Skip to main content
Log in

Long noncoding RNA uc.338 promotes cell proliferation through association with BMI1 in hepatocellular carcinoma

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is one of the most common human cancers all over the world. Increasing evidences have demonstrated that long noncoding RNAs (lncRNAs) play important roles in malignant transformation, tumor growth and metastasis in HCC. Among lncRNAs, ultraconserved RNAs (ucRNAs) containing an ultraconserved region have been report to contribute to human cancers. lncRNA ultraconserved element 338 (uc.338) was first found to be upregulated in HCC and promote cell growth. However, the exact mechanism by which uc.338 modulates cell growth remains unclear. In the present study, we demonstrated that uc.338 promotes HCC cell proliferation and induces cell cycle progression. RNA-immunoprecipitation and RNA pull-down assays showed that uc.338 associated with BMI1. We found that uc.338 promotes HCC cell proliferation and induces cell cycle progression through association with BMI1. uc.338 also modulated the transcription of CDKN1A. The oncogenic activity of uc.338 is partially due to its repression of p21. uc.338 may be a potential target for HCC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kimhofer T, Fye H, Taylor-Robinson S, Thursz M, Holmes E. Proteomic and metabonomic biomarkers for hepatocellular carcinoma: a comprehensive review. Br J Cancer. 2015;112(7):1141–56. doi:10.1038/bjc.2015.38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Waller LP, Deshpande V, Pyrsopoulos N. Hepatocellular carcinoma: a comprehensive review. World J Hepatol. 2015;7(26):2648–63. doi:10.4254/wjh.v7.i26.2648.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rosa A, Ballarino M. Long Noncoding RNA Regulation of Pluripotency. Stem Cells Int. 2016;2016:1797692. doi:10.1155/2016/1797692.

    PubMed  Google Scholar 

  4. Briggs JA, Wolvetang EJ, Mattick JS, Rinn JL, Barry G. Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron. 2015;88(5):861–77. doi:10.1016/j.neuron.2015.09.045.

    Article  CAS  PubMed  Google Scholar 

  5. Hu X, Feng Y, Zhang D, Zhao SD, Hu Z, Greshock J et al. A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell. 2014;26(3):344–57. doi:10.1016/j.ccr.2014.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF et al. A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 2014;25(5):666–81. doi:10.1016/j.ccr.2014.03.010.

    Article  CAS  PubMed  Google Scholar 

  7. Davidovich C, Cech TR. The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2. RNA. 2015;21(12):2007–22. doi:10.1261/rna.053918.115.

    Article  CAS  PubMed  Google Scholar 

  8. Silva A, Bullock M, Calin G. The clinical relevance of long non-coding RNAs in cancer. Cancers. 2015;7(4):2169–82. doi:10.3390/cancers7040884.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kim TK, Shiekhattar R. Architectural and functional commonalities between enhancers and promoters. Cell. 2015;162(5):948–59. doi:10.1016/j.cell.2015.08.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Grassi A, Segala C, Iannelli F, Volorio S, Bertario L, Radice P et al. Ultradeep sequencing of a human ultraconserved region reveals somatic and constitutional genomic instability. PLoS Biol. 2010;8(1):e1000275. doi:10.1371/journal.pbio.1000275.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Peng JC, Shen J, Ran ZH. Transcribed ultraconserved region in human cancers. RNA Biol. 2013;10(12):1771–7. doi:10.4161/rna.26995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Braconi C, Valeri N, Kogure T, Gasparini P, Huang N, Nuovo GJ et al. Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma. Proc Natl Acad Sci USA. 2011;108(2):786–91. doi:10.1073/pnas.1011098108.

    Article  CAS  PubMed  Google Scholar 

  13. Cao C, Sun J, Zhang D, Guo X, Xie L, Li X et al. The long intergenic noncoding RNA UFC1, a target of MicroRNA 34a, interacts with the mRNA stabilizing protein HuR to increase levels of beta-catenin in HCC cells. Gastroenterology. 2015;148(2):415–26. doi:10.1053/j.gastro.2014.10.012.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Li Z, Zhang Y, Zhong Q, Chen Q, Zhang L. Molecular mechanism of HEIH and HULC in the proliferation and invasion of hepatoma cells. Int J Clin Exp Med. 2015;8(8):12956–62.

    PubMed  PubMed Central  Google Scholar 

  15. Ehedego H, Boekschoten MV, Hu W, Doler C, Haybaeck J, Gabetaler N et al. p21 ablation in liver enhances DNA damage, cholestasis, and carcinogenesis. Cancer Res. 2015;75(6):1144–55. doi:10.1158/0008-5472.CAN-14-1356.

    Article  CAS  PubMed  Google Scholar 

  16. Deng W, Zhou Y, Tiwari AF, Su H, Yang J, Zhu D et al. p21/Cyclin E pathway modulates anticlastogenic function of Bmi-1 in cancer cells. Int J Cancer. 2015;136(6):1361–70. doi:10.1002/ijc.29114.

    Article  CAS  PubMed  Google Scholar 

  17. Rizki G, Boyer LA. Lncing epigenetic control of transcription to cardiovascular development and disease. Circulation Res. 2015;117(2):192–206. doi:10.1161/CIRCRESAHA.117.304156.

    Article  CAS  PubMed  Google Scholar 

  18. Kindrat I, Tryndyak V, de Conti A, Shpyleva S, Mudalige TK, Kobets T et al. MicroRNA-152-mediated dysregulation of hepatic transferrin receptor 1 in liver carcinogenesis. Oncotarget. 2015. doi:10.18632/oncotarget.6004.

    PubMed Central  Google Scholar 

  19. Kogure T, Yan IK, Lin WL, Patel T. Extracellular vesicle-mediated transfer of a novel long noncoding RNA TUC339: a mechanism of intercellular signaling in human hepatocellular cancer. Genes Cancer. 2013;4(7–8):261–72. doi:10.1177/1947601913499020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guo W, Liu S, Cheng Y, Lu L, Shi J, Xu G et al. ICAM-1-related non-coding RNA in cancer stem cells maintains ICAM-1 expression in hepatocellular carcinoma. Clin Cancer Res. 2016. doi:10.1158/1078-0432.CCR-14-3106.

    Google Scholar 

  21. Hudson RS, Yi M, Volfovsky N, Prueitt RL, Esposito D, Volinia S et al. Transcription signatures encoded by ultraconserved genomic regions in human prostate cancer. Mol Cancer. 2013;12:13. doi:10.1186/1476-4598-12-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Satyanarayana A, Hilton MB, Kaldis P. p21 Inhibits Cdk1 in the absence of Cdk2 to maintain the G1/S phase DNA damage checkpoint. Mol Biol Cell. 2008;19(1):65–77. doi:10.1091/mbc.E07-06-0525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bashir T, Pagano M. Cdk1: the dominant sibling of Cdk2. Nat Cell Biol. 2005;7(8):779–81. doi:10.1038/ncb0805-779.

    Article  CAS  PubMed  Google Scholar 

  24. Lee SH, Um SJ, Kim EJ. CBX8 suppresses Sirtinol-induced premature senescence in human breast cancer cells via cooperation with SIRT1. Cancer Lett. 2013;335(2):397–403. doi:10.1016/j.canlet.2013.02.051.

    Article  CAS  PubMed  Google Scholar 

  25. Fan T, Jiang S, Chung N, Alikhan A, Ni C, Lee CC et al. EZH2-dependent suppression of a cellular senescence phenotype in melanoma cells by inhibition of p21/CDKN1A expression. Mol Cancer Res. 2011;9(4):418–29. doi:10.1158/1541-7786.MCR-10-0511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Balasubramanian S, Adhikary G, Eckert RL. The Bmi-1 polycomb protein antagonizes the (-)-epigallocatechin-3-gallate-dependent suppression of skin cancer cell survival. Carcinogenesis. 2010;31(3):496–503. doi:10.1093/carcin/bgp314.

    Article  CAS  PubMed  Google Scholar 

  27. Liu K, Sun B, Zhao X, Wang X, Li Y, Qiu Z et al. Hypoxia promotes vasculogenic mimicry formation by the Twist1-Bmi1 connection in hepatocellular carcinoma. Int J Mol Med. 2015;36(3):783–91. doi:10.3892/ijmm.2015.2293.

    CAS  PubMed  Google Scholar 

  28. Xu CR, Lee S, Ho C, Bommi P, Huang SA, Cheung ST et al. Bmi1 functions as an oncogene independent of Ink4A/Arf repression in hepatic carcinogenesis. Mol Cancer Res. 2009;7(12):1937–45. doi:10.1158/1541-7786.MCR-09-0333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aguilo F, Zhou MM, Walsh MJ. Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARFINK4a expression. Cancer Res. 2011;71(16):5365–9. doi:10.1158/0008-5472.CAN-10-4379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghui An.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bo, C., Li, N., Li, X. et al. Long noncoding RNA uc.338 promotes cell proliferation through association with BMI1 in hepatocellular carcinoma. Human Cell 29, 141–147 (2016). https://doi.org/10.1007/s13577-016-0140-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-016-0140-z

Keywords

Navigation