cancer cell growth through targeting FOXC1. Cell. Oncol. 38, 173–181 (2015)
41.
Zurück zum Zitat J.A. Goodrich, J.F. Kugel, Non-coding-RNA regulators of RNA polymerase II transcription. Nat. Rev. Mol. Cell Biol. 7, 612–616 (2006)PubMedCrossRef J.A. Goodrich, J.F. Kugel, Non-coding-RNA regulators of RNA polymerase II transcription. Nat. Rev. Mol. Cell Biol. 7, 612–616 (2006)PubMedCrossRef
42.
Zurück zum Zitat M. Beltran, I. Puig, C. Pena, J.M. Garcia, A.B. Alvarez, R. Pena, F. Bonilla, A.G. de Herreros, A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev. 22, 756–769 (2008)PubMedPubMedCentralCrossRef M. Beltran, I. Puig, C. Pena, J.M. Garcia, A.B. Alvarez, R. Pena, F. Bonilla, A.G. de Herreros, A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev. 22, 756–769 (2008)PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat A. Mazo, J.W. Hodgson, S. Petruk, Y. Sedkov, H.W. Brock, Transcriptional interference: an unexpected layer of complexity in gene regulation. J. Cell Sci. 120, 2755–2761 (2007)PubMedCrossRef A. Mazo, J.W. Hodgson, S. Petruk, Y. Sedkov, H.W. Brock, Transcriptional interference: an unexpected layer of complexity in gene regulation. J. Cell Sci. 120, 2755–2761 (2007)PubMedCrossRef
44.
Zurück zum Zitat J.H. Yoon, J. Kim, M. Gorospe, Long noncoding RNA turnover. Biochimie 1859, 209–221 (2015) J.H. Yoon, J. Kim, M. Gorospe, Long noncoding RNA turnover. Biochimie 1859, 209–221 (2015)
47.
Zurück zum Zitat A. Wutz, T.P. Rasmussen, R. Jaenisch, Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30, 167–174 (2002)PubMedCrossRef A. Wutz, T.P. Rasmussen, R. Jaenisch, Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30, 167–174 (2002)PubMedCrossRef
48.
Zurück zum Zitat M. Mourtada-Maarabouni, A.M. Hasan, F. Farzaneh, G.T. Williams, Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Mol. Pharmacol. 78, 19–28 (2010)PubMedPubMedCentralCrossRef M. Mourtada-Maarabouni, A.M. Hasan, F. Farzaneh, G.T. Williams, Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Mol. Pharmacol. 78, 19–28 (2010)PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat K. Kim, I. Jutooru, G. Chadalapaka, G. Johnson, J. Frank, R. Burghardt, S. Kim, S. Safe, HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 32, 1616–1625 (2013)PubMedCrossRef K. Kim, I. Jutooru, G. Chadalapaka, G. Johnson, J. Frank, R. Burghardt, S. Kim, S. Safe, HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 32, 1616–1625 (2013)PubMedCrossRef
51.
Zurück zum Zitat S. Uchida, S. Dimmeler, Long noncoding RNAs in cardiovascular diseases. Circ. Res. 116, 737–750 (2015)PubMedCrossRef S. Uchida, S. Dimmeler, Long noncoding RNAs in cardiovascular diseases. Circ. Res. 116, 737–750 (2015)PubMedCrossRef
52.
55.
Zurück zum Zitat J. Torrisani, B. Bournet, M.C. du Rieu, M. Bouisson, A. Souque, J. Escourrou, L. Buscail, P. Cordelier, let-7 MicroRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression. Hum.Gene Ther. 20, 831–844 (2009)PubMedCrossRef J. Torrisani, B. Bournet, M.C. du Rieu, M. Bouisson, A. Souque, J. Escourrou, L. Buscail, P. Cordelier, let-7 MicroRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression. Hum.Gene Ther. 20, 831–844 (2009)PubMedCrossRef
56.
Zurück zum Zitat P.J. White, F. Anastasopoulos, C.W. Pouton, B.J. Boyd, Overcoming biological barriers to in vivo efficacy of antisense oligonucleotides. Expert Rev. Mol. Med. 11, e10 (2009)PubMedCrossRef P.J. White, F. Anastasopoulos, C.W. Pouton, B.J. Boyd, Overcoming biological barriers to in vivo efficacy of antisense oligonucleotides. Expert Rev. Mol. Med. 11, e10 (2009)PubMedCrossRef
57.
Zurück zum Zitat X. Zong, L. Huang, V. Tripathi, R. Peralta, S.M. Freier, S. Guo, K.V. Prasanth, Knockdown of nuclear-retained long noncoding RNAs using modified DNA antisense oligonucleotides. Methods Mol. Biol. 1262, 321–331 (2015)PubMedCrossRef X. Zong, L. Huang, V. Tripathi, R. Peralta, S.M. Freier, S. Guo, K.V. Prasanth, Knockdown of nuclear-retained long noncoding RNAs using modified DNA antisense oligonucleotides. Methods Mol. Biol. 1262, 321–331 (2015)PubMedCrossRef
58.
Zurück zum Zitat N. Hanna, P. Ohana, F.M. Konikoff, G. Leichtmann, A. Hubert, L. Appelbaum, Y. Kopelman, A. Czerniak, A. Hochberg, Phase 1/2a, dose-escalation, safety, pharmacokinetic and preliminary efficacy study of intratumoral administration of BC-819 in patients with unresectable pancreatic cancer. Cancer Gene Ther. 19, 374–381 (2012)PubMedCrossRef N. Hanna, P. Ohana, F.M. Konikoff, G. Leichtmann, A. Hubert, L. Appelbaum, Y. Kopelman, A. Czerniak, A. Hochberg, Phase 1/2a, dose-escalation, safety, pharmacokinetic and preliminary efficacy study of intratumoral administration of BC-819 in patients with unresectable pancreatic cancer. Cancer Gene Ther. 19, 374–381 (2012)PubMedCrossRef
59.
Zurück zum Zitat M. Lohr, P. Maisonneuve, A.B. Lowenfels, K-Ras mutations and benign pancreatic disease. Int. J. Pancreatol. 27, 93–103 (2000)PubMedCrossRef M. Lohr, P. Maisonneuve, A.B. Lowenfels, K-Ras mutations and benign pancreatic disease. Int. J. Pancreatol. 27, 93–103 (2000)PubMedCrossRef
61.
Zurück zum Zitat O.A. Kent, R.R. Chivukula, M. Mullendore, E.A. Wentzel, G. Feldmann, K.H. Lee, S. Liu, S.D. Leach, A. Maitra, J.T. Mendell, Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev. 24, 2754–2759 (2010)PubMedPubMedCentralCrossRef O.A. Kent, R.R. Chivukula, M. Mullendore, E.A. Wentzel, G. Feldmann, K.H. Lee, S. Liu, S.D. Leach, A. Maitra, J.T. Mendell, Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev. 24, 2754–2759 (2010)PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat I. Keklikoglou, K. Hosaka, C. Bender, A. Bott, C. Koerner, D. Mitra, R. Will, A. Woerner, E. Muenstermann, H. Wilhelm, Y. Cao, S. Wiemann, MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes. Oncogene 34, 4867–4878 (2014) I. Keklikoglou, K. Hosaka, C. Bender, A. Bott, C. Koerner, D. Mitra, R. Will, A. Woerner, E. Muenstermann, H. Wilhelm, Y. Cao, S. Wiemann, MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes. Oncogene 34, 4867–4878 (2014)
63.
Zurück zum Zitat X. Yan, X. Chen, H. Liang, T. Deng, W. Chen, S. Zhang, M. Liu, X. Gao, Y. Liu, C. Zhao, X. Wang, N. Wang, J. Li, R. Liu, K. Zen, C.Y. Zhang, B. Liu, Y. Ba, miR-143 and miR-145 synergistically regulate ERBB3 to suppress cell proliferation and invasion in breast cancer. Mol. Cancer. 13, 220 (2014). doi:10.1186/1476-4598-13-220 PubMedPubMedCentralCrossRef X. Yan, X. Chen, H. Liang, T. Deng, W. Chen, S. Zhang, M. Liu, X. Gao, Y. Liu, C. Zhao, X. Wang, N. Wang, J. Li, R. Liu, K. Zen, C.Y. Zhang, B. Liu, Y. Ba, miR-143 and miR-145 synergistically regulate ERBB3 to suppress cell proliferation and invasion in breast cancer. Mol. Cancer. 13, 220 (2014). doi:10.​1186/​1476-4598-13-220 PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat O.A. Kent, J.T. Mendell, R. Rottapel, Transcriptional regulation of miR-31 by oncogenic KRAS mediates metastatic phenotypes by repressing RASA1. Mol. Cancer. Res. (2016). doi:10.1158/1541-7786.MCR-15-0456 O.A. Kent, J.T. Mendell, R. Rottapel, Transcriptional regulation of miR-31 by oncogenic KRAS mediates metastatic phenotypes by repressing RASA1. Mol. Cancer. Res. (2016). doi:10.​1158/​1541-7786.​MCR-15-0456
65.
Zurück zum Zitat J. Su, H. Liang, W. Yao, N. Wang, S. Zhang, X. Yan, H. Feng, W. Pang, Y. Wang, X. Wang, Z. Fu, Y. Liu, C. Zhao, J. Zhang, C.Y. Zhang, K. Zen, X. Chen, Y. Wang, MiR-143 and MiR-145 regulate IGF1R to suppress cell proliferation in colorectal cancer. PLoS One 9, e114420 (2014)PubMedPubMedCentralCrossRef J. Su, H. Liang, W. Yao, N. Wang, S. Zhang, X. Yan, H. Feng, W. Pang, Y. Wang, X. Wang, Z. Fu, Y. Liu, C. Zhao, J. Zhang, C.Y. Zhang, K. Zen, X. Chen, Y. Wang, MiR-143 and MiR-145 regulate IGF1R to suppress cell proliferation in colorectal cancer. PLoS One 9, e114420 (2014)PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat X. Chen, X. Guo, H. Zhang, Y. Xiang, J. Chen, Y. Yin, X. Cai, K. Wang, G. Wang, Y. Ba, L. Zhu, J. Wang, R. Yang, Y. Zhang, Z. Ren, K. Zen, J. Zhang, C.Y. Zhang, Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28, 1385–1392 (2009)PubMedCrossRef X. Chen, X. Guo, H. Zhang, Y. Xiang, J. Chen, Y. Yin, X. Cai, K. Wang, G. Wang, Y. Ba, L. Zhu, J. Wang, R. Yang, Y. Zhang, Z. Ren, K. Zen, J. Zhang, C.Y. Zhang, Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28, 1385–1392 (2009)PubMedCrossRef
67.
Zurück zum Zitat C. Clape, V. Fritz, C. Henriquet, F. Apparailly, P.L. Fernandez, F. Iborra, C. Avances, M. Villalba, S. Culine, L. Fajas, miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One 4, e7542 (2009)PubMedPubMedCentralCrossRef C. Clape, V. Fritz, C. Henriquet, F. Apparailly, P.L. Fernandez, F. Iborra, C. Avances, M. Villalba, S. Culine, L. Fajas, miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One 4, e7542 (2009)PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat M. Sachdeva, S. Zhu, F. Wu, H. Wu, V. Walia, S. Kumar, R. Elble, K. Watabe, Y.Y. Mo, p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc. Natl. Acad. Sci. U. S. A. 106, 3207–3212 (2009)PubMedPubMedCentralCrossRef M. Sachdeva, S. Zhu, F. Wu, H. Wu, V. Walia, S. Kumar, R. Elble, K. Watabe, Y.Y. Mo, p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc. Natl. Acad. Sci. U. S. A. 106, 3207–3212 (2009)PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat P. Wang, C.F. Zhu, M.Z. Ma, G. Chen, M. Song, Z.L. Zeng, W.H. Lu, J. Yang, S. Wen, P.J. Chiao, Y. Hu, P. Huang, Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer. Oncotarget 6, 21148–21158 (2015) P. Wang, C.F. Zhu, M.Z. Ma, G. Chen, M. Song, Z.L. Zeng, W.H. Lu, J. Yang, S. Wen, P.J. Chiao, Y. Hu, P. Huang, Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer. Oncotarget 6, 21148–21158 (2015)
70.
Zurück zum Zitat T. Greither, L.F. Grochola, A. Udelnow, C. Lautenschlager, P. Wurl, H. Taubert, Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int. J. Cancer 126, 73–80 (2010)PubMedCrossRef T. Greither, L.F. Grochola, A. Udelnow, C. Lautenschlager, P. Wurl, H. Taubert, Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int. J. Cancer 126, 73–80 (2010)PubMedCrossRef
71.
Zurück zum Zitat M. Gironella, M. Seux, M.J. Xie, C. Cano, R. Tomasini, J. Gommeaux, S. Garcia, J. Nowak, M.L. Yeung, K.T. Jeang, A. Chaix, L. Fazli, Y. Motoo, Q. Wang, P. Rocchi, A. Russo, M. Gleave, J.C. Dagorn, J.L. Iovanna, A. Carrier, M.J. Pebusque, N.J. Dusetti, Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc. Natl. Acad. Sci. U. S. A. 104, 16170–16175 (2007)PubMedPubMedCentralCrossRef M. Gironella, M. Seux, M.J. Xie, C. Cano, R. Tomasini, J. Gommeaux, S. Garcia, J. Nowak, M.L. Yeung, K.T. Jeang, A. Chaix, L. Fazli, Y. Motoo, Q. Wang, P. Rocchi, A. Russo, M. Gleave, J.C. Dagorn, J.L. Iovanna, A. Carrier, M.J. Pebusque, N.J. Dusetti, Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc. Natl. Acad. Sci. U. S. A. 104, 16170–16175 (2007)PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat W. Pang, J. Su, Y. Wang, H. Feng, X. Dai, Y. Yuan, X. Chen, W. Yao, Pancreatic cancer-secreted miR-155 implicates in the Conversion from Normal Fibroblasts to Cancer-Associated Fibroblasts. Cancer. Sci. 106, 1362–1369 (2015) W. Pang, J. Su, Y. Wang, H. Feng, X. Dai, Y. Yuan, X. Chen, W. Yao, Pancreatic cancer-secreted miR-155 implicates in the Conversion from Normal Fibroblasts to Cancer-Associated Fibroblasts. Cancer. Sci. 106, 1362–1369 (2015)
73.
Zurück zum Zitat C. Huang, H. Li, W. Wu, T. Jiang, Z. Qiu, Regulation of miR-155 affects pancreatic cancer cell invasiveness and migration by modulating the STAT3 signaling pathway through SOCS1. Oncol. Rep. 30, 1223–1230 (2013)PubMed C. Huang, H. Li, W. Wu, T. Jiang, Z. Qiu, Regulation of miR-155 affects pancreatic cancer cell invasiveness and migration by modulating the STAT3 signaling pathway through SOCS1. Oncol. Rep. 30, 1223–1230 (2013)PubMed
74.
Zurück zum Zitat C. Huang, G. Yang, T. Jiang, G. Zhu, H. Li, Z. Qiu, The effects and mechanisms of blockage of STAT3 signaling pathway on IL-6 inducing EMT in human pancreatic cancer cells in vitro. Neoplasma 58, 396–405 (2011)PubMedCrossRef C. Huang, G. Yang, T. Jiang, G. Zhu, H. Li, Z. Qiu, The effects and mechanisms of blockage of STAT3 signaling pathway on IL-6 inducing EMT in human pancreatic cancer cells in vitro. Neoplasma 58, 396–405 (2011)PubMedCrossRef
75.
Zurück zum Zitat I.A. Asangani, S.A. Rasheed, D.A. Nikolova, J.H. Leupold, N.H. Colburn, S. Post, H. Allgayer, MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128–2136 (2008)PubMedCrossRef I.A. Asangani, S.A. Rasheed, D.A. Nikolova, J.H. Leupold, N.H. Colburn, S. Post, H. Allgayer, MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128–2136 (2008)PubMedCrossRef
76.
Zurück zum Zitat J.A. Chan, A.M. Krichevsky, K.S. Kosik, MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65, 6029–6033 (2005)PubMedCrossRef J.A. Chan, A.M. Krichevsky, K.S. Kosik, MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65, 6029–6033 (2005)PubMedCrossRef
77.
Zurück zum Zitat D.L. Vaux, S. Cory, J.M. Adams, Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988)PubMedCrossRef D.L. Vaux, S. Cory, J.M. Adams, Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988)PubMedCrossRef
78.
Zurück zum Zitat M. Dillhoff, J. Liu, W. Frankel, C. Croce, M. Bloomston, MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J. Gastrointest. Surg. 12, 2171–2176 (2008)PubMedPubMedCentralCrossRef M. Dillhoff, J. Liu, W. Frankel, C. Croce, M. Bloomston, MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J. Gastrointest. Surg. 12, 2171–2176 (2008)PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat W.F. Song, L. Wang, W.Y. Huang, X. Cai, J.J. Cui, L.W. Wang, MiR-21 upregulation induced by promoter zone histone acetylation is associated with chemoresistance to gemcitabine and enhanced malignancy of pancreatic cancer cells. Asian Pac. J. Cancer Prev. 14, 7529–7536 (2013)PubMedCrossRef W.F. Song, L. Wang, W.Y. Huang, X. Cai, J.J. Cui, L.W. Wang, MiR-21 upregulation induced by promoter zone histone acetylation is associated with chemoresistance to gemcitabine and enhanced malignancy of pancreatic cancer cells. Asian Pac. J. Cancer Prev. 14, 7529–7536 (2013)PubMedCrossRef
80.
Zurück zum Zitat P. Wang, L. Zhuang, J. Zhang, J. Fan, J. Luo, H. Chen, K. Wang, L. Liu, Z. Chen, Z. Meng, The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol. Oncol. 7, 334–345 (2013)PubMedCrossRef P. Wang, L. Zhuang, J. Zhang, J. Fan, J. Luo, H. Chen, K. Wang, L. Liu, Z. Chen, Z. Meng, The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol. Oncol. 7, 334–345 (2013)PubMedCrossRef
81.
Zurück zum Zitat J.H. Hwang, J. Voortman, E. Giovannetti, S.M. Steinberg, L.G. Leon, Y.T. Kim, N. Funel, J.K. Park, M.A. Kim, G.H. Kang, S.W. Kim, M. Del Chiaro, G.J. Peters, G. Giaccone, Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One 5, e10630 (2010)PubMedPubMedCentralCrossRef J.H. Hwang, J. Voortman, E. Giovannetti, S.M. Steinberg, L.G. Leon, Y.T. Kim, N. Funel, J.K. Park, M.A. Kim, G.H. Kang, S.W. Kim, M. Del Chiaro, G.J. Peters, G. Giaccone, Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One 5, e10630 (2010)PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat P. Liu, H. Liang, Q. Xia, P. Li, H. Kong, P. Lei, S. Wang, Z. Tu, Resveratrol induces apoptosis of pancreatic cancers cells by inhibiting miR-21 regulation of BCL-2 expression. Clin. Transl. Oncol. 15, 741–746 (2013)PubMedCrossRef P. Liu, H. Liang, Q. Xia, P. Li, H. Kong, P. Lei, S. Wang, Z. Tu, Resveratrol induces apoptosis of pancreatic cancers cells by inhibiting miR-21 regulation of BCL-2 expression. Clin. Transl. Oncol. 15, 741–746 (2013)PubMedCrossRef
83.
Zurück zum Zitat J.K. Park, E.J. Lee, C. Esau, T.D. Schmittgen, Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas 38, e190–e199 (2009)PubMedCrossRef J.K. Park, E.J. Lee, C. Esau, T.D. Schmittgen, Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas 38, e190–e199 (2009)PubMedCrossRef
84.
Zurück zum Zitat P.A. Toste, L. Li, B.E. Kadera, A.H. Nguyen, L.M. Tran, N. Wu, D.L. Madnick, S.G. Patel, D.W. Dawson, T.R. Donahue, p85alpha is a microRNA target and affects chemosensitivity in pancreatic cancer. J. Surg. Res. 196, 285–293 (2015)PubMedPubMedCentralCrossRef P.A. Toste, L. Li, B.E. Kadera, A.H. Nguyen, L.M. Tran, N. Wu, D.L. Madnick, S.G. Patel, D.W. Dawson, T.R. Donahue, p85alpha is a microRNA target and affects chemosensitivity in pancreatic cancer. J. Surg. Res. 196, 285–293 (2015)PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat W.H. Paik, H.R. Kim, J.K. Park, B.J. Song, S.H. Lee, J.H. Hwang, Chemosensitivity induced by down-regulation of microRNA-21 in gemcitabine-resistant pancreatic cancer cells by indole-3-carbinol. Anticancer Res. 33, 1473–1481 (2013)PubMed W.H. Paik, H.R. Kim, J.K. Park, B.J. Song, S.H. Lee, J.H. Hwang, Chemosensitivity induced by down-regulation of microRNA-21 in gemcitabine-resistant pancreatic cancer cells by indole-3-carbinol. Anticancer Res. 33, 1473–1481 (2013)PubMed
86.
Zurück zum Zitat T.A. Mace, A.L. Collins, S.E. Wojcik, C.M. Croce, G.B. Lesinski, M. Bloomston, Hypoxia induces the overexpression of microRNA-21 in pancreatic cancer cells. J. Surg. Res. 184, 855–860 (2013)PubMedPubMedCentralCrossRef T.A. Mace, A.L. Collins, S.E. Wojcik, C.M. Croce, G.B. Lesinski, M. Bloomston, Hypoxia induces the overexpression of microRNA-21 in pancreatic cancer cells. J. Surg. Res. 184, 855–860 (2013)PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat H. Ying, K.G. Elpek, A. Vinjamoori, S.M. Zimmerman, G.C. Chu, H. Yan, E. Fletcher-Sananikone, H. Zhang, Y. Liu, W. Wang, X. Ren, H. Zheng, A.C. Kimmelman, J.H. Paik, C. Lim, S.R. Perry, S. Jiang, B. Malinn, A. Protopopov, S. Colla, Y. Xiao, A.F. Hezel, N. Bardeesy, S.J. Turley, Y.A. Wang, L. Chin, S.P. Thayer, R.A. DePinho, PTEN is a major tumor suppressor in pancreatic ductal adenocarcinoma and regulates an NF-kappaB-cytokine network. Cancer Discov. 1, 158–169 (2011)PubMedPubMedCentralCrossRef H. Ying, K.G. Elpek, A. Vinjamoori, S.M. Zimmerman, G.C. Chu, H. Yan, E. Fletcher-Sananikone, H. Zhang, Y. Liu, W. Wang, X. Ren, H. Zheng, A.C. Kimmelman, J.H. Paik, C. Lim, S.R. Perry, S. Jiang, B. Malinn, A. Protopopov, S. Colla, Y. Xiao, A.F. Hezel, N. Bardeesy, S.J. Turley, Y.A. Wang, L. Chin, S.P. Thayer, R.A. DePinho, PTEN is a major tumor suppressor in pancreatic ductal adenocarcinoma and regulates an NF-kappaB-cytokine network. Cancer Discov. 1, 158–169 (2011)PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat B.E. Kadera, L. Li, P.A. Toste, N. Wu, C. Adams, D.W. Dawson, T.R. Donahue, MicroRNA-21 in pancreatic ductal adenocarcinoma tumor-associated fibroblasts promotes metastasis. PLoS One 8, e71978 (2013) B.E. Kadera, L. Li, P.A. Toste, N. Wu, C. Adams, D.W. Dawson, T.R. Donahue, MicroRNA-21 in pancreatic ductal adenocarcinoma tumor-associated fibroblasts promotes metastasis. PLoS One 8, e71978 (2013)
89.
90.
Zurück zum Zitat M. Passadouro, M.C. Pedroso de Lima, H. Faneca, MicroRNA modulation combined with sunitinib as a novel therapeutic strategy for pancreatic cancer. Int. J. Nanomedicine 9, 3203–3217 (2014)PubMedPubMedCentral M. Passadouro, M.C. Pedroso de Lima, H. Faneca, MicroRNA modulation combined with sunitinib as a novel therapeutic strategy for pancreatic cancer. Int. J. Nanomedicine 9, 3203–3217 (2014)PubMedPubMedCentral
91.
Zurück zum Zitat Y. Zhang, M. Li, H. Wang, W.E. Fisher, P.H. Lin, Q. Yao, C. Chen, Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis. World J. Surg. 33, 698–709 (2009)PubMedPubMedCentralCrossRef Y. Zhang, M. Li, H. Wang, W.E. Fisher, P.H. Lin, Q. Yao, C. Chen, Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis. World J. Surg. 33, 698–709 (2009)PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat H. Hermeking, The miR-34 family in cancer and apoptosis. Cell Death Differ. 17, 193–199 (2010)PubMedCrossRef H. Hermeking, The miR-34 family in cancer and apoptosis. Cell Death Differ. 17, 193–199 (2010)PubMedCrossRef
93.
Zurück zum Zitat J. Xia, Q. Duan, A. Ahmad, B. Bao, S. Banerjee, Y. Shi, J. Ma, J. Geng, Z. Chen, K. Rahman, L. Miele, F. Sarkar, Z. Wang, Genistein inhibits cell growth and induces apoptosis through up-regulation of miR-34a in pancreatic cancer cells. 13, 1750–1756 (2012) J. Xia, Q. Duan, A. Ahmad, B. Bao, S. Banerjee, Y. Shi, J. Ma, J. Geng, Z. Chen, K. Rahman, L. Miele, F. Sarkar, Z. Wang, Genistein inhibits cell growth and induces apoptosis through up-regulation of miR-34a in pancreatic cancer cells. 13, 1750–1756 (2012)
94.
Zurück zum Zitat Q. Ji, X. Hao, M. Zhang, W. Tang, M. Yang, L. Li, D. Xiang, J.T. Desano, G.T. Bommer, D. Fan, E.R. Fearon, T.S. Lawrence, L. Xu, MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4, e6816 (2009)PubMedPubMedCentralCrossRef Q. Ji, X. Hao, M. Zhang, W. Tang, M. Yang, L. Li, D. Xiang, J.T. Desano, G.T. Bommer, D. Fan, E.R. Fearon, T.S. Lawrence, L. Xu, MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4, e6816 (2009)PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat C. Liu, H. Cheng, S. Shi, X. Cui, J. Yang, L. Chen, P. Cen, X. Cai, Y. Lu, C. Wu, W. Yao, Y. Qin, L. Liu, J. Long, J. Xu, M. Li, X. Yu, MicroRNA-34b inhibits pancreatic cancer metastasis through repressing Smad3. Curr. Mol. Med. 13, 467–478 (2013)PubMedCrossRef C. Liu, H. Cheng, S. Shi, X. Cui, J. Yang, L. Chen, P. Cen, X. Cai, Y. Lu, C. Wu, W. Yao, Y. Qin, L. Liu, J. Long, J. Xu, M. Li, X. Yu, MicroRNA-34b inhibits pancreatic cancer metastasis through repressing Smad3. Curr. Mol. Med. 13, 467–478 (2013)PubMedCrossRef
96.
Zurück zum Zitat T.C. Chang, E.A. Wentzel, O.A. Kent, K. Ramachandran, M. Mullendore, K.H. Lee, G. Feldmann, M. Yamakuchi, M. Ferlito, C.J. Lowenstein, D.E. Arking, M.A. Beer, A. Maitra, J.T. Mendell, Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26, 745–752 (2007)PubMedPubMedCentralCrossRef T.C. Chang, E.A. Wentzel, O.A. Kent, K. Ramachandran, M. Mullendore, K.H. Lee, G. Feldmann, M. Yamakuchi, M. Ferlito, C.J. Lowenstein, D.E. Arking, M.A. Beer, A. Maitra, J.T. Mendell, Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26, 745–752 (2007)PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat D.A. Deming, J. Ninan, H.H. Bailey, J.M. Kolesar, J. Eickhoff, J.M. Reid, M.M. Ames, R.M. McGovern, D. Alberti, R. Marnocha, I. Espinoza-Delgado, J. Wright, G. Wilding, W.R. Schelman, A Phase I study of intermittently dosed vorinostat in combination with bortezomib in patients with advanced solid tumors. Invest. New Drugs 32, 323–329 (2014)PubMedCrossRef D.A. Deming, J. Ninan, H.H. Bailey, J.M. Kolesar, J. Eickhoff, J.M. Reid, M.M. Ames, R.M. McGovern, D. Alberti, R. Marnocha, I. Espinoza-Delgado, J. Wright, G. Wilding, W.R. Schelman, A Phase I study of intermittently dosed vorinostat in combination with bortezomib in patients with advanced solid tumors. Invest. New Drugs 32, 323–329 (2014)PubMedCrossRef
99.
Zurück zum Zitat J.H. Mitchell, E. Cawood, D. Kinniburgh, A. Provan, A.R. Collins, D.S. Irvine, Effect of a phytoestrogen food supplement on reproductive health in normal males. Clin. Sci. (Lond.) 100, 613–618 (2001)CrossRef J.H. Mitchell, E. Cawood, D. Kinniburgh, A. Provan, A.R. Collins, D.S. Irvine, Effect of a phytoestrogen food supplement on reproductive health in normal males. Clin. Sci. (Lond.) 100, 613–618 (2001)CrossRef
100.
Zurück zum Zitat S. Babashah, M. Sadeghizadeh, M.R. Tavirani, S. Farivar, M. Soleimani, Aberrant microRNA expression and its implications in the pathogenesis of leukemias. Cell. Oncol. 35, 317–334 (2012)CrossRef S. Babashah, M. Sadeghizadeh, M.R. Tavirani, S. Farivar, M. Soleimani, Aberrant microRNA expression and its implications in the pathogenesis of leukemias. Cell. Oncol. 35, 317–334 (2012)CrossRef
101.
Zurück zum Zitat J. Haybaeck, N. Zeller, M. Heikenwalder, The parallel universe: microRNAs and their role in chronic hepatitis, liver tissue damage and hepatocarcinogenesis. Swiss Med. Wkly. 141, w13287 (2011)PubMed J. Haybaeck, N. Zeller, M. Heikenwalder, The parallel universe: microRNAs and their role in chronic hepatitis, liver tissue damage and hepatocarcinogenesis. Swiss Med. Wkly. 141, w13287 (2011)PubMed
102.
Zurück zum Zitat ClinicalTrials.gov [Internet] Identifier: NCT01829971, A multicenter phase I study of MRX34, MicroRNA miR-RX34 liposomal injection, 2016 (2015) ClinicalTrials.gov [Internet] Identifier: NCT01829971, A multicenter phase I study of MRX34, MicroRNA miR-RX34 liposomal injection, 2016 (2015)
103.
Zurück zum Zitat R. Zhang, M. Li, W. Zang, X. Chen, Y. Wang, P. Li, Y. Du, G. Zhao, L. Li, MiR-148a regulates the growth and apoptosis in pancreatic cancer by targeting CCKBR and Bcl-2. Tumour Biol. 35, 837–844 (2014)PubMedCrossRef R. Zhang, M. Li, W. Zang, X. Chen, Y. Wang, P. Li, Y. Du, G. Zhao, L. Li, MiR-148a regulates the growth and apoptosis in pancreatic cancer by targeting CCKBR and Bcl-2. Tumour Biol. 35, 837–844 (2014)PubMedCrossRef
104.
Zurück zum Zitat S.K. Srivastava, A. Bhardwaj, S. Arora, N. Tyagi, S. Singh, J. Andrews, S. McClellan, B. Wang, A.P. Singh, MicroRNA-345 induces apoptosis in pancreatic cancer cells through potentiation of caspase-dependent and -independent pathways. Br. J. Cancer 113, 660–668 (2015)PubMedCrossRef S.K. Srivastava, A. Bhardwaj, S. Arora, N. Tyagi, S. Singh, J. Andrews, S. McClellan, B. Wang, A.P. Singh, MicroRNA-345 induces apoptosis in pancreatic cancer cells through potentiation of caspase-dependent and -independent pathways. Br. J. Cancer 113, 660–668 (2015)PubMedCrossRef
105.
Zurück zum Zitat J. Hao, S. Zhang, Y. Zhou, X. Hu, C. Shao, MicroRNA 483-3p suppresses the expression of DPC4/Smad4 in pancreatic cancer. FEBS Lett. 585, 207–213 (2011)PubMedCrossRef J. Hao, S. Zhang, Y. Zhou, X. Hu, C. Shao, MicroRNA 483-3p suppresses the expression of DPC4/Smad4 in pancreatic cancer. FEBS Lett. 585, 207–213 (2011)PubMedCrossRef
106.
Zurück zum Zitat P. Singh, J.D. Wig, R. Srinivasan, B.D. Radotra, A comprehensive examination of Smad4, Smad6 and Smad7 mRNA expression in pancreatic ductal adenocarcinoma. Indian J. Cancer 48, 170–174 (2011)PubMedCrossRef P. Singh, J.D. Wig, R. Srinivasan, B.D. Radotra, A comprehensive examination of Smad4, Smad6 and Smad7 mRNA expression in pancreatic ductal adenocarcinoma. Indian J. Cancer 48, 170–174 (2011)PubMedCrossRef
107.
Zurück zum Zitat Z. Zhu, Y. Xu, J. Zhao, Q. Liu, W. Feng, J. Fan, P. Wang, miR-367 promotes epithelial-to-mesenchymal transition and invasion of pancreatic ductal adenocarcinoma cells by targeting the Smad7-TGF-beta signalling pathway. Br. J. Cancer 112, 1367–1375 (2015)PubMedPubMedCentralCrossRef Z. Zhu, Y. Xu, J. Zhao, Q. Liu, W. Feng, J. Fan, P. Wang, miR-367 promotes epithelial-to-mesenchymal transition and invasion of pancreatic ductal adenocarcinoma cells by targeting the Smad7-TGF-beta signalling pathway. Br. J. Cancer 112, 1367–1375 (2015)PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat X. Zhi, J. Tao, K. Xie, Y. Zhu, Z. Li, J. Tang, W. Wang, H. Xu, J. Zhang, Z. Xu, MUC4-induced nuclear translocation of beta-catenin: a novel mechanism for growth, metastasis and angiogenesis in pancreatic cancer. Cancer Lett. 346, 104–113 (2014)PubMedCrossRef X. Zhi, J. Tao, K. Xie, Y. Zhu, Z. Li, J. Tang, W. Wang, H. Xu, J. Zhang, Z. Xu, MUC4-induced nuclear translocation of beta-catenin: a novel mechanism for growth, metastasis and angiogenesis in pancreatic cancer. Cancer Lett. 346, 104–113 (2014)PubMedCrossRef
109.
Zurück zum Zitat Y. Zhu, J.J. Zhang, W.B. Liang, R. Zhu, B. Wang, Y. Miao, Z.K. Xu, Pancreatic cancer counterattack: MUC4 mediates Fas-independent apoptosis of antigen-specific cytotoxic T lymphocyte. Oncol. Rep. 31, 1768–1776 (2014)PubMed Y. Zhu, J.J. Zhang, W.B. Liang, R. Zhu, B. Wang, Y. Miao, Z.K. Xu, Pancreatic cancer counterattack: MUC4 mediates Fas-independent apoptosis of antigen-specific cytotoxic T lymphocyte. Oncol. Rep. 31, 1768–1776 (2014)PubMed
110.
Zurück zum Zitat D. Ansari, C. Urey, K.S. Hilmersson, M.P. Bauden, F. Ek, R. Olsson, R. Andersson, Apicidin sensitizes pancreatic cancer cells to gemcitabine by epigenetically regulating MUC4 expression. Anticancer Res. 34, 5269–5276 (2014)PubMed D. Ansari, C. Urey, K.S. Hilmersson, M.P. Bauden, F. Ek, R. Olsson, R. Andersson, Apicidin sensitizes pancreatic cancer cells to gemcitabine by epigenetically regulating MUC4 expression. Anticancer Res. 34, 5269–5276 (2014)PubMed
111.
Zurück zum Zitat S.K. Srivastava, A. Bhardwaj, S. Singh, S. Arora, B. Wang, W.E. Grizzle, A.P. Singh, MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells. Carcinogenesis 32, 1832–1839 (2011)PubMedPubMedCentralCrossRef S.K. Srivastava, A. Bhardwaj, S. Singh, S. Arora, B. Wang, W.E. Grizzle, A.P. Singh, MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells. Carcinogenesis 32, 1832–1839 (2011)PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat P. Chaturvedi, A.P. Singh, S. Chakraborty, S.C. Chauhan, S. Bafna, J.L. Meza, P.K. Singh, M.A. Hollingsworth, P.P. Mehta, S.K. Batra, MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Res. 68, 2065–2070 (2008)PubMedPubMedCentralCrossRef P. Chaturvedi, A.P. Singh, S. Chakraborty, S.C. Chauhan, S. Bafna, J.L. Meza, P.K. Singh, M.A. Hollingsworth, P.P. Mehta, S.K. Batra, MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Res. 68, 2065–2070 (2008)PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat F. Lahdaoui, Y. Delpu, A. Vincent, F. Renaud, M. Messager, B. Duchene, E. Leteurtre, C. Mariette, J. Torrisani, N. Jonckheere, I. Van, Seuningen, miR-219-1-3p is a negative regulator of the mucin MUC4 expression and is a tumor suppressor in pancreatic cancer. Oncogene 34, 780–788 (2015)PubMedCrossRef F. Lahdaoui, Y. Delpu, A. Vincent, F. Renaud, M. Messager, B. Duchene, E. Leteurtre, C. Mariette, J. Torrisani, N. Jonckheere, I. Van, Seuningen, miR-219-1-3p is a negative regulator of the mucin MUC4 expression and is a tumor suppressor in pancreatic cancer. Oncogene 34, 780–788 (2015)PubMedCrossRef
114.
Zurück zum Zitat D. Chen, Y. Zhang, J. Wang, J. Chen, C. Yang, K. Cai, X. Wang, F. Shi, J. Dou, MicroRNA-200c overexpression inhibits tumorigenicity and metastasis of CD117+CD44+ ovarian cancer stem cells by regulating epithelial-mesenchymal transition. J. Ovarian Res. 6, 50 (2013). doi:10.1186/1757-2215-6-50 PubMedPubMedCentralCrossRef D. Chen, Y. Zhang, J. Wang, J. Chen, C. Yang, K. Cai, X. Wang, F. Shi, J. Dou, MicroRNA-200c overexpression inhibits tumorigenicity and metastasis of CD117+CD44+ ovarian cancer stem cells by regulating epithelial-mesenchymal transition. J. Ovarian Res. 6, 50 (2013). doi:10.​1186/​1757-2215-6-50 PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat J. Dou, X.F. He, W.H. Cao, F.S. Zhao, X.Y. Wang, Y.R. Liu, J. Wang, Overexpression of microRna-200c in CD44+CD133+ CSCS inhibits the cellular migratory and invasion as well as tumorigenicity in mice. Cell. Mol. Biol. Suppl 59, OL1861-8 (2013) J. Dou, X.F. He, W.H. Cao, F.S. Zhao, X.Y. Wang, Y.R. Liu, J. Wang, Overexpression of microRna-200c in CD44+CD133+ CSCS inhibits the cellular migratory and invasion as well as tumorigenicity in mice. Cell. Mol. Biol. Suppl 59, OL1861-8 (2013)
116.
Zurück zum Zitat F.F. Ibrahim, R. Jamal, S.E. Syafruddin, N.S. Ab Mutalib, S. Saidin, R.R. MdZin, M.M. Hossain Mollah, N.M. Mokhtar, MicroRNA-200c and microRNA-31 regulate proliferation, colony formation, migration and invasion in serous ovarian cancer. J. Ovarian Res. 8, 56 (2015). doi:10.1186/s13048-015-0186-7 PubMedPubMedCentralCrossRef F.F. Ibrahim, R. Jamal, S.E. Syafruddin, N.S. Ab Mutalib, S. Saidin, R.R. MdZin, M.M. Hossain Mollah, N.M. Mokhtar, MicroRNA-200c and microRNA-31 regulate proliferation, colony formation, migration and invasion in serous ovarian cancer. J. Ovarian Res. 8, 56 (2015). doi:10.​1186/​s13048-015-0186-7 PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat J. Lu, G. Getz, E.A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B.L. Ebert, R.H. Mak, A.A. Ferrando, J.R. Downing, T. Jacks, H.R. Horvitz, T.R. Golub, MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005)PubMedCrossRef J. Lu, G. Getz, E.A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B.L. Ebert, R.H. Mak, A.A. Ferrando, J.R. Downing, T. Jacks, H.R. Horvitz, T.R. Golub, MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005)PubMedCrossRef
120.
Zurück zum Zitat C. Ma, T. Huang, Y.C. Ding, W. Yu, Q. Wang, B. Meng, S.X. Luo, microRNA-200c overexpression inhibits chemoresistance, invasion and colony formation of human pancreatic cancer stem cells. Int. J. Clin. Exp. Pathol. 8, 6533–6539 (2015)PubMedPubMedCentral C. Ma, T. Huang, Y.C. Ding, W. Yu, Q. Wang, B. Meng, S.X. Luo, microRNA-200c overexpression inhibits chemoresistance, invasion and colony formation of human pancreatic cancer stem cells. Int. J. Clin. Exp. Pathol. 8, 6533–6539 (2015)PubMedPubMedCentral
121.
Zurück zum Zitat Y. Imanaka, S. Tsuchiya, F. Sato, Y. Shimada, K. Shimizu, G. Tsujimoto, MicroRNA-141 confers resistance to cisplatin-induced apoptosis by targeting YAP1 in human esophageal squamous cell carcinoma. J. Hum. Genet. 56, 270–276 (2011)PubMedCrossRef Y. Imanaka, S. Tsuchiya, F. Sato, Y. Shimada, K. Shimizu, G. Tsujimoto, MicroRNA-141 confers resistance to cisplatin-induced apoptosis by targeting YAP1 in human esophageal squamous cell carcinoma. J. Hum. Genet. 56, 270–276 (2011)PubMedCrossRef
122.
Zurück zum Zitat L. Xu, Q. Li, D. Xu, Q. Wang, Y. An, Q. Du, J. Zhang, Y. Zhu, Y. Miao, hsa-miR-141 downregulates TM4SF1 to inhibit pancreatic cancer cell invasion and migration. Int. J. Oncol. 44, 459–466 (2014)PubMed L. Xu, Q. Li, D. Xu, Q. Wang, Y. An, Q. Du, J. Zhang, Y. Zhu, Y. Miao, hsa-miR-141 downregulates TM4SF1 to inhibit pancreatic cancer cell invasion and migration. Int. J. Oncol. 44, 459–466 (2014)PubMed
123.
Zurück zum Zitat G. Zhao, B. Wang, Y. Liu, J.G. Zhang, S.C. Deng, Q. Qin, K. Tian, X. Li, S. Zhu, Y. Niu, Q. Gong, C.Y. Wang, miRNA-141, downregulated in pancreatic cancer, inhibits cell proliferation and invasion by directly targeting MAP4K4. Mol. Cancer. Ther. 12, 2569–2580 (2013)PubMedCrossRef G. Zhao, B. Wang, Y. Liu, J.G. Zhang, S.C. Deng, Q. Qin, K. Tian, X. Li, S. Zhu, Y. Niu, Q. Gong, C.Y. Wang, miRNA-141, downregulated in pancreatic cancer, inhibits cell proliferation and invasion by directly targeting MAP4K4. Mol. Cancer. Ther. 12, 2569–2580 (2013)PubMedCrossRef
124.
Zurück zum Zitat Z.M. Zhu, Y.F. Xu, Q.J. Su, J.D. Du, X.L. Tan, Y.L. Tu, J.W. Tan, H.B. Jiao, Prognostic significance of microRNA-141 expression and its tumor suppressor function in human pancreatic ductal adenocarcinoma. Mol. Cell. Biochem. 388, 39–49 (2014)PubMedCrossRef Z.M. Zhu, Y.F. Xu, Q.J. Su, J.D. Du, X.L. Tan, Y.L. Tu, J.W. Tan, H.B. Jiao, Prognostic significance of microRNA-141 expression and its tumor suppressor function in human pancreatic ductal adenocarcinoma. Mol. Cell. Biochem. 388, 39–49 (2014)PubMedCrossRef
125.
Zurück zum Zitat T. Avnit-Sagi, L. Kantorovich, S. Kredo-Russo, E. Hornstein, M.D. Walker, The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS One 4, e5033 (2009)PubMedPubMedCentralCrossRef T. Avnit-Sagi, L. Kantorovich, S. Kredo-Russo, E. Hornstein, M.D. Walker, The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS One 4, e5033 (2009)PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat M.N. Poy, L. Eliasson, J. Krutzfeldt, S. Kuwajima, X. Ma, P.E. Macdonald, S. Pfeffer, T. Tuschl, N. Rajewsky, P. Rorsman, M. Stoffel, A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230 (2004)PubMedCrossRef M.N. Poy, L. Eliasson, J. Krutzfeldt, S. Kuwajima, X. Ma, P.E. Macdonald, S. Pfeffer, T. Tuschl, N. Rajewsky, P. Rorsman, M. Stoffel, A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230 (2004)PubMedCrossRef
127.
Zurück zum Zitat A. Basu, H. Alder, A. Khiyami, P. Leahy, C.M. Croce, S. Haldar, MicroRNA-375 and MicroRNA-221: potential noncoding RNAs associated with antiproliferative activity of benzyl isothiocyanate in pancreatic cancer. Genes Cancer 2, 108–119 (2011)PubMedPubMedCentralCrossRef A. Basu, H. Alder, A. Khiyami, P. Leahy, C.M. Croce, S. Haldar, MicroRNA-375 and MicroRNA-221: potential noncoding RNAs associated with antiproliferative activity of benzyl isothiocyanate in pancreatic cancer. Genes Cancer 2, 108–119 (2011)PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat J. Zhou, S. Song, S. He, X. Zhu, Y. Zhang, B. Yi, B. Zhang, G. Qin, D. Li, MicroRNA-375 targets PDK1 in pancreatic carcinoma and suppresses cell growth through the Akt signaling pathway. Int. J. Mol. Med. 33, 950–956 (2014)PubMed J. Zhou, S. Song, S. He, X. Zhu, Y. Zhang, B. Yi, B. Zhang, G. Qin, D. Li, MicroRNA-375 targets PDK1 in pancreatic carcinoma and suppresses cell growth through the Akt signaling pathway. Int. J. Mol. Med. 33, 950–956 (2014)PubMed
129.
Zurück zum Zitat J. Zhou, S. Song, J. Cen, D. Zhu, D. Li, Z. Zhang, MicroRNA-375 is downregulated in pancreatic cancer and inhibits cell proliferation in vitro. Oncol. Res. 20, 197–203 (2012)PubMedCrossRef J. Zhou, S. Song, J. Cen, D. Zhu, D. Li, Z. Zhang, MicroRNA-375 is downregulated in pancreatic cancer and inhibits cell proliferation in vitro. Oncol. Res. 20, 197–203 (2012)PubMedCrossRef
130.
Zurück zum Zitat S.D. Song, J. Zhou, J. Zhou, H. Zhao, J.N. Cen, D.C. Li, MicroRNA-375 targets the 3-phosphoinositide-dependent protein kinase-1 gene in pancreatic carcinoma. Oncol. Lett. 6, 953–959 (2013)PubMedPubMedCentral S.D. Song, J. Zhou, J. Zhou, H. Zhao, J.N. Cen, D.C. Li, MicroRNA-375 targets the 3-phosphoinositide-dependent protein kinase-1 gene in pancreatic carcinoma. Oncol. Lett. 6, 953–959 (2013)PubMedPubMedCentral
131.
Zurück zum Zitat J. Li, Y. Wang, W. Yu, J. Chen, J. Luo, Expression of serum miR-221 in human hepatocellular carcinoma and its prognostic significance. Biochem. Biophys. Res. Commun. 406, 70–73 (2011)PubMedCrossRef J. Li, Y. Wang, W. Yu, J. Chen, J. Luo, Expression of serum miR-221 in human hepatocellular carcinoma and its prognostic significance. Biochem. Biophys. Res. Commun. 406, 70–73 (2011)PubMedCrossRef
132.
Zurück zum Zitat M. Bloomston, W.L. Frankel, F. Petrocca, S. Volinia, H. Alder, J.P. Hagan, C.G. Liu, D. Bhatt, C. Taccioli, C.M. Croce, MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297, 1901–1908 (2007)PubMedCrossRef M. Bloomston, W.L. Frankel, F. Petrocca, S. Volinia, H. Alder, J.P. Hagan, C.G. Liu, D. Bhatt, C. Taccioli, C.M. Croce, MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297, 1901–1908 (2007)PubMedCrossRef
133.
Zurück zum Zitat Q. Xu, P. Li, X. Chen, L. Zong, Z. Jiang, L. Nan, J. Lei, W. Duan, D. Zhang, X. Li, H. Sha, Z. Wu, Q. Ma, Z. Wang, miR-221/222 induces pancreatic cancer progression through the regulation of matrix metalloproteinases. Oncotarget 6, 14153–14164 (2015) Q. Xu, P. Li, X. Chen, L. Zong, Z. Jiang, L. Nan, J. Lei, W. Duan, D. Zhang, X. Li, H. Sha, Z. Wu, Q. Ma, Z. Wang, miR-221/222 induces pancreatic cancer progression through the regulation of matrix metalloproteinases. Oncotarget 6, 14153–14164 (2015)
134.
Zurück zum Zitat S. Sarkar, H. Dubaybo, S. Ali, P. Goncalves, S.L. Kollepara, S. Sethi, P.A. Philip, Y. Li, Down-regulation of miR-221 inhibits proliferation of pancreatic cancer cells through up-regulation of PTEN, p27(kip1), p57(kip2), and PUMA. Am. J. Cancer. Res. 3, 465–477 (2013)PubMedPubMedCentral S. Sarkar, H. Dubaybo, S. Ali, P. Goncalves, S.L. Kollepara, S. Sethi, P.A. Philip, Y. Li, Down-regulation of miR-221 inhibits proliferation of pancreatic cancer cells through up-regulation of PTEN, p27(kip1), p57(kip2), and PUMA. Am. J. Cancer. Res. 3, 465–477 (2013)PubMedPubMedCentral
135.
Zurück zum Zitat Y. Li, T.G. VandenBoom 2nd, D. Kong, Z. Wang, S. Ali, P.A. Philip, F.H. Sarkar, Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 69, 6704–6712 (2009)PubMedPubMedCentralCrossRef Y. Li, T.G. VandenBoom 2nd, D. Kong, Z. Wang, S. Ali, P.A. Philip, F.H. Sarkar, Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 69, 6704–6712 (2009)PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat K. Patel, A. Kollory, A. Takashima, S. Sarkar, D.V. Faller, S.K. Ghosh, MicroRNA let-7 downregulates STAT3 phosphorylation in pancreatic cancer cells by increasing SOCS3 expression. Cancer Lett. 347, 54–64 (2014)PubMedPubMedCentralCrossRef K. Patel, A. Kollory, A. Takashima, S. Sarkar, D.V. Faller, S.K. Ghosh, MicroRNA let-7 downregulates STAT3 phosphorylation in pancreatic cancer cells by increasing SOCS3 expression. Cancer Lett. 347, 54–64 (2014)PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Y.D. Bhutia, S.W. Hung, M. Krentz, D. Patel, D. Lovin, R. Manoharan, J.M. Thomson, R. Govindarajan, Differential processing of let-7a precursors influences RRM2 expression and chemosensitivity in pancreatic cancer: role of LIN-28 and SET oncoprotein. PLoS One 8, e53436 (2013)PubMedPubMedCentralCrossRef Y.D. Bhutia, S.W. Hung, M. Krentz, D. Patel, D. Lovin, R. Manoharan, J.M. Thomson, R. Govindarajan, Differential processing of let-7a precursors influences RRM2 expression and chemosensitivity in pancreatic cancer: role of LIN-28 and SET oncoprotein. PLoS One 8, e53436 (2013)PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat S. Watanabe, Y. Ueda, S. Akaboshi, Y. Hino, Y. Sekita, M. Nakao, HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells. Am. J. Pathol. 174, 854–868 (2009)PubMedPubMedCentralCrossRef S. Watanabe, Y. Ueda, S. Akaboshi, Y. Hino, Y. Sekita, M. Nakao, HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells. Am. J. Pathol. 174, 854–868 (2009)PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat A. Druz, Y.C. Chen, R. Guha, M. Betenbaugh, S.E. Martin, J. Shiloach, Large-scale screening identifies a novel microRNA, miR-15a-3p, which induces apoptosis in human cancer cell lines. RNA Biol. 10, 287–300 (2013)PubMedPubMedCentralCrossRef A. Druz, Y.C. Chen, R. Guha, M. Betenbaugh, S.E. Martin, J. Shiloach, Large-scale screening identifies a novel microRNA, miR-15a-3p, which induces apoptosis in human cancer cell lines. RNA Biol. 10, 287–300 (2013)PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat S. Guo, X. Xu, Y. Tang, C. Zhang, J. Li, Y. Ouyang, J. Ju, P. Bie, H. Wang, miR-15a inhibits cell proliferation and epithelial to mesenchymal transition in pancreatic ductal adenocarcinoma by down-regulating Bmi-1 expression. Cancer Lett. 344, 40–46 (2014)PubMedCrossRef S. Guo, X. Xu, Y. Tang, C. Zhang, J. Li, Y. Ouyang, J. Ju, P. Bie, H. Wang, miR-15a inhibits cell proliferation and epithelial to mesenchymal transition in pancreatic ductal adenocarcinoma by down-regulating Bmi-1 expression. Cancer Lett. 344, 40–46 (2014)PubMedCrossRef
141.
Zurück zum Zitat F. Wang, X. Xue, J. Wei, Y. An, J. Yao, H. Cai, J. Wu, C. Dai, Z. Qian, Z. Xu, Y. Miao, hsa-miR-520h downregulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations. Br. J. Cancer 103, 567–574 (2010)PubMedPubMedCentralCrossRef F. Wang, X. Xue, J. Wei, Y. An, J. Yao, H. Cai, J. Wu, C. Dai, Z. Qian, Z. Xu, Y. Miao, hsa-miR-520h downregulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations. Br. J. Cancer 103, 567–574 (2010)PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat J. Jiang, C. Yu, M. Chen, H. Zhang, S. Tian, C. Sun, Reduction of miR-29c enhances pancreatic cancer cell migration and stem cell-like phenotype. Oncotarget 6, 2767–2778 (2015) J. Jiang, C. Yu, M. Chen, H. Zhang, S. Tian, C. Sun, Reduction of miR-29c enhances pancreatic cancer cell migration and stem cell-like phenotype. Oncotarget 6, 2767–2778 (2015)
143.
Zurück zum Zitat M.K. Muniyappa, P. Dowling, M. Henry, P. Meleady, P. Doolan, P. Gammell, M. Clynes, N. Barron, MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur. J. Cancer 45, 3104–3118 (2009)PubMedCrossRef M.K. Muniyappa, P. Dowling, M. Henry, P. Meleady, P. Doolan, P. Gammell, M. Clynes, N. Barron, MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur. J. Cancer 45, 3104–3118 (2009)PubMedCrossRef
144.
Zurück zum Zitat S. Yu, Z. Lu, C. Liu, Y. Meng, Y. Ma, W. Zhao, J. Liu, J. Yu, J. Chen, miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 70, 6015–6025 (2010)PubMedCrossRef S. Yu, Z. Lu, C. Liu, Y. Meng, Y. Ma, W. Zhao, J. Liu, J. Yu, J. Chen, miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 70, 6015–6025 (2010)PubMedCrossRef
145.
Zurück zum Zitat J. Feng, J. Yu, X. Pan, Z. Li, Z. Chen, W. Zhang, B. Wang, L. Yang, H. Xu, G. Zhang, Z. Xu, HERG1 functions as an oncogene in pancreatic cancer and is downregulated by miR-96. Oncotarget 5, 5832–5844 (2014)PubMedPubMedCentralCrossRef J. Feng, J. Yu, X. Pan, Z. Li, Z. Chen, W. Zhang, B. Wang, L. Yang, H. Xu, G. Zhang, Z. Xu, HERG1 functions as an oncogene in pancreatic cancer and is downregulated by miR-96. Oncotarget 5, 5832–5844 (2014)PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat C. Li, X. Du, S. Tai, X. Zhong, Z. Wang, Z. Hu, L. Zhang, P. Kang, D. Ji, X. Jiang, Q. Zhou, M. Wan, G. Jiang, Y. Cui, GPC1 regulated by miR-96-5p, rather than miR-182-5p, in inhibition of pancreatic carcinoma cell proliferation. Int. J. Mol. Sci. 15, 6314–6327 (2014)PubMedPubMedCentralCrossRef C. Li, X. Du, S. Tai, X. Zhong, Z. Wang, Z. Hu, L. Zhang, P. Kang, D. Ji, X. Jiang, Q. Zhou, M. Wan, G. Jiang, Y. Cui, GPC1 regulated by miR-96-5p, rather than miR-182-5p, in inhibition of pancreatic carcinoma cell proliferation. Int. J. Mol. Sci. 15, 6314–6327 (2014)PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat X. Huang, W. Lv, J.H. Zhang, D.L. Lu, miR96 functions as a tumor suppressor gene by targeting NUAK1 in pancreatic cancer. Int. J. Mol. Med. 34, 1599–1605 (2014)PubMed X. Huang, W. Lv, J.H. Zhang, D.L. Lu, miR96 functions as a tumor suppressor gene by targeting NUAK1 in pancreatic cancer. Int. J. Mol. Med. 34, 1599–1605 (2014)PubMed
148.
Zurück zum Zitat D. Li, X. Li, W. Cao, Y. Qi, X. Yang, Antagonism of microRNA-99a promotes cell invasion and down-regulates E-cadherin expression in pancreatic cancer cells by regulating mammalian target of rapamycin. Acta Histochem. 116, 723–729 (2014)PubMedCrossRef D. Li, X. Li, W. Cao, Y. Qi, X. Yang, Antagonism of microRNA-99a promotes cell invasion and down-regulates E-cadherin expression in pancreatic cancer cells by regulating mammalian target of rapamycin. Acta Histochem. 116, 723–729 (2014)PubMedCrossRef
149.
Zurück zum Zitat Z. Li, X. Li, C. Yu, M. Wang, F. Peng, J. Xiao, R. Tian, J. Jiang, C. Sun, MicroRNA-100 regulates pancreatic cancer cells growth and sensitivity to chemotherapy through targeting FGFR3. Tumour Biol. 35, 11751–11759 (2014)PubMedCrossRef Z. Li, X. Li, C. Yu, M. Wang, F. Peng, J. Xiao, R. Tian, J. Jiang, C. Sun, MicroRNA-100 regulates pancreatic cancer cells growth and sensitivity to chemotherapy through targeting FGFR3. Tumour Biol. 35, 11751–11759 (2014)PubMedCrossRef
150.
Zurück zum Zitat W. Jiang, W. Gu, R. Qiu, C. Shen, E.Y. YaohaoWu, J. Zhang, J. Zhou, Y. Guo, Z. Li, J. Deng, L. Zeng, J. Tang, Q. Zhi, X. Deng, miRNA-101 suppresses epithelial-to-mesenchymal transition by targeting HMGA2 in pancreatic cancer cells. Anticancer Agents Med. Chem. (2015). doi:10.2174/1871520615666150507122142 W. Jiang, W. Gu, R. Qiu, C. Shen, E.Y. YaohaoWu, J. Zhang, J. Zhou, Y. Guo, Z. Li, J. Deng, L. Zeng, J. Tang, Q. Zhi, X. Deng, miRNA-101 suppresses epithelial-to-mesenchymal transition by targeting HMGA2 in pancreatic cancer cells. Anticancer Agents Med. Chem. (2015). doi:10.​2174/​1871520615666150​507122142
151.
Zurück zum Zitat A.M. Qazi, O. Gruzdyn, A. Semaan, S. Seward, S. Chamala, V. Dhulipala, S. Sethi, R. Ali-Fehmi, P.A. Philip, D.L. Bouwman, D.W. Weaver, S.A. Gruber, R.B. Batchu, Restoration of E-cadherin expression in pancreatic ductal adenocarcinoma treated with microRNA-101. Surgery 152, 704–711 (2012)PubMedCrossRef A.M. Qazi, O. Gruzdyn, A. Semaan, S. Seward, S. Chamala, V. Dhulipala, S. Sethi, R. Ali-Fehmi, P.A. Philip, D.L. Bouwman, D.W. Weaver, S.A. Gruber, R.B. Batchu, Restoration of E-cadherin expression in pancreatic ductal adenocarcinoma treated with microRNA-101. Surgery 152, 704–711 (2012)PubMedCrossRef
152.
Zurück zum Zitat K.H. Lee, C. Lotterman, C. Karikari, N. Omura, G. Feldmann, N. Habbe, M.G. Goggins, J.T. Mendell, A. Maitra, Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 9, 293–301 (2009)PubMedPubMedCentralCrossRef K.H. Lee, C. Lotterman, C. Karikari, N. Omura, G. Feldmann, N. Habbe, M.G. Goggins, J.T. Mendell, A. Maitra, Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 9, 293–301 (2009)PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat P. Wang, L. Chen, J. Zhang, H. Chen, J. Fan, K. Wang, J. Luo, Z. Chen, Z. Meng, L. Liu, Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene 33, 514–524 (2014)PubMedCrossRef P. Wang, L. Chen, J. Zhang, H. Chen, J. Fan, K. Wang, J. Luo, Z. Chen, Z. Meng, L. Liu, Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene 33, 514–524 (2014)PubMedCrossRef
154.
Zurück zum Zitat S. Hamada, K. Satoh, W. Fujibuchi, M. Hirota, A. Kanno, J. Unno, A. Masamune, K. Kikuta, K. Kume, T. Shimosegawa, MiR-126 acts as a tumor suppressor in pancreatic cancer cells via the regulation of ADAM9. Mol. Cancer Res. 10, 3–10 (2012)PubMedCrossRef S. Hamada, K. Satoh, W. Fujibuchi, M. Hirota, A. Kanno, J. Unno, A. Masamune, K. Kikuta, K. Kume, T. Shimosegawa, MiR-126 acts as a tumor suppressor in pancreatic cancer cells via the regulation of ADAM9. Mol. Cancer Res. 10, 3–10 (2012)PubMedCrossRef
155.
Zurück zum Zitat G. Zhao, J.G. Zhang, Y. Shi, Q. Qin, Y. Liu, B. Wang, K. Tian, S.C. Deng, X. Li, S. Zhu, Q. Gong, Y. Niu, C.Y. Wang, MiR-130b is a prognostic marker and inhibits cell proliferation and invasion in pancreatic cancer through targeting STAT3. PLoS One 8, e73803 (2013)PubMedPubMedCentralCrossRef G. Zhao, J.G. Zhang, Y. Shi, Q. Qin, Y. Liu, B. Wang, K. Tian, S.C. Deng, X. Li, S. Zhu, Q. Gong, Y. Niu, C.Y. Wang, MiR-130b is a prognostic marker and inhibits cell proliferation and invasion in pancreatic cancer through targeting STAT3. PLoS One 8, e73803 (2013)PubMedPubMedCentralCrossRef
156.
Zurück zum Zitat S. Zhang, J. Hao, F. Xie, X. Hu, C. Liu, J. Tong, J. Zhou, J. Wu, C. Shao, Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis 32, 1183–1189 (2011)PubMedCrossRef S. Zhang, J. Hao, F. Xie, X. Hu, C. Liu, J. Tong, J. Zhou, J. Wu, C. Shao, Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis 32, 1183–1189 (2011)PubMedCrossRef
157.
Zurück zum Zitat Z. Dang, W.H. Xu, P. Lu, N. Wu, J. Liu, B. Ruan, L. Zhou, W.J. Song, K.F. Dou, MicroRNA-135a inhibits cell proliferation by targeting Bmi1 in pancreatic ductal adenocarcinoma. Int. J. Biol. Sci. 10, 733–745 (2014)PubMedPubMedCentralCrossRef Z. Dang, W.H. Xu, P. Lu, N. Wu, J. Liu, B. Ruan, L. Zhou, W.J. Song, K.F. Dou, MicroRNA-135a inhibits cell proliferation by targeting Bmi1 in pancreatic ductal adenocarcinoma. Int. J. Biol. Sci. 10, 733–745 (2014)PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat C. Yu, M. Wang, M. Chen, Y. Huang, J. Jiang, Upregulation of microRNA1385p inhibits pancreatic cancer cell migration and increases chemotherapy sensitivity. Mol. Med. Rep. 12, 5135–5140 (2015)PubMed C. Yu, M. Wang, M. Chen, Y. Huang, J. Jiang, Upregulation of microRNA1385p inhibits pancreatic cancer cell migration and increases chemotherapy sensitivity. Mol. Med. Rep. 12, 5135–5140 (2015)PubMed
159.
Zurück zum Zitat S. Liang, X. Gong, G. Zhang, G. Huang, Y. Lu, Y. Li, MicroRNA-140 regulates cell growth and invasion in pancreatic duct adenocarcinoma by targeting iASPP. Acta Biochim. Biophys. Sin. (Shanghai) 48, 174–181 (2016) S. Liang, X. Gong, G. Zhang, G. Huang, Y. Lu, Y. Li, MicroRNA-140 regulates cell growth and invasion in pancreatic duct adenocarcinoma by targeting iASPP. Acta Biochim. Biophys. Sin. (Shanghai) 48, 174–181 (2016)
160.
Zurück zum Zitat T.N. MacKenzie, N. Mujumdar, S. Banerjee, V. Sangwan, A. Sarver, S. Vickers, S. Subramanian, A.K. Saluja, Triptolide induces the expression of miR-142-3p: a negative regulator of heat shock protein 70 and pancreatic cancer cell proliferation. Mol. Cancer Ther. 12, 1266–1275 (2013)PubMedPubMedCentralCrossRef T.N. MacKenzie, N. Mujumdar, S. Banerjee, V. Sangwan, A. Sarver, S. Vickers, S. Subramanian, A.K. Saluja, Triptolide induces the expression of miR-142-3p: a negative regulator of heat shock protein 70 and pancreatic cancer cell proliferation. Mol. Cancer Ther. 12, 1266–1275 (2013)PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat Y. Hu, Y. Ou, K. Wu, Y. Chen, W. Sun, miR-143 inhibits the metastasis of pancreatic cancer and an associated signaling pathway. Tumour Biol. 33, 1863–1870 (2012)PubMedCrossRef Y. Hu, Y. Ou, K. Wu, Y. Chen, W. Sun, miR-143 inhibits the metastasis of pancreatic cancer and an associated signaling pathway. Tumour Biol. 33, 1863–1870 (2012)PubMedCrossRef
162.
Zurück zum Zitat H. Pham, C.E. Rodriguez, G.W. Donald, K.M. Hertzer, X.S. Jung, H.H. Chang, A. Moro, H.A. Reber, O.J. Hines, G. Eibl, miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells. Biochem. Biophys. Res. Commun. 439, 6–11 (2013)PubMedPubMedCentralCrossRef H. Pham, C.E. Rodriguez, G.W. Donald, K.M. Hertzer, X.S. Jung, H.H. Chang, A. Moro, H.A. Reber, O.J. Hines, G. Eibl, miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells. Biochem. Biophys. Res. Commun. 439, 6–11 (2013)PubMedPubMedCentralCrossRef
163.
Zurück zum Zitat T. Han, X.P. Yi, B. Liu, M.J. Ke, Y.X. Li, MicroRNA-145 suppresses cell proliferation, invasion and migration in pancreatic cancer cells by targeting NEDD9. Mol. Med. Rep. 11, 4115–4120 (2015)PubMedPubMedCentral T. Han, X.P. Yi, B. Liu, M.J. Ke, Y.X. Li, MicroRNA-145 suppresses cell proliferation, invasion and migration in pancreatic cancer cells by targeting NEDD9. Mol. Med. Rep. 11, 4115–4120 (2015)PubMedPubMedCentral
164.
Zurück zum Zitat S. Khan, M.C. Ebeling, M.S. Zaman, M. Sikander, M.M. Yallapu, N. Chauhan, A.M. Yacoubian, S.W. Behrman, N. Zafar, D. Kumar, P.A. Thompson, M. Jaggi, S.C. Chauhan, MicroRNA-145 targets MUC13 and suppresses growth and invasion of pancreatic cancer. Oncotarget 5, 7599–7609 (2014)PubMedPubMedCentralCrossRef S. Khan, M.C. Ebeling, M.S. Zaman, M. Sikander, M.M. Yallapu, N. Chauhan, A.M. Yacoubian, S.W. Behrman, N. Zafar, D. Kumar, P.A. Thompson, M. Jaggi, S.C. Chauhan, MicroRNA-145 targets MUC13 and suppresses growth and invasion of pancreatic cancer. Oncotarget 5, 7599–7609 (2014)PubMedPubMedCentralCrossRef
165.
Zurück zum Zitat S. Ali, A. Ahmad, A. Aboukameel, A. Ahmed, B. Bao, S. Banerjee, P.A. Philip, F.H. Sarkar, Deregulation of miR-146a expression in a mouse model of pancreatic cancer affecting EGFR signaling. Cancer Lett. 351, 134–142 (2014)PubMedPubMedCentralCrossRef S. Ali, A. Ahmad, A. Aboukameel, A. Ahmed, B. Bao, S. Banerjee, P.A. Philip, F.H. Sarkar, Deregulation of miR-146a expression in a mouse model of pancreatic cancer affecting EGFR signaling. Cancer Lett. 351, 134–142 (2014)PubMedPubMedCentralCrossRef
166.
Zurück zum Zitat Y. Li, T.G. VandenBoom 2nd, Z. Wang, D. Kong, S. Ali, P.A. Philip, F.H. Sarkar, Up-regulation of miR-146a contributes to the inhibition of invasion of pancreatic cancer cells. Cancer Res. 70, 5703 (2010)PubMedPubMedCentralCrossRef Y. Li, T.G. VandenBoom 2nd, Z. Wang, D. Kong, S. Ali, P.A. Philip, F.H. Sarkar, Up-regulation of miR-146a contributes to the inhibition of invasion of pancreatic cancer cells. Cancer Res. 70, 5703 (2010)PubMedPubMedCentralCrossRef
167.
Zurück zum Zitat F. Lin, X. Wang, Z. Jie, X. Hong, X. Li, M. Wang, Y. Yu, Inhibitory effects of miR-146b-5p on cell migration and invasion of pancreatic cancer by targeting MMP16. J. Huazhong Univ. Sci. Technolog. Med. Sci. 31, 509–514 (2011)PubMedCrossRef F. Lin, X. Wang, Z. Jie, X. Hong, X. Li, M. Wang, Y. Yu, Inhibitory effects of miR-146b-5p on cell migration and invasion of pancreatic cancer by targeting MMP16. J. Huazhong Univ. Sci. Technolog. Med. Sci. 31, 509–514 (2011)PubMedCrossRef
168.
Zurück zum Zitat M. Azizi, L. Teimoori-Toolabi, M.K. Arzanani, K. Azadmanesh, P. Fard-Esfahani, S. Zeinali, MicroRNA-148b and microRNA-152 reactivate tumor suppressor genes through suppression of DNA methyltransferase-1 gene in pancreatic cancer cell lines. Cancer Biol. Ther. 15, 419–427 (2014)PubMedPubMedCentralCrossRef M. Azizi, L. Teimoori-Toolabi, M.K. Arzanani, K. Azadmanesh, P. Fard-Esfahani, S. Zeinali, MicroRNA-148b and microRNA-152 reactivate tumor suppressor genes through suppression of DNA methyltransferase-1 gene in pancreatic cancer cell lines. Cancer Biol. Ther. 15, 419–427 (2014)PubMedPubMedCentralCrossRef
169.
Zurück zum Zitat X. Bofill-De Ros, M. Gironella, C. Fillat, miR-148a- and miR-216a-regulated oncolytic adenoviruses targeting pancreatic tumors attenuate tissue damage without perturbation of miRNA activity. Mol. Ther. 22, 1665–1677 (2014)PubMedPubMedCentralCrossRef X. Bofill-De Ros, M. Gironella, C. Fillat, miR-148a- and miR-216a-regulated oncolytic adenoviruses targeting pancreatic tumors attenuate tissue damage without perturbation of miRNA activity. Mol. Ther. 22, 1665–1677 (2014)PubMedPubMedCentralCrossRef
170.
Zurück zum Zitat S.T. Liffers, J.B. Munding, M. Vogt, J.D. Kuhlmann, B. Verdoodt, S. Nambiar, A. Maghnouj, A. Mirmohammadsadegh, S.A. Hahn, A. Tannapfel, MicroRNA-148a is down-regulated in human pancreatic ductal adenocarcinomas and regulates cell survival by targeting CDC25B. Lab. Invest. 91, 1472–1479 (2011)PubMedCrossRef S.T. Liffers, J.B. Munding, M. Vogt, J.D. Kuhlmann, B. Verdoodt, S. Nambiar, A. Maghnouj, A. Mirmohammadsadegh, S.A. Hahn, A. Tannapfel, MicroRNA-148a is down-regulated in human pancreatic ductal adenocarcinomas and regulates cell survival by targeting CDC25B. Lab. Invest. 91, 1472–1479 (2011)PubMedCrossRef
171.
Zurück zum Zitat G. Zhao, J.G. Zhang, Y. Liu, Q. Qin, B. Wang, K. Tian, L. Liu, X. Li, Y. Niu, S.C. Deng, C.Y. Wang, miR-148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKalpha1. Mol. Cancer. Ther. 12, 83–93 (2013)PubMedCrossRef G. Zhao, J.G. Zhang, Y. Liu, Q. Qin, B. Wang, K. Tian, L. Liu, X. Li, Y. Niu, S.C. Deng, C.Y. Wang, miR-148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKalpha1. Mol. Cancer. Ther. 12, 83–93 (2013)PubMedCrossRef
172.
Zurück zum Zitat L. Farhana, M.I. Dawson, F. Murshed, J.K. Das, A.K. Rishi, J.A. Fontana, Upregulation of miR-150* and miR-630 induces apoptosis in pancreatic cancer cells by targeting IGF-1R. PLoS One 8, e61015 (2013)PubMedPubMedCentralCrossRef L. Farhana, M.I. Dawson, F. Murshed, J.K. Das, A.K. Rishi, J.A. Fontana, Upregulation of miR-150* and miR-630 induces apoptosis in pancreatic cancer cells by targeting IGF-1R. PLoS One 8, e61015 (2013)PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Y. Sun, X.L. Jin, T.T. Zhang, C.W. Jia, J. Chen, MiR-150-5p inhibits the proliferation and promoted apoptosis of pancreatic cancer cells. Zhonghua Bing Li Xue Za Zhi 42, 460–464 (2013)PubMed Y. Sun, X.L. Jin, T.T. Zhang, C.W. Jia, J. Chen, MiR-150-5p inhibits the proliferation and promoted apoptosis of pancreatic cancer cells. Zhonghua Bing Li Xue Za Zhi 42, 460–464 (2013)PubMed
174.
Zurück zum Zitat L. Zhou, W.G. Zhang, D.S. Wang, K.S. Tao, W.J. Song, K.F. Dou, MicroRNA-183 is involved in cell proliferation, survival and poor prognosis in pancreatic ductal adenocarcinoma by regulating Bmi-1. Oncol. Rep. 32, 1734–1740 (2014)PubMed L. Zhou, W.G. Zhang, D.S. Wang, K.S. Tao, W.J. Song, K.F. Dou, MicroRNA-183 is involved in cell proliferation, survival and poor prognosis in pancreatic ductal adenocarcinoma by regulating Bmi-1. Oncol. Rep. 32, 1734–1740 (2014)PubMed
175.
Zurück zum Zitat H. Liu, X.F. Xu, Y. Zhao, M.C. Tang, Y.Q. Zhou, J. Lu, F.H. Gao, MicroRNA-191 promotes pancreatic cancer progression by targeting USP10. Tumour Biol. 35, 12157–12163 (2014)PubMedCrossRef H. Liu, X.F. Xu, Y. Zhao, M.C. Tang, Y.Q. Zhou, J. Lu, F.H. Gao, MicroRNA-191 promotes pancreatic cancer progression by targeting USP10. Tumour Biol. 35, 12157–12163 (2014)PubMedCrossRef
176.
Zurück zum Zitat J. Li, F. Kong, K. Wu, K. Song, J. He, W. Sun, miR-193b directly targets STMN1 and uPA genes and suppresses tumor growth and metastasis in pancreatic cancer. Mol. Med. Rep. 10, 2613–2620 (2014)PubMed J. Li, F. Kong, K. Wu, K. Song, J. He, W. Sun, miR-193b directly targets STMN1 and uPA genes and suppresses tumor growth and metastasis in pancreatic cancer. Mol. Med. Rep. 10, 2613–2620 (2014)PubMed
177.
Zurück zum Zitat C. Marin-Muller, D. Li, U. Bharadwaj, M. Li, C. Chen, S.E. Hodges, W.E. Fisher, Q. Mo, M.C. Hung, Q. Yao, A tumorigenic factor interactome connected through tumor suppressor microRNA-198 in human pancreatic cancer. Clin. Cancer Res. 19, 5901–5913 (2013)PubMedPubMedCentralCrossRef C. Marin-Muller, D. Li, U. Bharadwaj, M. Li, C. Chen, S.E. Hodges, W.E. Fisher, Q. Mo, M.C. Hung, Q. Yao, A tumorigenic factor interactome connected through tumor suppressor microRNA-198 in human pancreatic cancer. Clin. Cancer Res. 19, 5901–5913 (2013)PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat P. Radhakrishnan, A.M. Mohr, P.M. Grandgenett, M.M. Steele, S.K. Batra, M.A. Hollingsworth, MicroRNA-200c modulates the expression of MUC4 and MUC16 by directly targeting their coding sequences in human pancreatic cancer. PLoS One 8, e73356 (2013)PubMedPubMedCentralCrossRef P. Radhakrishnan, A.M. Mohr, P.M. Grandgenett, M.M. Steele, S.K. Batra, M.A. Hollingsworth, MicroRNA-200c modulates the expression of MUC4 and MUC16 by directly targeting their coding sequences in human pancreatic cancer. PLoS One 8, e73356 (2013)PubMedPubMedCentralCrossRef
179.
Zurück zum Zitat J. Yu, K. Ohuchida, K. Mizumoto, N. Sato, T. Kayashima, H. Fujita, K. Nakata, M. Tanaka, MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation. Mol. Cancer. 9, 169 (2010). doi:10.1186/1476-4598-9-169 PubMedPubMedCentralCrossRef J. Yu, K. Ohuchida, K. Mizumoto, N. Sato, T. Kayashima, H. Fujita, K. Nakata, M. Tanaka, MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation. Mol. Cancer. 9, 169 (2010). doi:10.​1186/​1476-4598-9-169 PubMedPubMedCentralCrossRef
180.
Zurück zum Zitat O. Soubani, A.S. Ali, F. Logna, S. Ali, P.A. Philip, F.H. Sarkar, Re-expression of miR-200 by novel approaches regulates the expression of PTEN and MT1-MMP in pancreatic cancer. Carcinogenesis 33, 1563–1571 (2012)PubMedPubMedCentralCrossRef O. Soubani, A.S. Ali, F. Logna, S. Ali, P.A. Philip, F.H. Sarkar, Re-expression of miR-200 by novel approaches regulates the expression of PTEN and MT1-MMP in pancreatic cancer. Carcinogenesis 33, 1563–1571 (2012)PubMedPubMedCentralCrossRef
181.
Zurück zum Zitat L. Miao, X. Xiong, Y. Lin, Y. Cheng, J. Lu, J. Zhang, N. Cheng, miR-203 inhibits tumor cell migration and invasion via caveolin-1 in pancreatic cancer cells. Oncol. Lett. 7, 658–662 (2014)PubMedPubMedCentral L. Miao, X. Xiong, Y. Lin, Y. Cheng, J. Lu, J. Zhang, N. Cheng, miR-203 inhibits tumor cell migration and invasion via caveolin-1 in pancreatic cancer cells. Oncol. Lett. 7, 658–662 (2014)PubMedPubMedCentral
182.
Zurück zum Zitat D. Xu, Q. Wang, Y. An, L. Xu, MiR203 regulates the proliferation, apoptosis and cell cycle progression of pancreatic cancer cells by targeting survivin. Mol. Med. Rep. 8, 379–384 (2013)PubMed D. Xu, Q. Wang, Y. An, L. Xu, MiR203 regulates the proliferation, apoptosis and cell cycle progression of pancreatic cancer cells by targeting survivin. Mol. Med. Rep. 8, 379–384 (2013)PubMed
183.
Zurück zum Zitat N. Ikenaga, K. Ohuchida, K. Mizumoto, J. Yu, T. Kayashima, H. Sakai, H. Fujita, K. Nakata, M. Tanaka, MicroRNA-203 expression as a new prognostic marker of pancreatic adenocarcinoma. Ann. Surg. Oncol. 17, 3120–3128 (2010)PubMedCrossRef N. Ikenaga, K. Ohuchida, K. Mizumoto, J. Yu, T. Kayashima, H. Sakai, H. Fujita, K. Nakata, M. Tanaka, MicroRNA-203 expression as a new prognostic marker of pancreatic adenocarcinoma. Ann. Surg. Oncol. 17, 3120–3128 (2010)PubMedCrossRef
184.
Zurück zum Zitat A. Mittal, D. Chitkara, S.W. Behrman, R.I. Mahato, Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. Biomaterials 35, 7077–7087 (2014)PubMedCrossRef A. Mittal, D. Chitkara, S.W. Behrman, R.I. Mahato, Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. Biomaterials 35, 7077–7087 (2014)PubMedCrossRef
185.
Zurück zum Zitat C. Stahlhut, Y. Suarez, J. Lu, Y. Mishima, A.J. Giraldez, miR-1 and miR-206 regulate angiogenesis by modulating VegfA expression in zebrafish. Development 139, 4356–4364 (2012)PubMedPubMedCentralCrossRef C. Stahlhut, Y. Suarez, J. Lu, Y. Mishima, A.J. Giraldez, miR-1 and miR-206 regulate angiogenesis by modulating VegfA expression in zebrafish. Development 139, 4356–4364 (2012)PubMedPubMedCentralCrossRef
186.
Zurück zum Zitat I. Keklikoglou, K. Hosaka, C. Bender, A. Bott, C. Koerner, D. Mitra, R. Will, A. Woerner, E. Muenstermann, H. Wilhelm, Y. Cao, S. Wiemann, MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes. Oncogene 34, 4867–4878 (2015)PubMedCrossRef I. Keklikoglou, K. Hosaka, C. Bender, A. Bott, C. Koerner, D. Mitra, R. Will, A. Woerner, E. Muenstermann, H. Wilhelm, Y. Cao, S. Wiemann, MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes. Oncogene 34, 4867–4878 (2015)PubMedCrossRef
187.
Zurück zum Zitat M. Maftouh, A. Avan, N. Funel, A.E. Frampton, H. Fiuji, S. Pelliccioni, L. Castellano, V. Galla, G.J. Peters, E. Giovannetti, miR-211 modulates gemcitabine activity through downregulation of ribonucleotide reductase and inhibits the invasive behavior of pancreatic cancer cells. Nucleosides Nucleotides Nucleic Acids 33, 384–393 (2014)PubMedCrossRef M. Maftouh, A. Avan, N. Funel, A.E. Frampton, H. Fiuji, S. Pelliccioni, L. Castellano, V. Galla, G.J. Peters, E. Giovannetti, miR-211 modulates gemcitabine activity through downregulation of ribonucleotide reductase and inhibits the invasive behavior of pancreatic cancer cells. Nucleosides Nucleotides Nucleic Acids 33, 384–393 (2014)PubMedCrossRef
188.
Zurück zum Zitat S. Wang, X. Chen, M. Tang, MicroRNA-216a inhibits pancreatic cancer by directly targeting Janus kinase 2. Oncol. Rep. 32, 2824–2830 (2014)PubMed S. Wang, X. Chen, M. Tang, MicroRNA-216a inhibits pancreatic cancer by directly targeting Janus kinase 2. Oncol. Rep. 32, 2824–2830 (2014)PubMed
189.
Zurück zum Zitat X. Zhang, H. Shi, S. Lin, M. Ba, S. Cui, MicroRNA-216a enhances the radiosensitivity of pancreatic cancer cells by inhibiting beclin-1-mediated autophagy. Oncol. Rep. 34, 1557–1564 (2015)PubMed X. Zhang, H. Shi, S. Lin, M. Ba, S. Cui, MicroRNA-216a enhances the radiosensitivity of pancreatic cancer cells by inhibiting beclin-1-mediated autophagy. Oncol. Rep. 34, 1557–1564 (2015)PubMed
190.
Zurück zum Zitat H. He, S.J. Hao, L. Yao, F. Yang, Y. Di, J. Li, Y.J. Jiang, C. Jin, D.L. Fu, MicroRNA-218 inhibits cell invasion and migration of pancreatic cancer via regulating ROBO1. Cancer Biol. Ther. 15, 1333–1339 (2014)PubMedPubMedCentralCrossRef H. He, S.J. Hao, L. Yao, F. Yang, Y. Di, J. Li, Y.J. Jiang, C. Jin, D.L. Fu, MicroRNA-218 inhibits cell invasion and migration of pancreatic cancer via regulating ROBO1. Cancer Biol. Ther. 15, 1333–1339 (2014)PubMedPubMedCentralCrossRef
191.
Zurück zum Zitat C.H. Li, K.F. To, J.H. Tong, Z. Xiao, T. Xia, P.B. Lai, S.C. Chow, Y.X. Zhu, S.L. Chan, V.E. Marquez, Y. Chen, Enhancer of zeste homolog 2 silences microRNA-218 in human pancreatic ductal adenocarcinoma cells by inducing formation of heterochromatin. Gastroenterology 144, 1086–1097.e9 (2013)PubMedCrossRef C.H. Li, K.F. To, J.H. Tong, Z. Xiao, T. Xia, P.B. Lai, S.C. Chow, Y.X. Zhu, S.L. Chan, V.E. Marquez, Y. Chen, Enhancer of zeste homolog 2 silences microRNA-218 in human pancreatic ductal adenocarcinoma cells by inducing formation of heterochromatin. Gastroenterology 144, 1086–1097.e9 (2013)PubMedCrossRef
192.
Zurück zum Zitat Z.L. Zhang, Z.H. Bai, X.B. Wang, L. Bai, F. Miao, H.H. Pei, miR-186 and 326 predict the prognosis of pancreatic ductal adenocarcinoma and affect the proliferation and migration of cancer cells. PLoS One 10, e0118814 (2015)PubMedPubMedCentralCrossRef Z.L. Zhang, Z.H. Bai, X.B. Wang, L. Bai, F. Miao, H.H. Pei, miR-186 and 326 predict the prognosis of pancreatic ductal adenocarcinoma and affect the proliferation and migration of cancer cells. PLoS One 10, e0118814 (2015)PubMedPubMedCentralCrossRef
193.
Zurück zum Zitat L. Gao, Y. Yang, H. Xu, R. Liu, D. Li, H. Hong, M. Qin, Y. Wang, MiR-335 functions as a tumor suppressor in pancreatic cancer by targeting OCT4. Tumour Biol. 35, 8309–8318 (2014)PubMedCrossRef L. Gao, Y. Yang, H. Xu, R. Liu, D. Li, H. Hong, M. Qin, Y. Wang, MiR-335 functions as a tumor suppressor in pancreatic cancer by targeting OCT4. Tumour Biol. 35, 8309–8318 (2014)PubMedCrossRef
194.
Zurück zum Zitat R. Guo, J. Gu, Z. Zhang, Y. Wang, C. Gu, MicroRNA-410 functions as a tumor suppressor by targeting angiotensin II type 1 receptor in pancreatic cancer. IUBMB Life 67, 42–53 (2015)PubMedCrossRef R. Guo, J. Gu, Z. Zhang, Y. Wang, C. Gu, MicroRNA-410 functions as a tumor suppressor by targeting angiotensin II type 1 receptor in pancreatic cancer. IUBMB Life 67, 42–53 (2015)PubMedCrossRef
195.
Zurück zum Zitat R. Guo, Y. Wang, W.Y. Shi, B. Liu, S.Q. Hou, L. Liu, MicroRNA miR-491-5p targeting both TP53 and Bcl-XL induces cell apoptosis in SW1990 pancreatic cancer cells through mitochondria mediated pathway. Molecules 17, 14733–14747 (2012)PubMedCrossRef R. Guo, Y. Wang, W.Y. Shi, B. Liu, S.Q. Hou, L. Liu, MicroRNA miR-491-5p targeting both TP53 and Bcl-XL induces cell apoptosis in SW1990 pancreatic cancer cells through mitochondria mediated pathway. Molecules 17, 14733–14747 (2012)PubMedCrossRef
196.
Zurück zum Zitat Y. Liu, X. Li, S. Zhu, J.G. Zhang, M. Yang, Q. Qin, S.C. Deng, B. Wang, K. Tian, L. Liu, Y. Niu, C.Y. Wang, G. Zhao, Ectopic expression of miR-494 inhibited the proliferation, invasion and chemoresistance of pancreatic cancer by regulating SIRT1 and c-Myc. Gene Ther. 22, 729–738 (2015)PubMedCrossRef Y. Liu, X. Li, S. Zhu, J.G. Zhang, M. Yang, Q. Qin, S.C. Deng, B. Wang, K. Tian, L. Liu, Y. Niu, C.Y. Wang, G. Zhao, Ectopic expression of miR-494 inhibited the proliferation, invasion and chemoresistance of pancreatic cancer by regulating SIRT1 and c-Myc. Gene Ther. 22, 729–738 (2015)PubMedCrossRef
197.
Zurück zum Zitat L. Li, Z. Li, X. Kong, D. Xie, Z. Jia, W. Jiang, J. Cui, Y. Du, D. Wei, S. Huang, K. Xie, Down-regulation of MicroRNA 494 via loss of SMAD4 increases FOXM1 and beta-catenin signaling in pancreatic ductal adenocarcinoma cells. Gastroenterology 147, 485–497 (2014) L. Li, Z. Li, X. Kong, D. Xie, Z. Jia, W. Jiang, J. Cui, Y. Du, D. Wei, S. Huang, K. Xie, Down-regulation of MicroRNA 494 via loss of SMAD4 increases FOXM1 and beta-catenin signaling in pancreatic ductal adenocarcinoma cells. Gastroenterology 147, 485–497 (2014)
198.
Zurück zum Zitat J.W. Xu, T.X. Wang, L. You, L.F. Zheng, H. Shu, T.P. Zhang, Y.P. Zhao, Insulin-like growth factor 1 receptor (IGF-1R) as a target of MiR-497 and plasma IGF-1R levels associated with TNM stage of pancreatic cancer. PLoS One 9, e92847 (2014)PubMedPubMedCentralCrossRef J.W. Xu, T.X. Wang, L. You, L.F. Zheng, H. Shu, T.P. Zhang, Y.P. Zhao, Insulin-like growth factor 1 receptor (IGF-1R) as a target of MiR-497 and plasma IGF-1R levels associated with TNM stage of pancreatic cancer. PLoS One 9, e92847 (2014)PubMedPubMedCentralCrossRef
199.
Zurück zum Zitat J. Xu, T. Wang, Z. Cao, H. Huang, J. Li, W. Liu, S. Liu, L. You, L. Zhou, T. Zhang, Y. Zhao, MiR-497 downregulation contributes to the malignancy of pancreatic cancer and associates with a poor prognosis. Oncotarget 5, 6983–6993 (2014)PubMedPubMedCentralCrossRef J. Xu, T. Wang, Z. Cao, H. Huang, J. Li, W. Liu, S. Liu, L. You, L. Zhou, T. Zhang, Y. Zhao, MiR-497 downregulation contributes to the malignancy of pancreatic cancer and associates with a poor prognosis. Oncotarget 5, 6983–6993 (2014)PubMedPubMedCentralCrossRef
200.
Zurück zum Zitat J. Du, X. Zheng, S. Cai, Z. Zhu, J. Tan, B. Hu, Z. Huang, H. Jiao, MicroRNA506 participates in pancreatic cancer pathogenesis by targeting PIM3. Mol. Med. Rep. 12, 5121–5126 (2015)PubMed J. Du, X. Zheng, S. Cai, Z. Zhu, J. Tan, B. Hu, Z. Huang, H. Jiao, MicroRNA506 participates in pancreatic cancer pathogenesis by targeting PIM3. Mol. Med. Rep. 12, 5121–5126 (2015)PubMed
201.
Zurück zum Zitat B. Song, W. Ji, S. Guo, A. Liu, W. Jing, C. Shao, G. Li, G. Jin, miR-545 inhibited pancreatic ductal adenocarcinoma growth by targeting RIG-I. FEBS Lett. 588, 4375–4381 (2014)PubMedCrossRef B. Song, W. Ji, S. Guo, A. Liu, W. Jing, C. Shao, G. Li, G. Jin, miR-545 inhibited pancreatic ductal adenocarcinoma growth by targeting RIG-I. FEBS Lett. 588, 4375–4381 (2014)PubMedCrossRef
202.
Zurück zum Zitat H. Heyn, S. Schreek, R. Buurman, T. Focken, B. Schlegelberger, C. Beger, MicroRNA miR-548d is a superior regulator in pancreatic cancer. Pancreas 41, 218–221 (2012)PubMedCrossRef H. Heyn, S. Schreek, R. Buurman, T. Focken, B. Schlegelberger, C. Beger, MicroRNA miR-548d is a superior regulator in pancreatic cancer. Pancreas 41, 218–221 (2012)PubMedCrossRef
203.
Zurück zum Zitat Y. Sun, T. Zhang, C. Wang, X. Jin, C. Jia, S. Yu, J. Chen, MiRNA-615-5p Functions as a Tumor Suppressor in Pancreatic Ductal Adenocarcinoma by Targeting AKT2. PLoS One 10, e0119783 (2015)PubMedPubMedCentralCrossRef Y. Sun, T. Zhang, C. Wang, X. Jin, C. Jia, S. Yu, J. Chen, MiRNA-615-5p Functions as a Tumor Suppressor in Pancreatic Ductal Adenocarcinoma by Targeting AKT2. PLoS One 10, e0119783 (2015)PubMedPubMedCentralCrossRef
204.
Zurück zum Zitat Y. Harazono, T. Muramatsu, H. Endo, N. Uzawa, T. Kawano, K. Harada, J. Inazawa, K. Kozaki, miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS One 8, e62757 (2013)PubMedPubMedCentralCrossRef Y. Harazono, T. Muramatsu, H. Endo, N. Uzawa, T. Kawano, K. Harada, J. Inazawa, K. Kozaki, miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS One 8, e62757 (2013)PubMedPubMedCentralCrossRef
205.
Zurück zum Zitat S. Muller, S. Raulefs, P. Bruns, F. Afonso-Grunz, A. Plotner, R. Thermann, C. Jager, A.M. Schlitter, B. Kong, I. Regel, W.K. Roth, B. Rotter, K. Hoffmeier, G. Kahl, I. Koch, F.J. Theis, J. Kleeff, P. Winter, C.W. Michalski, Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer. Mol. Cancer. 14, 94 (2015). doi:10.1186/s12943-015-0358-5 PubMedPubMedCentralCrossRef S. Muller, S. Raulefs, P. Bruns, F. Afonso-Grunz, A. Plotner, R. Thermann, C. Jager, A.M. Schlitter, B. Kong, I. Regel, W.K. Roth, B. Rotter, K. Hoffmeier, G. Kahl, I. Koch, F.J. Theis, J. Kleeff, P. Winter, C.W. Michalski, Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer. Mol. Cancer. 14, 94 (2015). doi:10.​1186/​s12943-015-0358-5 PubMedPubMedCentralCrossRef
206.
Zurück zum Zitat J. Jiang, Z. Li, C. Yu, M. Chen, S. Tian, C. Sun, MiR-1181 inhibits stem cell-like phenotypes and suppresses SOX2 and STAT3 in human pancreatic cancer. Cancer Lett. 356, 962–970 (2015)PubMedCrossRef J. Jiang, Z. Li, C. Yu, M. Chen, S. Tian, C. Sun, MiR-1181 inhibits stem cell-like phenotypes and suppresses SOX2 and STAT3 in human pancreatic cancer. Cancer Lett. 356, 962–970 (2015)PubMedCrossRef
207.
Zurück zum Zitat S. Shi, Y. Lu, Y. Qin, W. Li, H. Cheng, Y. Xu, J. Xu, J. Long, L. Liu, C. Liu, X. Yu, miR-1247 is correlated with prognosis of pancreatic cancer and inhibits cell proliferation by targeting neuropilins. Curr. Mol. Med. 14, 316–327 (2014)PubMedCrossRef S. Shi, Y. Lu, Y. Qin, W. Li, H. Cheng, Y. Xu, J. Xu, J. Long, L. Liu, C. Liu, X. Yu, miR-1247 is correlated with prognosis of pancreatic cancer and inhibits cell proliferation by targeting neuropilins. Curr. Mol. Med. 14, 316–327 (2014)PubMedCrossRef
208.
Zurück zum Zitat K. Ohuchida, K. Mizumoto, C. Lin, H. Yamaguchi, T. Ohtsuka, N. Sato, H. Toma, M. Nakamura, E. Nagai, M. Hashizume, M. Tanaka, MicroRNA-10a is overexpressed in human pancreatic cancer and involved in its invasiveness partially via suppression of the HOXA1 gene. Ann. Surg. Oncol. 19, 2394–2402 (2012)PubMedCrossRef K. Ohuchida, K. Mizumoto, C. Lin, H. Yamaguchi, T. Ohtsuka, N. Sato, H. Toma, M. Nakamura, E. Nagai, M. Hashizume, M. Tanaka, MicroRNA-10a is overexpressed in human pancreatic cancer and involved in its invasiveness partially via suppression of the HOXA1 gene. Ann. Surg. Oncol. 19, 2394–2402 (2012)PubMedCrossRef
209.
Zurück zum Zitat F.U. Weiss, I.J. Marques, J.M. Woltering, D.H. Vlecken, A. Aghdassi, L.I. Partecke, C.D. Heidecke, M.M. Lerch, C.P. Bagowski, Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology 137, 2136–45.e1-7 (2009)PubMedCrossRef F.U. Weiss, I.J. Marques, J.M. Woltering, D.H. Vlecken, A. Aghdassi, L.I. Partecke, C.D. Heidecke, M.M. Lerch, C.P. Bagowski, Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology 137, 2136–45.e1-7 (2009)PubMedCrossRef
210.
Zurück zum Zitat H. Ouyang, J. Gore, S. Deitz, M. Korc, microRNA-10b enhances pancreatic cancer cell invasion by suppressing TIP30 expression and promoting EGF and TGF-beta actions. Oncogene 33, 4664–4674 (2014)PubMedCrossRef H. Ouyang, J. Gore, S. Deitz, M. Korc, microRNA-10b enhances pancreatic cancer cell invasion by suppressing TIP30 expression and promoting EGF and TGF-beta actions. Oncogene 33, 4664–4674 (2014)PubMedCrossRef
211.
Zurück zum Zitat K. Nakata, K. Ohuchida, K. Mizumoto, T. Kayashima, N. Ikenaga, H. Sakai, C. Lin, H. Fujita, T. Otsuka, S. Aishima, E. Nagai, Y. Oda, M. Tanaka, MicroRNA-10b is overexpressed in pancreatic cancer, promotes its invasiveness, and correlates with a poor prognosis. Surgery 150, 916–922 (2011)PubMedCrossRef K. Nakata, K. Ohuchida, K. Mizumoto, T. Kayashima, N. Ikenaga, H. Sakai, C. Lin, H. Fujita, T. Otsuka, S. Aishima, E. Nagai, Y. Oda, M. Tanaka, MicroRNA-10b is overexpressed in pancreatic cancer, promotes its invasiveness, and correlates with a poor prognosis. Surgery 150, 916–922 (2011)PubMedCrossRef
212.
Zurück zum Zitat J. Yu, K. Ohuchida, K. Mizumoto, H. Fujita, K. Nakata, M. Tanaka, MicroRNA miR-17-5p is overexpressed in pancreatic cancer, associated with a poor prognosis, and involved in cancer cell proliferation and invasion. Cancer Biol. Ther. 10, 748–757 (2010)PubMedCrossRef J. Yu, K. Ohuchida, K. Mizumoto, H. Fujita, K. Nakata, M. Tanaka, MicroRNA miR-17-5p is overexpressed in pancreatic cancer, associated with a poor prognosis, and involved in cancer cell proliferation and invasion. Cancer Biol. Ther. 10, 748–757 (2010)PubMedCrossRef
213.
Zurück zum Zitat H.J. Yan, W.S. Liu, W.H. Sun, J. Wu, M. Ji, Q. Wang, X. Zheng, J.T. Jiang, C.P. Wu, miR-17-5p inhibitor enhances chemosensitivity to gemcitabine via upregulating Bim expression in pancreatic cancer cells. Dig. Dis. Sci. 57, 3160–3167 (2012)PubMedCrossRef H.J. Yan, W.S. Liu, W.H. Sun, J. Wu, M. Ji, Q. Wang, X. Zheng, J.T. Jiang, C.P. Wu, miR-17-5p inhibitor enhances chemosensitivity to gemcitabine via upregulating Bim expression in pancreatic cancer cells. Dig. Dis. Sci. 57, 3160–3167 (2012)PubMedCrossRef
214.
Zurück zum Zitat Y. Nagao, M. Hisaoka, A. Matsuyama, S. Kanemitsu, T. Hamada, T. Fukuyama, R. Nakano, A. Uchiyama, M. Kawamoto, K. Yamaguchi, H. Hashimoto, Association of microRNA-21 expression with its targets, PDCD4 and TIMP3, in pancreatic ductal adenocarcinoma. Mod. Pathol. 25, 112–121 (2012)PubMedCrossRef Y. Nagao, M. Hisaoka, A. Matsuyama, S. Kanemitsu, T. Hamada, T. Fukuyama, R. Nakano, A. Uchiyama, M. Kawamoto, K. Yamaguchi, H. Hashimoto, Association of microRNA-21 expression with its targets, PDCD4 and TIMP3, in pancreatic ductal adenocarcinoma. Mod. Pathol. 25, 112–121 (2012)PubMedCrossRef
215.
Zurück zum Zitat J. Dong, Y.P. Zhao, L. Zhou, T.P. Zhang, G. Chen, Bcl-2 upregulation induced by miR-21 via a direct interaction is associated with apoptosis and chemoresistance in MIA PaCa-2 pancreatic cancer cells. Arch. Med. Res. 42, 8–14 (2011)PubMedCrossRef J. Dong, Y.P. Zhao, L. Zhou, T.P. Zhang, G. Chen, Bcl-2 upregulation induced by miR-21 via a direct interaction is associated with apoptosis and chemoresistance in MIA PaCa-2 pancreatic cancer cells. Arch. Med. Res. 42, 8–14 (2011)PubMedCrossRef
216.
Zurück zum Zitat T. Moriyama, K. Ohuchida, K. Mizumoto, J. Yu, N. Sato, T. Nabae, S. Takahata, H. Toma, E. Nagai, M. Tanaka, MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol. Cancer Ther. 8, 1067–1074 (2009)PubMedCrossRef T. Moriyama, K. Ohuchida, K. Mizumoto, J. Yu, N. Sato, T. Nabae, S. Takahata, H. Toma, E. Nagai, M. Tanaka, MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol. Cancer Ther. 8, 1067–1074 (2009)PubMedCrossRef
217.
Zurück zum Zitat Y. Ma, S. Yu, W. Zhao, Z. Lu, J. Chen, miR-27a regulates the growth, colony formation and migration of pancreatic cancer cells by targeting Sprouty2. Cancer Lett. 298, 150–158 (2010)PubMedCrossRef Y. Ma, S. Yu, W. Zhao, Z. Lu, J. Chen, miR-27a regulates the growth, colony formation and migration of pancreatic cancer cells by targeting Sprouty2. Cancer Lett. 298, 150–158 (2010)PubMedCrossRef
218.
Zurück zum Zitat G. He, L. Zhang, Q. Li, L. Yang, miR-92a/DUSP10/JNK signalling axis promotes human pancreatic cancer cells proliferation. Biomed. Pharmacother. 68, 25–30 (2014)PubMedCrossRef G. He, L. Zhang, Q. Li, L. Yang, miR-92a/DUSP10/JNK signalling axis promotes human pancreatic cancer cells proliferation. Biomed. Pharmacother. 68, 25–30 (2014)PubMedCrossRef
219.
Zurück zum Zitat W.G. Li, Y.Z. Yuan, M.M. Qiao, Y.P. Zhang, High dose glargine alters the expression profiles of microRNAs in pancreatic cancer cells. World J. Gastroenterol. 18, 2630–2639 (2012)PubMedPubMedCentralCrossRef W.G. Li, Y.Z. Yuan, M.M. Qiao, Y.P. Zhang, High dose glargine alters the expression profiles of microRNAs in pancreatic cancer cells. World J. Gastroenterol. 18, 2630–2639 (2012)PubMedPubMedCentralCrossRef
220.
Zurück zum Zitat P. Li, Q. Xu, D. Zhang, X. Li, L. Han, J. Lei, W. Duan, Q. Ma, Z. Wu, Z. Wang, Upregulated miR-106a plays an oncogenic role in pancreatic cancer. FEBS Lett. 588, 705–712 (2014)PubMedCrossRef P. Li, Q. Xu, D. Zhang, X. Li, L. Han, J. Lei, W. Duan, Q. Ma, Z. Wu, Z. Wang, Upregulated miR-106a plays an oncogenic role in pancreatic cancer. FEBS Lett. 588, 705–712 (2014)PubMedCrossRef
221.
Zurück zum Zitat Z. Bai, J. Sun, X. Wang, H. Wang, H. Pei, Z. Zhang, MicroRNA-153 is a prognostic marker and inhibits cell migration and invasion by targeting SNAI1 in human pancreatic ductal adenocarcinoma. Oncol. Rep. 34, 595–602 (2015)PubMedPubMedCentral Z. Bai, J. Sun, X. Wang, H. Wang, H. Pei, Z. Zhang, MicroRNA-153 is a prognostic marker and inhibits cell migration and invasion by targeting SNAI1 in human pancreatic ductal adenocarcinoma. Oncol. Rep. 34, 595–602 (2015)PubMedPubMedCentral
222.
Zurück zum Zitat D. Takiuchi, H. Eguchi, H. Nagano, Y. Iwagami, Y. Tomimaru, H. Wada, K. Kawamoto, S. Kobayashi, S. Marubashi, M. Tanemura, M. Mori, Y. Doki, Involvement of microRNA-181b in the gemcitabine resistance of pancreatic cancer cells. Pancreatology 13, 517–523 (2013)PubMedCrossRef D. Takiuchi, H. Eguchi, H. Nagano, Y. Iwagami, Y. Tomimaru, H. Wada, K. Kawamoto, S. Kobayashi, S. Marubashi, M. Tanemura, M. Mori, Y. Doki, Involvement of microRNA-181b in the gemcitabine resistance of pancreatic cancer cells. Pancreatology 13, 517–523 (2013)PubMedCrossRef
223.
Zurück zum Zitat Z. Song, H. Ren, S. Gao, X. Zhao, H. Zhang, J. Hao, The clinical significance and regulation mechanism of hypoxia-inducible factor-1 and miR-191 expression in pancreatic cancer. Tumour Biol. 35, 11319–11328 (2014)PubMedCrossRef Z. Song, H. Ren, S. Gao, X. Zhao, H. Zhang, J. Hao, The clinical significance and regulation mechanism of hypoxia-inducible factor-1 and miR-191 expression in pancreatic cancer. Tumour Biol. 35, 11319–11328 (2014)PubMedCrossRef
224.
Zurück zum Zitat C. Zhao, J. Zhang, S. Zhang, D. Yu, Y. Chen, Q. Liu, M. Shi, C. Ni, M. Zhu, Diagnostic and biological significance of microRNA-192 in pancreatic ductal adenocarcinoma. Oncol. Rep. 30, 276–284 (2013)PubMed C. Zhao, J. Zhang, S. Zhang, D. Yu, Y. Chen, Q. Liu, M. Shi, C. Ni, M. Zhu, Diagnostic and biological significance of microRNA-192 in pancreatic ductal adenocarcinoma. Oncol. Rep. 30, 276–284 (2013)PubMed
225.
Zurück zum Zitat J. Zhang, C.Y. Zhao, S.H. Zhang, D.H. Yu, Y. Chen, Q.H. Liu, M. Shi, C.R. Ni, M.H. Zhu, Upregulation of miR-194 contributes to tumor growth and progression in pancreatic ductal adenocarcinoma. Oncol. Rep. 31, 1157–1164 (2014)PubMed J. Zhang, C.Y. Zhao, S.H. Zhang, D.H. Yu, Y. Chen, Q.H. Liu, M. Shi, C.R. Ni, M.H. Zhu, Upregulation of miR-194 contributes to tumor growth and progression in pancreatic ductal adenocarcinoma. Oncol. Rep. 31, 1157–1164 (2014)PubMed
226.
Zurück zum Zitat M. Liu, Y. Du, J. Gao, J. Liu, X. Kong, Y. Gong, Z. Li, H. Wu, H. Chen, Aberrant expression miR-196a is associated with abnormal apoptosis, invasion, and proliferation of pancreatic cancer cells. Pancreas 42, 1169–1181 (2013)PubMedCrossRef M. Liu, Y. Du, J. Gao, J. Liu, X. Kong, Y. Gong, Z. Li, H. Wu, H. Chen, Aberrant expression miR-196a is associated with abnormal apoptosis, invasion, and proliferation of pancreatic cancer cells. Pancreas 42, 1169–1181 (2013)PubMedCrossRef
227.
Zurück zum Zitat F. Huang, J. Tang, X. Zhuang, Y. Zhuang, W. Cheng, W. Chen, H. Yao, S. Zhang, MiR-196a promotes pancreatic cancer progression by targeting nuclear factor kappa-B-inhibitor alpha. PLoS One 9, e87897 (2014)PubMedPubMedCentralCrossRef F. Huang, J. Tang, X. Zhuang, Y. Zhuang, W. Cheng, W. Chen, H. Yao, S. Zhang, MiR-196a promotes pancreatic cancer progression by targeting nuclear factor kappa-B-inhibitor alpha. PLoS One 9, e87897 (2014)PubMedPubMedCentralCrossRef
228.
Zurück zum Zitat S. Hamada, K. Satoh, S. Miura, M. Hirota, A. Kanno, A. Masamune, K. Kikuta, K. Kume, J. Unno, S. Egawa, F. Motoi, M. Unno, T. Shimosegawa, miR-197 induces epithelial-mesenchymal transition in pancreatic cancer cells by targeting p120 catenin. J. Cell. Physiol. 228, 1255–1263 (2013)PubMedCrossRef S. Hamada, K. Satoh, S. Miura, M. Hirota, A. Kanno, A. Masamune, K. Kikuta, K. Kume, J. Unno, S. Egawa, F. Motoi, M. Unno, T. Shimosegawa, miR-197 induces epithelial-mesenchymal transition in pancreatic cancer cells by targeting p120 catenin. J. Cell. Physiol. 228, 1255–1263 (2013)PubMedCrossRef
229.
Zurück zum Zitat A. Liu, C. Shao, G. Jin, R. Liu, J. Hao, B. Song, L. Ouyang, X. Hu, miR-208-induced epithelial to mesenchymal transition of pancreatic cancer cells promotes cell metastasis and invasion. Cell Biochem. Biophys. 69, 341–346 (2014)PubMedCrossRef A. Liu, C. Shao, G. Jin, R. Liu, J. Hao, B. Song, L. Ouyang, X. Hu, miR-208-induced epithelial to mesenchymal transition of pancreatic cancer cells promotes cell metastasis and invasion. Cell Biochem. Biophys. 69, 341–346 (2014)PubMedCrossRef
230.
Zurück zum Zitat J. Jung, C. Yeom, Y.S. Choi, S. Kim, E. Lee, M.J. Park, S.W. Kang, S.B. Kim, S. Chang, Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge. Oncotarget 6, 20370–20387 (2015)PubMedPubMedCentralCrossRef J. Jung, C. Yeom, Y.S. Choi, S. Kim, E. Lee, M.J. Park, S.W. Kang, S.B. Kim, S. Chang, Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge. Oncotarget 6, 20370–20387 (2015)PubMedPubMedCentralCrossRef
231.
Zurück zum Zitat J. Ma, B. Fang, F. Zeng, C. Ma, H. Pang, L. Cheng, Y. Shi, H. Wang, B. Yin, J. Xia, Z. Wang, Down-regulation of miR-223 reverses epithelial-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Oncotarget 6, 1740–1749 (2015)PubMedPubMedCentralCrossRef J. Ma, B. Fang, F. Zeng, C. Ma, H. Pang, L. Cheng, Y. Shi, H. Wang, B. Yin, J. Xia, Z. Wang, Down-regulation of miR-223 reverses epithelial-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Oncotarget 6, 1740–1749 (2015)PubMedPubMedCentralCrossRef
232.
Zurück zum Zitat J. Ma, L. Cheng, H. Liu, J. Zhang, Y. Shi, F. Zeng, L. Miele, F.H. Sarkar, J. Xia, Z. Wang, Genistein down-regulates miR-223 expression in pancreatic cancer cells. Curr. Drug Targets 14, 1150–1156 (2013)PubMedCrossRef J. Ma, L. Cheng, H. Liu, J. Zhang, Y. Shi, F. Zeng, L. Miele, F.H. Sarkar, J. Xia, Z. Wang, Genistein down-regulates miR-223 expression in pancreatic cancer cells. Curr. Drug Targets 14, 1150–1156 (2013)PubMedCrossRef
233.
Zurück zum Zitat Z. Chen, L.Y. Chen, H.Y. Dai, P. Wang, S. Gao, K. Wang, miR-301a promotes pancreatic cancer cell proliferation by directly inhibiting Bim expression. J. Cell. Biochem. 113, 3229–3235 (2012)PubMedCrossRef Z. Chen, L.Y. Chen, H.Y. Dai, P. Wang, S. Gao, K. Wang, miR-301a promotes pancreatic cancer cell proliferation by directly inhibiting Bim expression. J. Cell. Biochem. 113, 3229–3235 (2012)PubMedCrossRef
234.
Zurück zum Zitat Z. Lu, Y. Li, A. Takwi, B. Li, J. Zhang, D.J. Conklin, K.H. Young, R. Martin, Y. Li, miR-301a as an NF-kappaB activator in pancreatic cancer cells. EMBO J. 30, 57–67 (2011)PubMedCrossRef Z. Lu, Y. Li, A. Takwi, B. Li, J. Zhang, D.J. Conklin, K.H. Young, R. Martin, Y. Li, miR-301a as an NF-kappaB activator in pancreatic cancer cells. EMBO J. 30, 57–67 (2011)PubMedCrossRef
235.
Zurück zum Zitat N. Funamizu, C.R. Lacy, S.T. Parpart, A. Takai, Y. Hiyoshi, K. Yanaga, MicroRNA-301b promotes cell invasiveness through targeting TP63 in pancreatic carcinoma cells. Int. J. Oncol. 44, 725–734 (2014)PubMed N. Funamizu, C.R. Lacy, S.T. Parpart, A. Takai, Y. Hiyoshi, K. Yanaga, MicroRNA-301b promotes cell invasiveness through targeting TP63 in pancreatic carcinoma cells. Int. J. Oncol. 44, 725–734 (2014)PubMed
236.
Zurück zum Zitat S. Hamada, A. Masamune, S. Miura, K. Satoh, T. Shimosegawa, MiR-365 induces gemcitabine resistance in pancreatic cancer cells by targeting the adaptor protein SHC1 and pro-apoptotic regulator BAX. Cell. Signal. 26, 179–185 (2014)PubMedCrossRef S. Hamada, A. Masamune, S. Miura, K. Satoh, T. Shimosegawa, MiR-365 induces gemcitabine resistance in pancreatic cancer cells by targeting the adaptor protein SHC1 and pro-apoptotic regulator BAX. Cell. Signal. 26, 179–185 (2014)PubMedCrossRef
237.
Zurück zum Zitat D. He, H. Miao, Y. Xu, L. Xiong, Y. Wang, H. Xiang, H. Zhang, Z. Zhang, MiR-371-5p facilitates pancreatic cancer cell proliferation and decreases patient survival. PLoS One 9, e112930 (2014)PubMedPubMedCentralCrossRef D. He, H. Miao, Y. Xu, L. Xiong, Y. Wang, H. Xiang, H. Zhang, Z. Zhang, MiR-371-5p facilitates pancreatic cancer cell proliferation and decreases patient survival. PLoS One 9, e112930 (2014)PubMedPubMedCentralCrossRef
238.
Zurück zum Zitat K. Wu, G. Hu, X. He, P. Zhou, J. Li, B. He, W. Sun, MicroRNA-424-5p suppresses the expression of SOCS6 in pancreatic cancer. Pathol. Oncol. Res. 19, 739–748 (2013)PubMedCrossRef K. Wu, G. Hu, X. He, P. Zhou, J. Li, B. He, W. Sun, MicroRNA-424-5p suppresses the expression of SOCS6 in pancreatic cancer. Pathol. Oncol. Res. 19, 739–748 (2013)PubMedCrossRef
239.
Zurück zum Zitat S. Hasegawa, H. Eguchi, H. Nagano, M. Konno, Y. Tomimaru, H. Wada, N. Hama, K. Kawamoto, S. Kobayashi, N. Nishida, J. Koseki, T. Nishimura, N. Gotoh, S. Ohno, N. Yabuta, H. Nojima, M. Mori, Y. Doki, H. Ishii, MicroRNA-1246 expression associated with CCNG2-mediated chemoresistance and stemness in pancreatic cancer. Br. J. Cancer 111, 1572–1580 (2014)PubMedPubMedCentralCrossRef S. Hasegawa, H. Eguchi, H. Nagano, M. Konno, Y. Tomimaru, H. Wada, N. Hama, K. Kawamoto, S. Kobayashi, N. Nishida, J. Koseki, T. Nishimura, N. Gotoh, S. Ohno, N. Yabuta, H. Nojima, M. Mori, Y. Doki, H. Ishii, MicroRNA-1246 expression associated with CCNG2-mediated chemoresistance and stemness in pancreatic cancer. Br. J. Cancer 111, 1572–1580 (2014)PubMedPubMedCentralCrossRef
240.
Zurück zum Zitat Y. Wang, Z. Li, S. Zheng, Y. Zhou, L. Zhao, H. Ye, X. Zhao, W. Gao, Z. Fu, Q. Zhou, Y. Liu, R. Chen, Expression profile of long non-coding RNAs in pancreatic cancer and their clinical significance as biomarkers. Oncotarget 6, 35684–35698 (2015)PubMedPubMedCentral Y. Wang, Z. Li, S. Zheng, Y. Zhou, L. Zhao, H. Ye, X. Zhao, W. Gao, Z. Fu, Q. Zhou, Y. Liu, R. Chen, Expression profile of long non-coding RNAs in pancreatic cancer and their clinical significance as biomarkers. Oncotarget 6, 35684–35698 (2015)PubMedPubMedCentral
241.
Zurück zum Zitat Q. Wang, H. Jiang, C. Ping, R. Shen, T. Liu, J. Li, Y. Qian, Y. Tang, S. Cheng, W. Yao, L. Wang, Exploring the Wnt pathway-associated LncRNAs and genes involved in pancreatic carcinogenesis driven by Tp53 mutation. Pharm. Res. 32, 793–805 (2015)PubMedCrossRef Q. Wang, H. Jiang, C. Ping, R. Shen, T. Liu, J. Li, Y. Qian, Y. Tang, S. Cheng, W. Yao, L. Wang, Exploring the Wnt pathway-associated LncRNAs and genes involved in pancreatic carcinogenesis driven by Tp53 mutation. Pharm. Res. 32, 793–805 (2015)PubMedCrossRef
242.
Zurück zum Zitat A.C. Tahira, M.S. Kubrusly, M.F. Faria, B. Dazzani, R.S. Fonseca, V. Maracaja-Coutinho, S. Verjovski-Almeida, M.C. Machado, E.M. Reis, Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer. Mol. Cancer. 10, 141 (2011). doi:10.1186/1476-4598-10-141 PubMedPubMedCentralCrossRef A.C. Tahira, M.S. Kubrusly, M.F. Faria, B. Dazzani, R.S. Fonseca, V. Maracaja-Coutinho, S. Verjovski-Almeida, M.C. Machado, E.M. Reis, Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer. Mol. Cancer. 10, 141 (2011). doi:10.​1186/​1476-4598-10-141 PubMedPubMedCentralCrossRef
243.
Zurück zum Zitat S. Cao, W. Liu, F. Li, W. Zhao, C. Qin, Decreased expression of lncRNA GAS5 predicts a poor prognosis in cervical cancer. Int. J. Clin. Exp. Pathol. 7, 6776–6783 (2014)PubMedPubMedCentral S. Cao, W. Liu, F. Li, W. Zhao, C. Qin, Decreased expression of lncRNA GAS5 predicts a poor prognosis in cervical cancer. Int. J. Clin. Exp. Pathol. 7, 6776–6783 (2014)PubMedPubMedCentral
244.
Zurück zum Zitat M. Mourtada-Maarabouni, M.R. Pickard, V.L. Hedge, F. Farzaneh, G.T. Williams, GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28, 195–208 (2009)PubMedCrossRef M. Mourtada-Maarabouni, M.R. Pickard, V.L. Hedge, F. Farzaneh, G.T. Williams, GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28, 195–208 (2009)PubMedCrossRef
245.
Zurück zum Zitat Y. Nakamura, N. Takahashi, E. Kakegawa, K. Yoshida, Y. Ito, H. Kayano, N. Niitsu, I. Jinnai, M. Bessho, The GAS5 (growth arrest-specific transcript 5) gene fuses to BCL6 as a result of t(1;3)(q25;q27) in a patient with B-cell lymphoma. Cancer Genet. Cytogenet. 182, 144–149 (2008)PubMedCrossRef Y. Nakamura, N. Takahashi, E. Kakegawa, K. Yoshida, Y. Ito, H. Kayano, N. Niitsu, I. Jinnai, M. Bessho, The GAS5 (growth arrest-specific transcript 5) gene fuses to BCL6 as a result of t(1;3)(q25;q27) in a patient with B-cell lymphoma. Cancer Genet. Cytogenet. 182, 144–149 (2008)PubMedCrossRef
246.
Zurück zum Zitat K. Yacqub-Usman, M.R. Pickard, G.T. Williams, Reciprocal regulation of GAS5 lncRNA levels and mTOR inhibitor action in prostate cancer cells. Prostate 75, 693–705 (2015)PubMedCrossRef K. Yacqub-Usman, M.R. Pickard, G.T. Williams, Reciprocal regulation of GAS5 lncRNA levels and mTOR inhibitor action in prostate cancer cells. Prostate 75, 693–705 (2015)PubMedCrossRef
247.
Zurück zum Zitat X. Lu, Y. Fang, Z. Wang, J. Xie, Q. Zhan, X. Deng, H. Chen, J. Jin, C. Peng, H. Li, B. Shen, Downregulation of gas5 increases pancreatic cancer cell proliferation by regulating CDK6. Cell Tissue Res. 354, 891–896 (2013)PubMedCrossRef X. Lu, Y. Fang, Z. Wang, J. Xie, Q. Zhan, X. Deng, H. Chen, J. Jin, C. Peng, H. Li, B. Shen, Downregulation of gas5 increases pancreatic cancer cell proliferation by regulating CDK6. Cell Tissue Res. 354, 891–896 (2013)PubMedCrossRef
248.
Zurück zum Zitat P. Ji, S. Diederichs, W. Wang, S. Boing, R. Metzger, P.M. Schneider, N. Tidow, B. Brandt, H. Buerger, E. Bulk, M. Thomas, W.E. Berdel, H. Serve, C. Muller-Tidow, MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22, 8031–8041 (2003)PubMedCrossRef P. Ji, S. Diederichs, W. Wang, S. Boing, R. Metzger, P.M. Schneider, N. Tidow, B. Brandt, H. Buerger, E. Bulk, M. Thomas, W.E. Berdel, H. Serve, C. Muller-Tidow, MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22, 8031–8041 (2003)PubMedCrossRef
249.
Zurück zum Zitat E.J. Pang, R. Yang, X.B. Fu, Y.F. Liu, Overexpression of long non-coding RNA MALAT1 is correlated with clinical progression and unfavorable prognosis in pancreatic cancer. Tumour Biol. 36, 2403–2407 (2015) E.J. Pang, R. Yang, X.B. Fu, Y.F. Liu, Overexpression of long non-coding RNA MALAT1 is correlated with clinical progression and unfavorable prognosis in pancreatic cancer. Tumour Biol. 36, 2403–2407 (2015)
250.
Zurück zum Zitat F. Jiao, H. Hu, C. Yuan, L. Wang, W. Jiang, Z. Jin, Z. Guo, L. Wang, Elevated expression level of long noncoding RNA MALAT-1 facilitates cell growth, migration and invasion in pancreatic cancer. Oncol. Rep. 32, 2485–2492 (2014)PubMed F. Jiao, H. Hu, C. Yuan, L. Wang, W. Jiang, Z. Jin, Z. Guo, L. Wang, Elevated expression level of long noncoding RNA MALAT-1 facilitates cell growth, migration and invasion in pancreatic cancer. Oncol. Rep. 32, 2485–2492 (2014)PubMed
251.
Zurück zum Zitat F. Jiao, H. Hu, T. Han, C. Yuan, L. Wang, Z. Jin, Z. Guo, L. Wang, Long noncoding RNA MALAT-1 enhances stem cell-like phenotypes in pancreatic cancer cells. Int. J. Mol. Sci. 16, 6677–6693 (2015)PubMedPubMedCentralCrossRef F. Jiao, H. Hu, T. Han, C. Yuan, L. Wang, Z. Jin, Z. Guo, L. Wang, Long noncoding RNA MALAT-1 enhances stem cell-like phenotypes in pancreatic cancer cells. Int. J. Mol. Sci. 16, 6677–6693 (2015)PubMedPubMedCentralCrossRef
252.
Zurück zum Zitat K. Panzitt, M.M. Tschernatsch, C. Guelly, T. Moustafa, M. Stradner, H.M. Strohmaier, C.R. Buck, H. Denk, R. Schroeder, M. Trauner, K. Zatloukal, Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132, 330–342 (2007)PubMedCrossRef K. Panzitt, M.M. Tschernatsch, C. Guelly, T. Moustafa, M. Stradner, H.M. Strohmaier, C.R. Buck, H. Denk, R. Schroeder, M. Trauner, K. Zatloukal, Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132, 330–342 (2007)PubMedCrossRef
254.
Zurück zum Zitat M. Hajjari, A. Salavaty, HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer. Biol. Med. 12, 1–9 (2015)PubMedPubMedCentral M. Hajjari, A. Salavaty, HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer. Biol. Med. 12, 1–9 (2015)PubMedPubMedCentral
255.
Zurück zum Zitat J.K. Stratford, D.J. Bentrem, J.M. Anderson, C. Fan, K.A. Volmar, J.S. Marron, E.D. Routh, L.S. Caskey, J.C. Samuel, C.J. Der, L.B. Thorne, B.F. Calvo, H.J. Kim, M.S. Talamonti, C.A. Iacobuzio-Donahue, M.A. Hollingsworth, C.M. Perou, J.J. Yeh, A six-gene signature predicts survival of patients with localized pancreatic ductal adenocarcinoma. PLoS Med. 7, e1000307 (2010)PubMedPubMedCentralCrossRef J.K. Stratford, D.J. Bentrem, J.M. Anderson, C. Fan, K.A. Volmar, J.S. Marron, E.D. Routh, L.S. Caskey, J.C. Samuel, C.J. Der, L.B. Thorne, B.F. Calvo, H.J. Kim, M.S. Talamonti, C.A. Iacobuzio-Donahue, M.A. Hollingsworth, C.M. Perou, J.J. Yeh, A six-gene signature predicts survival of patients with localized pancreatic ductal adenocarcinoma. PLoS Med. 7, e1000307 (2010)PubMedPubMedCentralCrossRef
256.
Zurück zum Zitat M.C. Tsai, O. Manor, Y. Wan, N. Mosammaparast, J.K. Wang, F. Lan, Y. Shi, E. Segal, H.Y. Chang, Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010)PubMedPubMedCentralCrossRef M.C. Tsai, O. Manor, Y. Wan, N. Mosammaparast, J.K. Wang, F. Lan, Y. Shi, E. Segal, H.Y. Chang, Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010)PubMedPubMedCentralCrossRef
257.
Zurück zum Zitat R.A. Gupta, N. Shah, K.C. Wang, J. Kim, H.M. Horlings, D.J. Wong, M.C. Tsai, T. Hung, P. Argani, J.L. Rinn, Y. Wang, P. Brzoska, B. Kong, R. Li, R.B. West, M.J. van de Vijver, S. Sukumar, H.Y. Chang, Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010)PubMedPubMedCentralCrossRef R.A. Gupta, N. Shah, K.C. Wang, J. Kim, H.M. Horlings, D.J. Wong, M.C. Tsai, T. Hung, P. Argani, J.L. Rinn, Y. Wang, P. Brzoska, B. Kong, R. Li, R.B. West, M.J. van de Vijver, S. Sukumar, H.Y. Chang, Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010)PubMedPubMedCentralCrossRef
258.
Zurück zum Zitat Y. Jiang, Z. Li, S. Zheng, H. Chen, X. Zhao, W. Gao, Z. Bi, K. You, Y. Wang, W. Li, L. Li, Y. Liu, R. Chen, The long non-coding RNA HOTAIR affects the radiosensitivity of pancreatic ductal adenocarcinoma by regulating the expression of Wnt inhibitory factor 1. Tumour Biol. (2015). doi:10.1007/s13277-015-4234-0 Y. Jiang, Z. Li, S. Zheng, H. Chen, X. Zhao, W. Gao, Z. Bi, K. You, Y. Wang, W. Li, L. Li, Y. Liu, R. Chen, The long non-coding RNA HOTAIR affects the radiosensitivity of pancreatic ductal adenocarcinoma by regulating the expression of Wnt inhibitory factor 1. Tumour Biol. (2015). doi:10.​1007/​s13277-015-4234-0
259.
Zurück zum Zitat A.E. Teschendorff, S.H. Lee, A. Jones, H. Fiegl, M. Kalwa, W. Wagner, K. Chindera, I. Evans, L. Dubeau, A. Orjalo, H.M. Horlings, L. Niederreiter, A. Kaser, W. Yang, E.L. Goode, B.L. Fridley, R.G. Jenner, E.M. Berns, E. Wik, H.B. Salvesen, G.B. Wisman, A.G. van der Zee, B. Davidson, C.G. Trope, S. Lambrechts, I. Vergote, H. Calvert, I.J. Jacobs, M. Widschwendter, HOTAIR and its surrogate DNA methylation signature indicate carboplatin resistance in ovarian cancer. Genome Med. 7, 108 (2015). doi:10.1186/s13073-015-0233-4 PubMedPubMedCentralCrossRef A.E. Teschendorff, S.H. Lee, A. Jones, H. Fiegl, M. Kalwa, W. Wagner, K. Chindera, I. Evans, L. Dubeau, A. Orjalo, H.M. Horlings, L. Niederreiter, A. Kaser, W. Yang, E.L. Goode, B.L. Fridley, R.G. Jenner, E.M. Berns, E. Wik, H.B. Salvesen, G.B. Wisman, A.G. van der Zee, B. Davidson, C.G. Trope, S. Lambrechts, I. Vergote, H. Calvert, I.J. Jacobs, M. Widschwendter, HOTAIR and its surrogate DNA methylation signature indicate carboplatin resistance in ovarian cancer. Genome Med. 7, 108 (2015). doi:10.​1186/​s13073-015-0233-4 PubMedPubMedCentralCrossRef
260.
Zurück zum Zitat K.C. Wang, Y.W. Yang, B. Liu, A. Sanyal, R. Corces-Zimmerman, Y. Chen, B.R. Lajoie, A. Protacio, R.A. Flynn, R.A. Gupta, J. Wysocka, M. Lei, J. Dekker, J.A. Helms, H.Y. Chang, A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011)PubMedPubMedCentralCrossRef K.C. Wang, Y.W. Yang, B. Liu, A. Sanyal, R. Corces-Zimmerman, Y. Chen, B.R. Lajoie, A. Protacio, R.A. Flynn, R.A. Gupta, J. Wysocka, M. Lei, J. Dekker, J.A. Helms, H.Y. Chang, A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011)PubMedPubMedCentralCrossRef
261.
Zurück zum Zitat J.J. Song, R.E. Kingston, WDR5 interacts with mixed lineage leukemia (MLL) protein via the histone H3-binding pocket. J. Biol. Chem. 283, 35258–35264 (2008)PubMedPubMedCentralCrossRef J.J. Song, R.E. Kingston, WDR5 interacts with mixed lineage leukemia (MLL) protein via the histone H3-binding pocket. J. Biol. Chem. 283, 35258–35264 (2008)PubMedPubMedCentralCrossRef
262.
Zurück zum Zitat L. Quagliata, M.S. Matter, S. Piscuoglio, L. Arabi, C. Ruiz, A. Procino, M. Kovac, F. Moretti, Z. Makowska, T. Boldanova, J.B. Andersen, M. Hammerle, L. Tornillo, M.H. Heim, S. Diederichs, C. Cillo, L.M. Terracciano, Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology 59, 911–923 (2014)PubMedPubMedCentralCrossRef L. Quagliata, M.S. Matter, S. Piscuoglio, L. Arabi, C. Ruiz, A. Procino, M. Kovac, F. Moretti, Z. Makowska, T. Boldanova, J.B. Andersen, M. Hammerle, L. Tornillo, M.H. Heim, S. Diederichs, C. Cillo, L.M. Terracciano, Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology 59, 911–923 (2014)PubMedPubMedCentralCrossRef
263.
Zurück zum Zitat Z. Li, X. Zhao, Y. Zhou, Y. Liu, Q. Zhou, H. Ye, Y. Wang, J. Zeng, Y. Song, W. Gao, S. Zheng, B. Zhuang, H. Chen, W. Li, H. Li, H. Li, Z. Fu, R. Chen, The long non-coding RNA HOTTIP promotes progression and gemcitabine resistance by regulating HOXA13 in pancreatic cancer. J. Transl. Med. 13, 84 (2015). doi:10.1186/s12967-015-0442-z PubMedPubMedCentralCrossRef Z. Li, X. Zhao, Y. Zhou, Y. Liu, Q. Zhou, H. Ye, Y. Wang, J. Zeng, Y. Song, W. Gao, S. Zheng, B. Zhuang, H. Chen, W. Li, H. Li, H. Li, Z. Fu, R. Chen, The long non-coding RNA HOTTIP promotes progression and gemcitabine resistance by regulating HOXA13 in pancreatic cancer. J. Transl. Med. 13, 84 (2015). doi:10.​1186/​s12967-015-0442-z PubMedPubMedCentralCrossRef
264.
Zurück zum Zitat Y. Cheng, I. Jutooru, G. Chadalapaka, J.C. Corton, S. Safe, The long non-coding RNA HOTTIP enhances pancreatic cancer cell proliferation, survival and migration. Oncotarget 6, 10840–10852 (2015) Y. Cheng, I. Jutooru, G. Chadalapaka, J.C. Corton, S. Safe, The long non-coding RNA HOTTIP enhances pancreatic cancer cell proliferation, survival and migration. Oncotarget 6, 10840–10852 (2015)
265.
Zurück zum Zitat Y.W. Sun, Y.F. Chen, J. Li, Y.M. Huo, D.J. Liu, R. Hua, J.F. Zhang, W. Liu, J.Y. Yang, X.L. Fu, T. Yan, J. Hong, H. Cao, A novel long non-coding RNA ENST00000480739 suppresses tumour cell invasion by regulating OS-9 and HIF-1alpha in pancreatic ductal adenocarcinoma. Br. J. Cancer 111, 2131–2141 (2014)PubMedPubMedCentralCrossRef Y.W. Sun, Y.F. Chen, J. Li, Y.M. Huo, D.J. Liu, R. Hua, J.F. Zhang, W. Liu, J.Y. Yang, X.L. Fu, T. Yan, J. Hong, H. Cao, A novel long non-coding RNA ENST00000480739 suppresses tumour cell invasion by regulating OS-9 and HIF-1alpha in pancreatic ductal adenocarcinoma. Br. J. Cancer 111, 2131–2141 (2014)PubMedPubMedCentralCrossRef
266.
Zurück zum Zitat S. Zheng, H. Chen, Y. Wang, W. Gao, Z. Fu, Q. Zhou, Y. Jiang, Q. Lin, L. Tan, H. Ye, X. Zhao, Y. Luo, G. Li, L. Ye, Y. Liu, W. Li, Z. Li, R. Chen, Long non-coding RNA LOC389641 promotes progression of pancreatic ductal adenocarcinoma and increases cell invasion by regulating E-cadherin in a TNFRSF10A-related manner. Cancer Lett. 37, 354–365 (2016) S. Zheng, H. Chen, Y. Wang, W. Gao, Z. Fu, Q. Zhou, Y. Jiang, Q. Lin, L. Tan, H. Ye, X. Zhao, Y. Luo, G. Li, L. Ye, Y. Liu, W. Li, Z. Li, R. Chen, Long non-coding RNA LOC389641 promotes progression of pancreatic ductal adenocarcinoma and increases cell invasion by regulating E-cadherin in a TNFRSF10A-related manner. Cancer Lett. 37, 354–365 (2016)
267.
Zurück zum Zitat A. Ashkenazi, R.C. Pai, S. Fong, S. Leung, D.A. Lawrence, S.A. Marsters, C. Blackie, L. Chang, A.E. McMurtrey, A. Hebert, L. DeForge, I.L. Koumenis, D. Lewis, L. Harris, J. Bussiere, H. Koeppen, Z. Shahrokh, R.H. Schwall, Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104, 155–162 (1999)PubMedPubMedCentralCrossRef A. Ashkenazi, R.C. Pai, S. Fong, S. Leung, D.A. Lawrence, S.A. Marsters, C. Blackie, L. Chang, A.E. McMurtrey, A. Hebert, L. DeForge, I.L. Koumenis, D. Lewis, L. Harris, J. Bussiere, H. Koeppen, Z. Shahrokh, R.H. Schwall, Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104, 155–162 (1999)PubMedPubMedCentralCrossRef
268.
Zurück zum Zitat I. Ariel, S. Ayesh, E.J. Perlman, G. Pizov, V. Tanos, T. Schneider, V.A. Erdmann, D. Podeh, D. Komitowski, A.S. Quasem, N. de Groot, A. Hochberg, The product of the imprinted H19 gene is an oncofetal RNA. Mol. Pathol. 50, 34–44 (1997)PubMedPubMedCentralCrossRef I. Ariel, S. Ayesh, E.J. Perlman, G. Pizov, V. Tanos, T. Schneider, V.A. Erdmann, D. Podeh, D. Komitowski, A.S. Quasem, N. de Groot, A. Hochberg, The product of the imprinted H19 gene is an oncofetal RNA. Mol. Pathol. 50, 34–44 (1997)PubMedPubMedCentralCrossRef
269.
Zurück zum Zitat T. Arima, T. Matsuda, N. Takagi, N. Wake, Association of IGF2 and H19 imprinting with choriocarcinoma development. Cancer Genet. Cytogenet. 93, 39–47 (1997)PubMedCrossRef T. Arima, T. Matsuda, N. Takagi, N. Wake, Association of IGF2 and H19 imprinting with choriocarcinoma development. Cancer Genet. Cytogenet. 93, 39–47 (1997)PubMedCrossRef
270.
Zurück zum Zitat G. Banet, O. Bibi, I. Matouk, S. Ayesh, M. Laster, K.M. Kimber, M. Tykocinski, N. de Groot, A. Hochberg, P. Ohana, Characterization of human and mouse H19 regulatory sequences. Mol. Biol. Rep. 27, 157–165 (2000)PubMedCrossRef G. Banet, O. Bibi, I. Matouk, S. Ayesh, M. Laster, K.M. Kimber, M. Tykocinski, N. de Groot, A. Hochberg, P. Ohana, Characterization of human and mouse H19 regulatory sequences. Mol. Biol. Rep. 27, 157–165 (2000)PubMedCrossRef
271.
Zurück zum Zitat I.J. Matouk, N. DeGroot, S. Mezan, S. Ayesh, R. Abu-lail, A. Hochberg, E. Galun, The H19 non-coding RNA is essential for human tumor growth. PLoS One 2, e845 (2007)PubMedPubMedCentralCrossRef I.J. Matouk, N. DeGroot, S. Mezan, S. Ayesh, R. Abu-lail, A. Hochberg, E. Galun, The H19 non-coding RNA is essential for human tumor growth. PLoS One 2, e845 (2007)PubMedPubMedCentralCrossRef
272.
Zurück zum Zitat C. Ma, K. Nong, H. Zhu, W. Wang, X. Huang, Z. Yuan, K. Ai, H19 promotes pancreatic cancer metastasis by derepressing let-7’s suppression on its target HMGA2-mediated EMT. Tumour Biol. 35, 9163–9169 (2014)PubMedCrossRef C. Ma, K. Nong, H. Zhu, W. Wang, X. Huang, Z. Yuan, K. Ai, H19 promotes pancreatic cancer metastasis by derepressing let-7’s suppression on its target HMGA2-mediated EMT. Tumour Biol. 35, 9163–9169 (2014)PubMedCrossRef
273.
Zurück zum Zitat D. Amit, A. Hochberg, Development of targeted therapy for a broad spectrum of cancers (pancreatic cancer, ovarian cancer, glioblastoma and HCC) mediated by a double promoter plasmid expressing diphtheria toxin under the control of H19 and IGF2-P4 regulatory sequences. Int. J. Clin. Exp. Med. 5, 296–305 (2012)PubMedPubMedCentral D. Amit, A. Hochberg, Development of targeted therapy for a broad spectrum of cancers (pancreatic cancer, ovarian cancer, glioblastoma and HCC) mediated by a double promoter plasmid expressing diphtheria toxin under the control of H19 and IGF2-P4 regulatory sequences. Int. J. Clin. Exp. Med. 5, 296–305 (2012)PubMedPubMedCentral
274.
Zurück zum Zitat A.A. Sidi, P. Ohana, S. Benjamin, M. Shalev, J.H. Ransom, D. Lamm, A. Hochberg, I. Leibovitch, Phase I/II marker lesion study of intravesical BC-819 DNA plasmid in H19 over expressing superficial bladder cancer refractory to bacillus Calmette-Guerin. J. Urol. 180, 2379–2383 (2008)PubMedCrossRef A.A. Sidi, P. Ohana, S. Benjamin, M. Shalev, J.H. Ransom, D. Lamm, A. Hochberg, I. Leibovitch, Phase I/II marker lesion study of intravesical BC-819 DNA plasmid in H19 over expressing superficial bladder cancer refractory to bacillus Calmette-Guerin. J. Urol. 180, 2379–2383 (2008)PubMedCrossRef
275.
Zurück zum Zitat A. Mizrahi, A. Czerniak, T. Levy, S. Amiur, J. Gallula, I. Matouk, R. Abu-lail, V. Sorin, T. Birman, N. de Groot, A. Hochberg, P. Ohana, Development of targeted therapy for ovarian cancer mediated by a plasmid expressing diphtheria toxin under the control of H19 regulatory sequences. J.Transl.Med. 7, 69 (2009). doi:10.1186/1479-5876-7-69 PubMedPubMedCentralCrossRef A. Mizrahi, A. Czerniak, T. Levy, S. Amiur, J. Gallula, I. Matouk, R. Abu-lail, V. Sorin, T. Birman, N. de Groot, A. Hochberg, P. Ohana, Development of targeted therapy for ovarian cancer mediated by a plasmid expressing diphtheria toxin under the control of H19 regulatory sequences. J.Transl.Med. 7, 69 (2009). doi:10.​1186/​1479-5876-7-69 PubMedPubMedCentralCrossRef
276.
Zurück zum Zitat ClinicalTrials.gov [Internet] Identifier: NCT01413087, Efficacy and safety of BC-819 and gemcitabine in patients with locally advanced pancreatic adenocarcinoma (LAPC-BC-819), 2015 (2012) ClinicalTrials.gov [Internet] Identifier: NCT01413087, Efficacy and safety of BC-819 and gemcitabine in patients with locally advanced pancreatic adenocarcinoma (LAPC-BC-819), 2015 (2012)
277.
Zurück zum Zitat J.H. Liu, G. Chen, Y.W. Dang, C.J. Li, D.Z. Luo, Expression and prognostic significance of lncRNA MALAT1 in pancreatic cancer tissues. Asian Pac. J. Cancer Prev. 15, 2971–2977 (2014)PubMedCrossRef J.H. Liu, G. Chen, Y.W. Dang, C.J. Li, D.Z. Luo, Expression and prognostic significance of lncRNA MALAT1 in pancreatic cancer tissues. Asian Pac. J. Cancer Prev. 15, 2971–2977 (2014)PubMedCrossRef
278.
Zurück zum Zitat E. Heister, V. Neves, C. Lamprecht, S.R.P. Silva, H.M. Coley, J. McFadden, Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes. 50, 622–632 (2012) E. Heister, V. Neves, C. Lamprecht, S.R.P. Silva, H.M. Coley, J. McFadden, Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes. 50, 622–632 (2012)
279.
Zurück zum Zitat C.J. Cheng, R. Bahal, I.A. Babar, Z. Pincus, F. Barrera, C. Liu, A. Svoronos, D.T. Braddock, P.M. Glazer, D.M. Engelman, W.M. Saltzman, F.J. Slack, MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518, 107–110 (2015)PubMedCrossRef C.J. Cheng, R. Bahal, I.A. Babar, Z. Pincus, F. Barrera, C. Liu, A. Svoronos, D.T. Braddock, P.M. Glazer, D.M. Engelman, W.M. Saltzman, F.J. Slack, MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518, 107–110 (2015)PubMedCrossRef
280.
Zurück zum Zitat C.F. Bennett, E.E. Swayze, RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 50, 259–293 (2010)PubMedCrossRef C.F. Bennett, E.E. Swayze, RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 50, 259–293 (2010)PubMedCrossRef
282.
Zurück zum Zitat C.W. Kimbrough, A. Khanal, M. Zeiderman, B.R. Khanal, N.C. Burton, K.M. McMasters, S.M. Vickers, W.E. Grizzle, L.R. McNally, Targeting acidity in pancreatic adenocarcinoma: multispectral optoacoustic tomography detects pH-low insertion peptide probes in vivo. Clin. Cancer Res. 21, 4576–4585 (2015) C.W. Kimbrough, A. Khanal, M. Zeiderman, B.R. Khanal, N.C. Burton, K.M. McMasters, S.M. Vickers, W.E. Grizzle, L.R. McNally, Targeting acidity in pancreatic adenocarcinoma: multispectral optoacoustic tomography detects pH-low insertion peptide probes in vivo. Clin. Cancer Res. 21, 4576–4585 (2015)
283.
Zurück zum Zitat H. Atkinson, R. Chalmers, Delivering the goods: viral and non-viral gene therapy systems and the inherent limits on cargo DNA and internal sequences. Genetica 138, 485–498 (2010)PubMedCrossRef H. Atkinson, R. Chalmers, Delivering the goods: viral and non-viral gene therapy systems and the inherent limits on cargo DNA and internal sequences. Genetica 138, 485–498 (2010)PubMedCrossRef
284.
285.
Zurück zum Zitat G. Almer, K.L. Summers, B. Scheicher, J. Kellner, I. Stelzer, G. Leitinger, A. Gries, R. Prassl, A. Zimmer, H. Mangge, Interleukin 10-coated nanoparticle systems compared for molecular imaging of atherosclerotic lesions. Int. J. Nanomedicine 9, 4211–4222 (2014)PubMedPubMedCentral G. Almer, K.L. Summers, B. Scheicher, J. Kellner, I. Stelzer, G. Leitinger, A. Gries, R. Prassl, A. Zimmer, H. Mangge, Interleukin 10-coated nanoparticle systems compared for molecular imaging of atherosclerotic lesions. Int. J. Nanomedicine 9, 4211–4222 (2014)PubMedPubMedCentral
286.
Zurück zum Zitat S. Zalba, A.M. Contreras, A. Haeri, T.L. Ten Hagen, I. Navarro, G. Koning, M.J. Garrido, Cetuximab-oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer. J. Control. Release 210, 26–38 (2015)PubMedCrossRef S. Zalba, A.M. Contreras, A. Haeri, T.L. Ten Hagen, I. Navarro, G. Koning, M.J. Garrido, Cetuximab-oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer. J. Control. Release 210, 26–38 (2015)PubMedCrossRef
287.
Zurück zum Zitat K. Bates, K. Kostarelos, Carbon nanotubes as vectors for gene therapy: past achievements, present challenges and future goals. Adv. Drug Deliv. Rev. 65, 2023–2033 (2013)PubMedCrossRef K. Bates, K. Kostarelos, Carbon nanotubes as vectors for gene therapy: past achievements, present challenges and future goals. Adv. Drug Deliv. Rev. 65, 2023–2033 (2013)PubMedCrossRef
288.
Zurück zum Zitat H.L. Janssen, H.W. Reesink, E.J. Lawitz, S. Zeuzem, M. Rodriguez-Torres, K. Patel, A.J. van der Meer, A.K. Patick, A. Chen, Y. Zhou, R. Persson, B.D. King, S. Kauppinen, A.A. Levin, M.R. Hodges, Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368, 1685–1694 (2013)PubMedCrossRef H.L. Janssen, H.W. Reesink, E.J. Lawitz, S. Zeuzem, M. Rodriguez-Torres, K. Patel, A.J. van der Meer, A.K. Patick, A. Chen, Y. Zhou, R. Persson, B.D. King, S. Kauppinen, A.A. Levin, M.R. Hodges, Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368, 1685–1694 (2013)PubMedCrossRef
289.
Zurück zum Zitat E.C. Verna, V. Dhar, Endoscopic ultrasound-guided fine needle injection for cancer therapy: the evolving role of therapeutic endoscopic ultrasound. Ther. Adv. Gastroenterol. 1, 103–109 (2008)CrossRef E.C. Verna, V. Dhar, Endoscopic ultrasound-guided fine needle injection for cancer therapy: the evolving role of therapeutic endoscopic ultrasound. Ther. Adv. Gastroenterol. 1, 103–109 (2008)CrossRef
290.
Zurück zum Zitat A. Kambadakone, A. Thabet, D.A. Gervais, P.R. Mueller, R.S. Arellano, CT-guided celiac plexus neurolysis: a review of anatomy, indications, technique, and tips for successful treatment. Radiographics 31, 1599–1621 (2011)PubMedCrossRef A. Kambadakone, A. Thabet, D.A. Gervais, P.R. Mueller, R.S. Arellano, CT-guided celiac plexus neurolysis: a review of anatomy, indications, technique, and tips for successful treatment. Radiographics 31, 1599–1621 (2011)PubMedCrossRef
291.
Zurück zum Zitat V. Scaiewicz, V. Sorin, Y. Fellig, T. Birman, A. Mizrahi, J. Galula, R. Abu-Lail, T. Shneider, P. Ohana, L. Buscail, A. Hochberg, A. Czerniak, Use of H19 gene regulatory sequences in DNA-based therapy for pancreatic cancer. J. Oncol. 2010, 178174 (2010)PubMedPubMedCentralCrossRef V. Scaiewicz, V. Sorin, Y. Fellig, T. Birman, A. Mizrahi, J. Galula, R. Abu-Lail, T. Shneider, P. Ohana, L. Buscail, A. Hochberg, A. Czerniak, Use of H19 gene regulatory sequences in DNA-based therapy for pancreatic cancer. J. Oncol. 2010, 178174 (2010)PubMedPubMedCentralCrossRef
292.
Zurück zum Zitat J. Kota, R.R. Chivukula, K.A. O’Donnell, E.A. Wentzel, C.L. Montgomery, H.W. Hwang, T.C. Chang, P. Vivekanandan, M. Torbenson, K.R. Clark, J.R. Mendell, J.T. Mendell, Therapeutic delivery of miR-26a inhibits cancer cell proliferation and induces tumor-specific apoptosis. Cell 137, 1005–1017 (2009)PubMedPubMedCentralCrossRef J. Kota, R.R. Chivukula, K.A. O’Donnell, E.A. Wentzel, C.L. Montgomery, H.W. Hwang, T.C. Chang, P. Vivekanandan, M. Torbenson, K.R. Clark, J.R. Mendell, J.T. Mendell, Therapeutic delivery of miR-26a inhibits cancer cell proliferation and induces tumor-specific apoptosis. Cell 137, 1005–1017 (2009)PubMedPubMedCentralCrossRef
293.
Zurück zum Zitat G.A. Calin, C.D. Dumitru, M. Shimizu, R. Bichi, S. Zupo, E. Noch, H. Aldler, S. Rattan, M. Keating, K. Rai, L. Rassenti, T. Kipps, M. Negrini, F. Bullrich, C.M. Croce, Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U. S. A. 99, 15524–15529 (2002)PubMedPubMedCentralCrossRef G.A. Calin, C.D. Dumitru, M. Shimizu, R. Bichi, S. Zupo, E. Noch, H. Aldler, S. Rattan, M. Keating, K. Rai, L. Rassenti, T. Kipps, M. Negrini, F. Bullrich, C.M. Croce, Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U. S. A. 99, 15524–15529 (2002)PubMedPubMedCentralCrossRef
294.
Zurück zum Zitat H.A. Burris 3rd, M.J. Moore, J. Andersen, M.R. Green, M.L. Rothenberg, M.R. Modiano, M.C. Cripps, R.K. Portenoy, A.M. Storniolo, P. Tarassoff, R. Nelson, F.A. Dorr, C.D. Stephens, D.D. Von Hoff, Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. 15, 2403–2413 (1997)PubMed H.A. Burris 3rd, M.J. Moore, J. Andersen, M.R. Green, M.L. Rothenberg, M.R. Modiano, M.C. Cripps, R.K. Portenoy, A.M. Storniolo, P. Tarassoff, R. Nelson, F.A. Dorr, C.D. Stephens, D.D. Von Hoff, Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. 15, 2403–2413 (1997)PubMed
295.
Zurück zum Zitat Y. Ren, J. Gao, J.Q. Liu, X.W. Wang, J.J. Gu, H.J. Huang, Y.F. Gong, Z.S. Li, Differential signature of fecal microRNAs in patients with pancreatic cancer. Mol. Med. Rep. 6, 201–209 (2012)PubMed Y. Ren, J. Gao, J.Q. Liu, X.W. Wang, J.J. Gu, H.J. Huang, Y.F. Gong, Z.S. Li, Differential signature of fecal microRNAs in patients with pancreatic cancer. Mol. Med. Rep. 6, 201–209 (2012)PubMed
296.
Zurück zum Zitat M. Humeau, A. Vignolle-Vidoni, F. Sicard, F. Martins, B. Bournet, L. Buscail, J. Torrisani, P. Cordelier, Salivary MicroRNA in pancreatic cancer patients. PLoS One 10, e0130996 (2015)PubMedPubMedCentralCrossRef M. Humeau, A. Vignolle-Vidoni, F. Sicard, F. Martins, B. Bournet, L. Buscail, J. Torrisani, P. Cordelier, Salivary MicroRNA in pancreatic cancer patients. PLoS One 10, e0130996 (2015)PubMedPubMedCentralCrossRef
297.
298.
Zurück zum Zitat J. Liu, J. Gao, Y. Du, Z. Li, Y. Ren, J. Gu, X. Wang, Y. Gong, W. Wang, X. Kong, Combination of plasma microRNAs with serum CA19-9 for early detection of pancreatic cancer. Int. J. Cancer 131, 683–691 (2012)PubMedCrossRef J. Liu, J. Gao, Y. Du, Z. Li, Y. Ren, J. Gu, X. Wang, Y. Gong, W. Wang, X. Kong, Combination of plasma microRNAs with serum CA19-9 for early detection of pancreatic cancer. Int. J. Cancer 131, 683–691 (2012)PubMedCrossRef
299.
Zurück zum Zitat K.H. Lee, J.K. Lee, D.W. Choi, I.G. Do, I. Sohn, K.T. Jang, S.H. Jung, J.S. Heo, S.H. Choi, K.T. Lee, Postoperative prognosis prediction of pancreatic cancer with seven MicroRNAs. Pancreas 44, 764–768 (2015) K.H. Lee, J.K. Lee, D.W. Choi, I.G. Do, I. Sohn, K.T. Jang, S.H. Jung, J.S. Heo, S.H. Choi, K.T. Lee, Postoperative prognosis prediction of pancreatic cancer with seven MicroRNAs. Pancreas 44, 764–768 (2015)
Metadaten
Titel
Non-coding RNAs in pancreatic cancer: challenges and opportunities for clinical application
verfasst von
V. Taucher
H. Mangge
J. Haybaeck
Publikationsdatum
08.04.2016
Verlag
Springer Netherlands
Erschienen in
Cellular Oncology / Ausgabe 4/2016
Print ISSN: 2211-3428
Elektronische ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-016-0275-7

Weitere Artikel der Ausgabe 4/2016

Cellular Oncology 4/2016 Zur Ausgabe

Neu im Fachgebiet Pathologie