Skip to main content
Erschienen in: Current Pediatrics Reports 4/2014

01.12.2014 | Nutrition/Growth (RJ Shulman, Section Editor)

Striking While the Iron is Hot: Understanding the Biological and Neurodevelopmental Effects of Iron Deficiency to Optimize Intervention in Early Childhood

verfasst von: Jenalee R. Doom, Michael K. Georgieff

Erschienen in: Current Pediatrics Reports | Ausgabe 4/2014

Einloggen, um Zugang zu erhalten

Abstract

Prenatal and early postnatal iron deficiency (ID) is associated with long-term neurobiological alterations and disruptions in cognitive, social, and behavioral development. Early life ID is particularly detrimental as this is a period of rapid neurodevelopment. Even after iron supplementation, cognitive and social disruptions often persist in formerly iron-deficient individuals. Observational studies of the acute and long-term effects of early life ID yield different results based on the timing of ID. Further, intervention studies demonstrate some improvement for certain domains but still show residual effects years later, which are dependent on the timing of ID and treatment. This review will cover the effects of ID during infancy and early childhood on brain structure and function, cognition, and behavior in relation to preclinical models of ID and sensitive periods of human brain development.
Literatur
1.
Zurück zum Zitat Amin SB, Orlando M, Eddins A, MacDonald M, Monczynski C, Wang H. In utero iron status and auditory neural maturation in premature infants as evaluated by auditory brainstem response. J Pediatr. 2010;156(3):377–81.PubMedCentralPubMedCrossRef Amin SB, Orlando M, Eddins A, MacDonald M, Monczynski C, Wang H. In utero iron status and auditory neural maturation in premature infants as evaluated by auditory brainstem response. J Pediatr. 2010;156(3):377–81.PubMedCentralPubMedCrossRef
2.
Zurück zum Zitat Siddappa AM, Georgieff MK, Wewerka S, Worca C, Nelson CA, deRegnier R-A. Auditory recognition memory in iron-deficient infants of diabetic mothers. Pediatr Res. 2004;55:1034–41.PubMedCrossRef Siddappa AM, Georgieff MK, Wewerka S, Worca C, Nelson CA, deRegnier R-A. Auditory recognition memory in iron-deficient infants of diabetic mothers. Pediatr Res. 2004;55:1034–41.PubMedCrossRef
3.
Zurück zum Zitat Kuzawa CW. Beyond feast-famine: brain evolution, human life history, and the metabolic syndrome. In: Muehlenbein M, editor. Human evolutionary biology. Cambridge: Cambridge University Press; 2010. p. 518–27.CrossRef Kuzawa CW. Beyond feast-famine: brain evolution, human life history, and the metabolic syndrome. In: Muehlenbein M, editor. Human evolutionary biology. Cambridge: Cambridge University Press; 2010. p. 518–27.CrossRef
4.
Zurück zum Zitat Algarín C, Peirano P, Garrido M, Pizarro F, Lozoff B. Iron deficiency anemia in infancy: long-lasting effects on auditory and visual system functioning. Pediatr Res. 2003;53(2):217–23.PubMedCrossRef Algarín C, Peirano P, Garrido M, Pizarro F, Lozoff B. Iron deficiency anemia in infancy: long-lasting effects on auditory and visual system functioning. Pediatr Res. 2003;53(2):217–23.PubMedCrossRef
5.
Zurück zum Zitat Lozoff B, Klein NK, Nelson EC, McClish DK, Manuel M, Chacon ME. Behavior of infants with iron deficiency anemia. Child Dev. 1998;69:24–36.PubMedCrossRef Lozoff B, Klein NK, Nelson EC, McClish DK, Manuel M, Chacon ME. Behavior of infants with iron deficiency anemia. Child Dev. 1998;69:24–36.PubMedCrossRef
6.
Zurück zum Zitat Lozoff B, Jimenez E, Hagen J, Mollen E, Wolf AW. Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics. 2000;105:E51.PubMedCrossRef Lozoff B, Jimenez E, Hagen J, Mollen E, Wolf AW. Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics. 2000;105:E51.PubMedCrossRef
7.
Zurück zum Zitat ∙ Georgieff MK. Long-term brain and behavioral consequences of early iron deficiency. Nutr Rev. 2011; 69:S43–8. This paper is a review of the long-term effects of pre- and post-natal ID in both humans and in model systems. Alterations in neurotransmitter systems and changes in gene expression are discussed. ∙ Georgieff MK. Long-term brain and behavioral consequences of early iron deficiency. Nutr Rev. 2011; 69:S43–8. This paper is a review of the long-term effects of pre- and post-natal ID in both humans and in model systems. Alterations in neurotransmitter systems and changes in gene expression are discussed.
8.
Zurück zum Zitat Lukowski AF, Koss M, Burden MJ, et al. Iron deficiency in infancy and neurocognitive functioning at 19 years: evidence of long-term deficits in executive function and recognition memory. Neuroscience. 2010;13(2):54–70. Lukowski AF, Koss M, Burden MJ, et al. Iron deficiency in infancy and neurocognitive functioning at 19 years: evidence of long-term deficits in executive function and recognition memory. Neuroscience. 2010;13(2):54–70.
9.
Zurück zum Zitat Youdim MBH, Green AR, Bloomfield MR, Mitchell BD, Heal DJ, Grahamesmith DG. The effects of iron deficiency on brain biogenic monoamine biochemistry and function in rats. Neuropharmacology. 1980;19:259–67.PubMedCrossRef Youdim MBH, Green AR, Bloomfield MR, Mitchell BD, Heal DJ, Grahamesmith DG. The effects of iron deficiency on brain biogenic monoamine biochemistry and function in rats. Neuropharmacology. 1980;19:259–67.PubMedCrossRef
10.
Zurück zum Zitat Unger EL, Hurst AR, Georgieff MK, et al. Behavior and monoamine deficits in pre- and peri-natal iron deficiency are not corrected by early postnatal moderate or high iron diet in rats. J Nutr. 2012;142:2040–9.PubMedCentralPubMedCrossRef Unger EL, Hurst AR, Georgieff MK, et al. Behavior and monoamine deficits in pre- and peri-natal iron deficiency are not corrected by early postnatal moderate or high iron diet in rats. J Nutr. 2012;142:2040–9.PubMedCentralPubMedCrossRef
11.
Zurück zum Zitat Wachs TD, Pollitt E, Cueto S, Jacoby E, Creed-Kanashiro H. Relation of neonatal iron status to individual variability in neonatal temperament. Dev Psychobiol. 2005;46(2):141–53.PubMedCrossRef Wachs TD, Pollitt E, Cueto S, Jacoby E, Creed-Kanashiro H. Relation of neonatal iron status to individual variability in neonatal temperament. Dev Psychobiol. 2005;46(2):141–53.PubMedCrossRef
12.
Zurück zum Zitat Connor JR, Menzies SL. Relationship of iron to oligodendrocytes and myelination. Glia. 1996;17(2):83–93.PubMedCrossRef Connor JR, Menzies SL. Relationship of iron to oligodendrocytes and myelination. Glia. 1996;17(2):83–93.PubMedCrossRef
13.
Zurück zum Zitat Ortiz E, Pasquini JM, Thompson K, et al. Effect of manipulation of iron storage, transport, or availability on myelin composition and brain iron content in three different animal models. J Neurosci Res. 2004;2004(77):681–9.CrossRef Ortiz E, Pasquini JM, Thompson K, et al. Effect of manipulation of iron storage, transport, or availability on myelin composition and brain iron content in three different animal models. J Neurosci Res. 2004;2004(77):681–9.CrossRef
14.
Zurück zum Zitat Clardy SL, Wang X, Zhao W, et al. Acute and chronic effects of developmental iron deficiency on mRNA expression patterns in the brain. J Neural Transm Suppl. 2006;71:173–96.PubMedCrossRef Clardy SL, Wang X, Zhao W, et al. Acute and chronic effects of developmental iron deficiency on mRNA expression patterns in the brain. J Neural Transm Suppl. 2006;71:173–96.PubMedCrossRef
15.
Zurück zum Zitat Roncagliolo M, Garrido M, Walter T, Peirano P, Lozoff B. Evidence of altered central nervous system development in infants with iron deficiency anemia at 6 mo: delayed maturation of auditory brainstem responses. Am J Clin Nutr. 1998;68(3):683–90.PubMed Roncagliolo M, Garrido M, Walter T, Peirano P, Lozoff B. Evidence of altered central nervous system development in infants with iron deficiency anemia at 6 mo: delayed maturation of auditory brainstem responses. Am J Clin Nutr. 1998;68(3):683–90.PubMed
16.
Zurück zum Zitat Rao R, Tkac I, Townsend EL, Gruetter R, Georgieff MK. Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus. J Nutr. 2003;133:3215–21.PubMed Rao R, Tkac I, Townsend EL, Gruetter R, Georgieff MK. Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus. J Nutr. 2003;133:3215–21.PubMed
17.
Zurück zum Zitat De Ungria M, Rao R, Wobken JD, Luciana M, Nelson CA, Georgieff MK. Perinatal iron deficiency decreases cytochrome c oxidase activity in selective regions of neonatal rat brain. Pediatr Res. 2000;48:169–76.CrossRef De Ungria M, Rao R, Wobken JD, Luciana M, Nelson CA, Georgieff MK. Perinatal iron deficiency decreases cytochrome c oxidase activity in selective regions of neonatal rat brain. Pediatr Res. 2000;48:169–76.CrossRef
18.
Zurück zum Zitat Dallman PR. Biochemical basis for the manifestations of iron deficiency. Annu Rev Nutr. 1986;6:13–40.PubMedCrossRef Dallman PR. Biochemical basis for the manifestations of iron deficiency. Annu Rev Nutr. 1986;6:13–40.PubMedCrossRef
19.
Zurück zum Zitat Carlson ES, Tkac I, Magid R, et al. Iron is essential for neuron development and memory function in mouse hippocampus. J Nutr. 2009;139(4):672–9.PubMedCentralPubMedCrossRef Carlson ES, Tkac I, Magid R, et al. Iron is essential for neuron development and memory function in mouse hippocampus. J Nutr. 2009;139(4):672–9.PubMedCentralPubMedCrossRef
20.
Zurück zum Zitat ∙ Fretham SJB, Carlson ES, Wobken J, Tran PV, Petryk A, Georgieff MK. Temporal manipulation of transferrin receptor-1 dependent iron uptake identifies a sensitive period in mouse hippocampal neurodevelopment. Hippocampus. 2012;22:1691–1702. This article demonstrated that the spatial memory abnormalities seen with ID are due to neuronal iron deficiency and not to anemia and that there is a specific critical period for iron in the developing hippocampus. ∙ Fretham SJB, Carlson ES, Wobken J, Tran PV, Petryk A, Georgieff MK. Temporal manipulation of transferrin receptor-1 dependent iron uptake identifies a sensitive period in mouse hippocampal neurodevelopment. Hippocampus. 2012;22:1691–1702. This article demonstrated that the spatial memory abnormalities seen with ID are due to neuronal iron deficiency and not to anemia and that there is a specific critical period for iron in the developing hippocampus.
21.
Zurück zum Zitat Pisansky MT, Wickham RJ, Su J, et al. Iron deficiency with or without anemia impairs prepulse inhibition of the startle reflex. Hippocampus. 2013;23(10):952–62.PubMedCentralPubMedCrossRef Pisansky MT, Wickham RJ, Su J, et al. Iron deficiency with or without anemia impairs prepulse inhibition of the startle reflex. Hippocampus. 2013;23(10):952–62.PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Schmidt AT, Waldow KJ, Grove WM, Salinas JA, Georgieff MK. Dissociating the long-term effects of fetal/neonatal iron deficiency on three types of learning in the rat. Behav Neurosci. 2007;2007(121):475–82.CrossRef Schmidt AT, Waldow KJ, Grove WM, Salinas JA, Georgieff MK. Dissociating the long-term effects of fetal/neonatal iron deficiency on three types of learning in the rat. Behav Neurosci. 2007;2007(121):475–82.CrossRef
23.
Zurück zum Zitat Carlson ES, Stead JDH, Neal CR, Petryk A, Georgieff MK. Perinatal iron deficiency results in altered developmental expression of genes mediating energy metabolism and neuronal morphogenesis in hippocampus. Hippocampus. 2007;17:679–91.PubMedCrossRef Carlson ES, Stead JDH, Neal CR, Petryk A, Georgieff MK. Perinatal iron deficiency results in altered developmental expression of genes mediating energy metabolism and neuronal morphogenesis in hippocampus. Hippocampus. 2007;17:679–91.PubMedCrossRef
24.
Zurück zum Zitat Tran PV, Dakoji S, Reise K, Storey K, Georgieff MK. Fetal iron deficiency alters the proteome of adult rat hippocampal synaptosome. Am J Physiol Regul Integr Comp Physiol. 2013;305:R1297–306.PubMedCrossRef Tran PV, Dakoji S, Reise K, Storey K, Georgieff MK. Fetal iron deficiency alters the proteome of adult rat hippocampal synaptosome. Am J Physiol Regul Integr Comp Physiol. 2013;305:R1297–306.PubMedCrossRef
25.
Zurück zum Zitat Insel BJ, Schaefer CA, McKeague IW, Susser ES, Brown AS. Maternal iron deficiency and the risk of schizophrenia in offspring. Arch Gen Psychiatry. 2008;65(10):1136–44.PubMedCentralPubMedCrossRef Insel BJ, Schaefer CA, McKeague IW, Susser ES, Brown AS. Maternal iron deficiency and the risk of schizophrenia in offspring. Arch Gen Psychiatry. 2008;65(10):1136–44.PubMedCentralPubMedCrossRef
26.
Zurück zum Zitat Tran PV, Fretham SJB, Carlson ES, Georgieff MK. Long-term reduction of hippocampal BDNF activity following fetal-neonatal iron deficiency in adult rats. Pediatr Res. 2009;65(5):493–8.PubMedCentralPubMedCrossRef Tran PV, Fretham SJB, Carlson ES, Georgieff MK. Long-term reduction of hippocampal BDNF activity following fetal-neonatal iron deficiency in adult rats. Pediatr Res. 2009;65(5):493–8.PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat ∙ Callahan LSN, Thibert KA, Wobken JD, Georgieff MK. Early life iron deficiency anemia alters the development and long-term expression of parvalbumin and perineuronal nets in the rat hippocampus. Dev Neurosci. 2013;35(5):427–236. This empirical paper documents decreased parvalbumin mRNA expression and protein levels in rodents who had experienced early life ID compared to iron sufficient controls, which is consistent with evidence of delayed hippocampal maturation and lower plasticity in adults who were formerly iron deficient. ∙ Callahan LSN, Thibert KA, Wobken JD, Georgieff MK. Early life iron deficiency anemia alters the development and long-term expression of parvalbumin and perineuronal nets in the rat hippocampus. Dev Neurosci. 2013;35(5):427–236. This empirical paper documents decreased parvalbumin mRNA expression and protein levels in rodents who had experienced early life ID compared to iron sufficient controls, which is consistent with evidence of delayed hippocampal maturation and lower plasticity in adults who were formerly iron deficient.
29.
Zurück zum Zitat Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160:106–54.PubMedCentralPubMed Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160:106–54.PubMedCentralPubMed
30.
Zurück zum Zitat Gluckman PD, Hanson MA. Living with the past: evolution, development, and patterns of disease. Science. 2004;305(5691):1733–6.PubMedCrossRef Gluckman PD, Hanson MA. Living with the past: evolution, development, and patterns of disease. Science. 2004;305(5691):1733–6.PubMedCrossRef
31.
Zurück zum Zitat ∙ Blegen MB, Kennedy BC, Thibert KA, Gewirtz JC, Tran PV, Georgieff MK. Multigenerational effects of fetal-neonatal iron deficiency on hippocampal BDNF signaling. Physiol Rep. 2013;1(5):1–10. This paper documents acute and chronic BDNF downregulation in formerly iron deficient F1 rats. However, iron sufficient F2 generation rats showed gene expression comparable to controls, suggesting that the effects of ID on BDNF expression are not multi-generational. ∙ Blegen MB, Kennedy BC, Thibert KA, Gewirtz JC, Tran PV, Georgieff MK. Multigenerational effects of fetal-neonatal iron deficiency on hippocampal BDNF signaling. Physiol Rep. 2013;1(5):1–10. This paper documents acute and chronic BDNF downregulation in formerly iron deficient F1 rats. However, iron sufficient F2 generation rats showed gene expression comparable to controls, suggesting that the effects of ID on BDNF expression are not multi-generational.
33.
Zurück zum Zitat Felt BT, Beard JL, Schallert T. Persistent neurochemical and behavioral abnormalities in adulthood despite early iron supplementation for perinatal iron deficiency anemia in rats. Behav Brain Res. 2006;171:261–70.PubMedCentralPubMedCrossRef Felt BT, Beard JL, Schallert T. Persistent neurochemical and behavioral abnormalities in adulthood despite early iron supplementation for perinatal iron deficiency anemia in rats. Behav Brain Res. 2006;171:261–70.PubMedCentralPubMedCrossRef
34.
Zurück zum Zitat Schmidt AT, Alvarez GC, Grove WM, Rao R, Georgieff MK. Early iron deficiency enhances stimulus-response learning of adult rats in the context of competing spatial information. Dev Cog Neurosci. 2012;2(1):174–80.CrossRef Schmidt AT, Alvarez GC, Grove WM, Rao R, Georgieff MK. Early iron deficiency enhances stimulus-response learning of adult rats in the context of competing spatial information. Dev Cog Neurosci. 2012;2(1):174–80.CrossRef
35.
Zurück zum Zitat Lozoff B, Beard J, Connor J, Felt B, Georgieff M, Schallert T. Long-lasting neural and behavioral effects of early iron deficiency in infancy. Nutr Rev. 2006;64:S34–43.PubMedCentralPubMedCrossRef Lozoff B, Beard J, Connor J, Felt B, Georgieff M, Schallert T. Long-lasting neural and behavioral effects of early iron deficiency in infancy. Nutr Rev. 2006;64:S34–43.PubMedCentralPubMedCrossRef
36.
Zurück zum Zitat Morse A, Beard JL, Jones B. Behavioral and neurochemical alterations in iron deficient mice. Proc Soc Exp Biol Med. 1999;220:147–52.PubMedCrossRef Morse A, Beard JL, Jones B. Behavioral and neurochemical alterations in iron deficient mice. Proc Soc Exp Biol Med. 1999;220:147–52.PubMedCrossRef
37.
Zurück zum Zitat Armony-Sivan R, Eidelman AI, Lanir A, et al. Iron status and neurobehavioral development of premature infants. J Perinatal. 2004;24:757–62.CrossRef Armony-Sivan R, Eidelman AI, Lanir A, et al. Iron status and neurobehavioral development of premature infants. J Perinatal. 2004;24:757–62.CrossRef
38.
Zurück zum Zitat Tamura T, Goldenberg RL, Hou J, et al. Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J Pediatr. 2002;140(2):165–70.PubMedCrossRef Tamura T, Goldenberg RL, Hou J, et al. Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J Pediatr. 2002;140(2):165–70.PubMedCrossRef
39.
Zurück zum Zitat DeBoer T, Wewerka S, Bauer PJ, Georgieff MK, Nelson CA. Explicit memory performance in infants of diabetic mothers at 1 year of age. Dev Med Child Neurol. 2005;47:525–31.PubMedCentralPubMedCrossRef DeBoer T, Wewerka S, Bauer PJ, Georgieff MK, Nelson CA. Explicit memory performance in infants of diabetic mothers at 1 year of age. Dev Med Child Neurol. 2005;47:525–31.PubMedCentralPubMedCrossRef
40.
Zurück zum Zitat Ornoy A. Growth and neurodevelopmental outcome of children born to mothers with pregestational and gestational diabetes. Pediatr Endocrinol Rev. 2005;3(2):104–13.PubMed Ornoy A. Growth and neurodevelopmental outcome of children born to mothers with pregestational and gestational diabetes. Pediatr Endocrinol Rev. 2005;3(2):104–13.PubMed
41.
Zurück zum Zitat Riggins T, Miller NC, Bauer PB, Georgieff MK, Nelson CA. Consequences of low neonatal iron status due to maternal diabetes mellitus on explicit memory performance in childhood. Dev Neuropsychol. 2009;34:762–79.PubMedCentralPubMedCrossRef Riggins T, Miller NC, Bauer PB, Georgieff MK, Nelson CA. Consequences of low neonatal iron status due to maternal diabetes mellitus on explicit memory performance in childhood. Dev Neuropsychol. 2009;34:762–79.PubMedCentralPubMedCrossRef
42.
Zurück zum Zitat Angulo-Barroso RM, Schapiro L, Liang W, et al. Motor development in 9-month-old infants in relation to cultural differences and iron status. Dev Psychobiol. 2011;53:196–210.PubMedCentralPubMedCrossRef Angulo-Barroso RM, Schapiro L, Liang W, et al. Motor development in 9-month-old infants in relation to cultural differences and iron status. Dev Psychobiol. 2011;53:196–210.PubMedCentralPubMedCrossRef
43.
44.
Zurück zum Zitat ∙∙ Lozoff B, Smith JB, Kaciroti N, Clark KM, Guevara S, Jimenez E. Functional significance of early-life iron deficiency: outcomes at 25 years. J Pediatr. 2013;163:1260–1266. Lozoff and colleagues are the first to demonstrate effects of early-life iron deficiency at 25 years of age. Formerly iron deficient adults were more likely to have social and emotional problems, and they were less likely to complete secondary school, which was mediated by poorer cognitive functioning in adolescence. ∙∙ Lozoff B, Smith JB, Kaciroti N, Clark KM, Guevara S, Jimenez E. Functional significance of early-life iron deficiency: outcomes at 25 years. J Pediatr. 2013;163:1260–1266. Lozoff and colleagues are the first to demonstrate effects of early-life iron deficiency at 25 years of age. Formerly iron deficient adults were more likely to have social and emotional problems, and they were less likely to complete secondary school, which was mediated by poorer cognitive functioning in adolescence.
45.
Zurück zum Zitat Algarín C, Nelson CA, Peirano P, Westerlund A, Reyes S, Lozoff B. Iron-deficiency anemia in infancy and poorer cognitive inhibitory control at age 10 years. Dev Med Child Neurol. 2013;55(5):453–8.PubMedCentralPubMedCrossRef Algarín C, Nelson CA, Peirano P, Westerlund A, Reyes S, Lozoff B. Iron-deficiency anemia in infancy and poorer cognitive inhibitory control at age 10 years. Dev Med Child Neurol. 2013;55(5):453–8.PubMedCentralPubMedCrossRef
46.
Zurück zum Zitat Christian P, Murray-Kolb LE, Khatry SK, et al. Prenatal micronutrient supplementation and intellectual and motor function in early school-aged children in Nepal. JAMA. 2010;304(24):2716–23.PubMedCrossRef Christian P, Murray-Kolb LE, Khatry SK, et al. Prenatal micronutrient supplementation and intellectual and motor function in early school-aged children in Nepal. JAMA. 2010;304(24):2716–23.PubMedCrossRef
47.
Zurück zum Zitat Christian P, Morgan ME, Murray-Kolb L, et al. Preschool iron-folic acid and zinc supplementation in children exposed to iron-folic acid in utero confers no added cognitive benefit in early school-age. J Nutr. 2011;141(11):2042–8.PubMedCentralPubMedCrossRef Christian P, Morgan ME, Murray-Kolb L, et al. Preschool iron-folic acid and zinc supplementation in children exposed to iron-folic acid in utero confers no added cognitive benefit in early school-age. J Nutr. 2011;141(11):2042–8.PubMedCentralPubMedCrossRef
48.
Zurück zum Zitat Cusick SE, Georgieff MK. Nutrient supplementation and neurodevelopment: timing is the key. Arch Ped Adolesc Med. 2012;155:481–2. Cusick SE, Georgieff MK. Nutrient supplementation and neurodevelopment: timing is the key. Arch Ped Adolesc Med. 2012;155:481–2.
49.
Zurück zum Zitat ∙∙ Wachs TD, Georgieff M, Cusick S, McEwen B. Issues in the timing of integrated early interventions: contributions from nutrition, neuroscience and psychological research. Ann NY Acad Sci. 2014;1308:89–106. This paper is a review of the nutritional, neuroscientific, and psychological evidence for sensitive periods of development. Knowledge of these sensitive periods of development for different types of outcomes should inform interventions for children. ∙∙ Wachs TD, Georgieff M, Cusick S, McEwen B. Issues in the timing of integrated early interventions: contributions from nutrition, neuroscience and psychological research. Ann NY Acad Sci. 2014;1308:89–106. This paper is a review of the nutritional, neuroscientific, and psychological evidence for sensitive periods of development. Knowledge of these sensitive periods of development for different types of outcomes should inform interventions for children.
50.
Zurück zum Zitat Cogswell ME, Parvanta I, Ickes L, Yip R, Brittenham. Iron supplementation during pregnancy, anemia, and birth weight: a randomized controlled trial. Am J Clin Nutr. 2003;78:773–81.PubMed Cogswell ME, Parvanta I, Ickes L, Yip R, Brittenham. Iron supplementation during pregnancy, anemia, and birth weight: a randomized controlled trial. Am J Clin Nutr. 2003;78:773–81.PubMed
51.
Zurück zum Zitat Lozoff B, De Andraca I, Castillo M, Smith JB, Walter T, Pino P. Behavioral and developmental effects of preventing iron-deficiency anemia in healthy full-term infants. Pediatrics. 2003;112(4):846–54.PubMed Lozoff B, De Andraca I, Castillo M, Smith JB, Walter T, Pino P. Behavioral and developmental effects of preventing iron-deficiency anemia in healthy full-term infants. Pediatrics. 2003;112(4):846–54.PubMed
52.
Zurück zum Zitat Black MM, Baqui AH, Zaman K, et al. Iron and zinc supplementation promote motor development and exploratory behavior among Bangladeshi infants. Am J Clin Nutr. 2004;80(4):903–10.PubMed Black MM, Baqui AH, Zaman K, et al. Iron and zinc supplementation promote motor development and exploratory behavior among Bangladeshi infants. Am J Clin Nutr. 2004;80(4):903–10.PubMed
53.
Zurück zum Zitat Stoltzfus RJ, Kvalsvig JD, Chwaya HM, et al. Effects of iron supplementation and anthelmintic treatment on motor and language development of preschool children in Zanzibar: double blind, placebo controlled study. BMJ. 2001;323(7326):1389–93.PubMedCentralPubMedCrossRef Stoltzfus RJ, Kvalsvig JD, Chwaya HM, et al. Effects of iron supplementation and anthelmintic treatment on motor and language development of preschool children in Zanzibar: double blind, placebo controlled study. BMJ. 2001;323(7326):1389–93.PubMedCentralPubMedCrossRef
54.
Zurück zum Zitat Grantham-McGregor S, Ani C. A review of studies on the effect of iron deficiency on cognitive development in children. J Nutr. 2001;131:(2S–2):649S–666S; discussion 666S–668S. Grantham-McGregor S, Ani C. A review of studies on the effect of iron deficiency on cognitive development in children. J Nutr. 2001;131:(2S–2):649S–666S; discussion 666S–668S.
55.
Zurück zum Zitat Corapci F, Radan AE, Lozoff B. Iron deficiency in infancy and mother-child interaction at 5 years. J Behav Dev Pediatr. 2006;27:371–8.CrossRef Corapci F, Radan AE, Lozoff B. Iron deficiency in infancy and mother-child interaction at 5 years. J Behav Dev Pediatr. 2006;27:371–8.CrossRef
56.
Zurück zum Zitat Murray-Kolb LE, Khatry SK, Katz J, et al. Preschool micronutrient supplementation effects on intellectual and motor function in school-aged Nepalese children. Arch Pediatr Adolesc Med. 2012;166(5):404–10.PubMedCrossRef Murray-Kolb LE, Khatry SK, Katz J, et al. Preschool micronutrient supplementation effects on intellectual and motor function in school-aged Nepalese children. Arch Pediatr Adolesc Med. 2012;166(5):404–10.PubMedCrossRef
57.
Zurück zum Zitat ∙ Berglund SK, Westrup B, Hagglof B, Hernell O, Domellof M. Effects of iron supplementation of LBW infants on cognition and behavior at 3 years. Pediatrics. 2013;131:47–55. This iron supplementation intervention for marginally low birth weight infants indicates no improvements in cognitive function at 3 years but a significant improvement in behavior problems. ∙ Berglund SK, Westrup B, Hagglof B, Hernell O, Domellof M. Effects of iron supplementation of LBW infants on cognition and behavior at 3 years. Pediatrics. 2013;131:47–55. This iron supplementation intervention for marginally low birth weight infants indicates no improvements in cognitive function at 3 years but a significant improvement in behavior problems.
58.
Zurück zum Zitat Steinmacher J, Pohlandt F, Bode H, Sander S, Kron M, Franz AR. Randomized trial of early versus late enteral iron supplementation in infants with a birth weight of less than 1301 grams: neurocognitive development at 5.3 years’ corrected age. Pediatrics. 2007;120(3):538–46.PubMedCrossRef Steinmacher J, Pohlandt F, Bode H, Sander S, Kron M, Franz AR. Randomized trial of early versus late enteral iron supplementation in infants with a birth weight of less than 1301 grams: neurocognitive development at 5.3 years’ corrected age. Pediatrics. 2007;120(3):538–46.PubMedCrossRef
59.
Zurück zum Zitat Fuglestad AJ, Georgieff MK, Iverson SL, et al. Iron deficiency after arrival is associated with general cognitive and behavioral impairment in post-institutionalized children adopted from Eastern Europe. Matern Child Health J. 2013;17:1080–7.PubMedCrossRef Fuglestad AJ, Georgieff MK, Iverson SL, et al. Iron deficiency after arrival is associated with general cognitive and behavioral impairment in post-institutionalized children adopted from Eastern Europe. Matern Child Health J. 2013;17:1080–7.PubMedCrossRef
60.
Zurück zum Zitat Doom JR, Gunnar MR, Georgieff MK, et al. Beyond stimulus deprivation: Iron deficiency and cognitive deficits in post-institutionalized children. Child Dev. 2014. Doom JR, Gunnar MR, Georgieff MK, et al. Beyond stimulus deprivation: Iron deficiency and cognitive deficits in post-institutionalized children. Child Dev. 2014.
61.
Zurück zum Zitat Lozoff B, Clark KM, Jing Y, Armony-Sivan R, Angelilli ML, Jacobson SW. Dose–response relationships between iron deficiency with or without anemia and infant social-emotional behavior. J Pediatr. 2008;152(5):696–702.PubMedCentralPubMedCrossRef Lozoff B, Clark KM, Jing Y, Armony-Sivan R, Angelilli ML, Jacobson SW. Dose–response relationships between iron deficiency with or without anemia and infant social-emotional behavior. J Pediatr. 2008;152(5):696–702.PubMedCentralPubMedCrossRef
Metadaten
Titel
Striking While the Iron is Hot: Understanding the Biological and Neurodevelopmental Effects of Iron Deficiency to Optimize Intervention in Early Childhood
verfasst von
Jenalee R. Doom
Michael K. Georgieff
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Current Pediatrics Reports / Ausgabe 4/2014
Elektronische ISSN: 2167-4841
DOI
https://doi.org/10.1007/s40124-014-0058-4

Weitere Artikel der Ausgabe 4/2014

Current Pediatrics Reports 4/2014 Zur Ausgabe

Nutrition/Growth (RJ Shulman, Section Editor)

Understanding the Coexistence of Food Insecurity and Obesity

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.