Skip to main content
Erschienen in: American Journal of Clinical Dermatology 3/2013

Open Access 01.06.2013 | Review Article

Topical Calcineurin Inhibitors and Lymphoma Risk: Evidence Update with Implications for Daily Practice

verfasst von: Elaine C. Siegfried, Jennifer C. Jaworski, Adelaide A. Hebert

Erschienen in: American Journal of Clinical Dermatology | Ausgabe 3/2013

Abstract

Topical calcineurin inhibitors (TCIs), commercially available since 2000–2001, are the first and only topical medications approved for chronic treatment of atopic dermatitis (AD) in pediatric patients and remain a welcomed alternative to topical corticosteroids. In January 2006, the US Food and Drug Administration (FDA) issued a boxed warning requirement based on a theoretical risk of malignancy (including lymphoma) with TCI use. However, in the years since, analyses of epidemiologic and clinical data have failed to demonstrate a causal relationship between TCI use and malignancy or lymphoma risk, especially for pimecrolimus cream. In fact, the observed number of malignancies and lymphomas observed both in post-marketing surveillance and reported to the FDA using its adverse events reporting system is much lower among TCI-exposed patients than the expected number for the general population. Furthermore, among children enrolled in post-marketing pediatric registry studies for both tacrolimus and pimecrolimus followed for up to 5.5 years [10,724 patient-years (PY)] or 6.5 years (16,219 PY), respectively, the observed number of malignancies and lymphomas is very low and similar to the number expected for a sample of similar size in the general population. In addition to reporting these comparative malignancy and lymphoma data, this article provides a historical overview of the boxed warning requirement and critically evaluates the preclinical, clinical, and epidemiological evidence that has thus far failed to substantiate a relationship between TCI use and malignancy. The authors also provide practical clinical advice for optimizing AD management and patient care in the context of the boxed warning.

1 Introduction

Topical tacrolimus ointment and pimecrolimus cream have been commercially available for more than a decade and are the first and only drugs approved for chronic treatment of atopic dermatitis (AD) in pediatric patients. These topical calcineurin inhibitors (TCIs) have been a welcomed alternative to topical corticosteroids because their chronic use is not associated with skin barrier compromise or increasing percutaneous absorption. However, in January 2006, the US Food and Drug Administration (FDA) instituted a boxed warning for both TCIs based on a theoretical risk of malignancy (including lymphomas) that sparked an ongoing debate over the safety of these drugs. Since then, despite a number of epidemiological and clinical studies, no clear link between TCI use and lymphoma risk has been established. Yet, the boxed warning remains, leaving many physicians hesitant to prescribe TCIs and countless patients (including infants and children) exposed to other anti-inflammatory agents with proven adverse effects. This review will (1) present a historical overview of the basis for the boxed warning, (2) review and critically evaluate the evidence for lymphoma risk, (3) provide practical clinical and evidence-based advice on using TCIs in the management of AD, and (4) offer advice on addressing obstacles to patient access to these drugs.

2 Background

2.1 Regulatory History of the Boxed Warning for TCIs

Tacrolimus ointment 0.03 and 0.1 % [Protopic®; owned and developed by Fujisawa (now Astellas)] and pimecrolimus cream 1 % (Elidel®; developed by Novartis, Meda acquired global rights to Elidel® in 2011 and immediately licensed North American rights to Valeant) are TCIs, which inhibit transcription and release of inflammatory cytokines and mediators from T cells [1]. In December 2000, tacrolimus ointment was approved for “short-term and intermittent long-term therapy in the treatment of patients (≥2 years of age) with moderate to severe AD in whom the use of alternative, conventional therapies is deemed inadvisable because of potential risks, or in the treatment of patients who are not adequately responsive to or are intolerant of alternative, conventional therapies” [2]. At that time, no efficacy or safety studies had been conducted with tacrolimus in infants, and the approved indication was limited to patients at least 2 years of age. One year later, in December 2001, pimecrolimus cream was approved with a similar indication for mild-to-moderate AD with similar warnings and contraindications based on pharmacological class [3]. In contrast to tacrolimus, data demonstrating the safety and efficacy of pimecrolimus were available at the time of application for 436 infants who had participated in clinical trials. On the basis of the “disproportionately higher incidence of adverse events, particularly viral infections in infants,” seen in these trials, the approved indication was limited to patients 2 years of age and older. To further investigate the long-term safety of both drugs, the FDA requested post-approval commitments from both companies to establish pediatric registries [4, 5].
At the time of drug approval, the FDA requested that Astellas perform additional studies of topical tacrolimus including: a retrospective analysis to explore any demographic and disease factors possibly associated with persistently detectable blood concentrations [6]; bioavailability of 0.03 and 0.1 % ointments following long-term intermittent treatment of AD [7]; and pharmacokinetics of 0.03 % ointment in patients 2–5 years of age with moderate-to-severe AD [7].
Upon pimecrolimus cream approval, the FDA also requested that Novartis conduct two case-control epidemiological studies to assess the risk of non-melanoma [8] and melanoma skin cancers (protocol under FDA review) in adults; a controlled safety and efficacy study in HIV-positive patients; and a pregnancy registry. The last two requests were waived/fulfilled via labeling change or provision of additional preclinical data. In addition, Novartis initiated two ambitious long-term randomized clinical studies to assess the effects of pimecrolimus cream in infants as young as 3 months of age: a 6-year study (N = 1,091) designed to evaluate long-term safety and the impact of AD treatment on the progression of atopy; and a 5-year study (N = 2,418) designed to evaluate long-term safety including growth velocity and immune system development effects [913].
In October 2003, the FDA Pediatric Advisory Committee (PAC) met to review the products’ registry protocols. However, the focus of the meeting was shifted by recognition of increasing off-label use among infants younger than 2 years of age (11 % of all TCI prescriptions by the end of 2003; Fig. 1) [14] as well as by malignancy reports made to the FDA’s adverse event reporting system (AERS): two reports for pimecrolimus cream and five for tacrolimus ointment. Following this meeting, two 10-year prospective registries (planned N = 8,000 for each) were created to assess the risk of malignancies in children with tacrolimus ointment [A Prospective Pediatric Longitudinal Evaluation to Assess the Long-Term Safety (APPLES) of tacrolimus ointment for the treatment of AD] and pimecrolimus cream [Pediatric Eczema Elective Registry (PEER)]. APPLES includes patients no older than 16 years of age and was initiated in 2005; PEER includes patients 2–17 years of age and was initiated in 2004.
The PAC convened 15 months later in February 2005 to review the results of a newly completed oral carcinogenicity study conducted in monkeys (the results of which are discussed in detail in Sect. 3.1) as well as additional AERS malignancy reports. The concerns of the PAC were elevated in part by the manufacturers’ marketing efforts, escalating TCI sales, and a higher rate of off-label use. On the basis of the recommendation made at this meeting, the FDA issued a public health advisory in March 2005 and a requirement in January 2006 for revised labeling for both products to include a boxed warning (‘black box’) and medication guide (‘patient medi guide’) to address a theoretical risk of lymphoma and to emphasize that the safety of long-term continuous use and use in patients 2 years of age and younger had not been established [14, 15]. In addition, the indications were modified to specify that TCIs are “second-line [emphasis added] therapy for short-term and non-continuous chronic treatment…of [AD] in non-immunocompromised adults and children [≥2 years of age] who have failed to respond adequately to other topical prescription treatments, or when those treatments are not advisable” [3, 16]. This was the first time that the FDA required that a boxed warning be issued on the basis of a theoretical risk rather than proven safety concerns.
At subsequent meetings held in March 2010 and May 2011, the PAC reviewed post-marketing surveillance (PMS) and epidemiological data for both drugs and found it to be inconclusive with regards to both long-term safety concerns and malignancy risk [17, 18]. At both meetings, the committee requested that the FDA continue to monitor the literature, AERS, and product registries and maintain the boxed warning until conclusive evidence was found [18]. In light of these inconclusive findings, this re-examination of a possible link between TCI use and lymphoma was undertaken.

2.2 Response from the Public and the Medical Community

News coverage of the boxed warnings was widespread, with stories appearing in notable publications, including USA Today [19], Washington Post [20], BBC News [21], and Consumer Reports [22]. The resulting patient concerns led some patients and caregivers to dispose of their TCIs and opt for other treatments or forgo treatment altogether. Law firms began posting websites dedicated to soliciting litigations against the makers of TCIs [2327], further adding to the anxiety among patients and caregivers.
Members of the medical community criticized the FDA’s action and suggested that an unintended result was to jeopardize the chances of ever clarifying the risks due to decreased participation in clinical trials [28]. Some argued that the FDA did not fairly weigh the data with respect to low systemic exposure seen in humans, lack of cancer adverse events in clinical studies, overall low rate of malignancy reports, and lack of evidence for systemic immune suppression with topical application of market formulations in preclinical studies. Critics also argued that the FDA overlooked the unmet medical need for these agents as an alternative to topical corticosteroids, especially for infants and patients with facial involvement [2842]. Furthermore, some members of the medical community questioned the plausibility of a biological link between immunosuppression and the types of cancers observed [4042]. On the other hand, the FDA did not rescind either drug’s approval or request the termination of any of the ongoing clinical trials for either of these drugs.

2.3 Consequences of the Boxed Warning

As might be expected, TCI sales and off-label use among infants decreased dramatically within a year of the public health advisory (Figs. 1, 2). Payers responded to the boxed warning by creating hurdles for both healthcare providers and patients including limiting reimbursement, changing formulary status, and/or requiring pre-authorization or step-edits. Thereafter, sales of pimecrolimus cream continued to decline, possibly due to curtailed marketing efforts by Novartis. On the other hand, sales of tacrolimus ointment slightly increased despite little change in marketing efforts by Astellas. However, a survey conducted within 2 years after the labeling change reflected a negative impact on long-term control among a significant minority of patients. In place of TCIs, 35 % of these dermatologists prescribed chronic topical corticosteroids; 12 % systemic corticosteroids; 4 % cyclosporine; 4 % other systemic immunosuppressants; and 20 % ultraviolet (UV) B or psoralen plus UVA for AD [43].

3 Summary of the Evidence for Lymphoma Risk

3.1 Preclinical Data

At the time of approval for both drugs, malignancy signals were detected in preclinical repeat-dose and carcinogenicity studies only when systemic exposure to pimecrolimus or tacrolimus was sufficient for systemic immune suppression (Table 1) [16, 4446]. Given the known malignancy risk with systemic immune suppressants (which increases with the intensity and duration of immune suppression) [47, 48], these results were not unexpected. When systemic exposure was lower (drug given to animals in their feed or topically applied using marketed formulation), there were no neoplastic findings. In human studies using topical administration (discussed in detail in Sect. 4.5.1), systemic exposure is minimal.
Table 1
Relevant repeat-dose toxicity and carcinogenicity studies in animals as reviewed by the FDA (at approval)
Study
Conclusions
Systemic immune suppression observed? (AUC; safety margina)
Malignancy findings
Tacrolimus
 80-week carcinogenicity of oral (in feed) tacrolimus in CD-1 miceb [16, 44]
No relationship of tumor incidence was found
No
(NA; threefold)
NA
 104-week carcinogenicity of oral (in feed) tacrolimus in CD ratsb [16, 44]
No relationship of tumor incidence was found
No
(NA; ninefold)
NA
 104-week oncogenicity of topical tacrolimus ointment (marketed formulation) in B6C3FI mice [44]
The increased incidence of pleomorphic and undifferentiated lymphomas are probably due to the established pharmacologic effect of tacrolimus, but the safety factor is sufficient that “human patients would not have a high risk”
Yes
(~180 ng·h/mL; tenfold)
• Topical tacrolimus ointment 0.1 % was associated with a statistically significant increase in the incidence of pleomorphic lymphoma (males and females) and undifferentiated lymphoma (females) mostly of B cell type
• No skin carcinomas were noted
Pimecrolimus [45, 46]
 13-week toxicity of topical pimecrolimus in ethanol in CD-1 mice
The increased incidence of pleomorphic lymphomas observed in this study may be related to the pharmacological action of and systemic exposure to pimecrolimus
Yes; assumed related to ethanol vehicle
(males: 643 ng·h/mL; 17-fold;
females: 675 ng·h/mL; 18-fold)
• Topical pimecrolimus 25 and 50 mg/kg/day were associated with lymphoproliferative changes, including malignancies
 Oncogenicity of oral (gavage) pimecrolimus in CD-l mice for their life-span
The increased incidence of malignant lymphoma was most likely a consequence of systemic immunosuppression, but the safety factor is “adequate” for use in humans
Yes
(males: 2,260 ng·h/mL; 60-fold/females: 5,059 ng·h/mL; 133-fold)
• Oral pimecrolimus 45 mg/kg/day was associated with a statistically significant increase in the incidence of follicular center cell lymphoma, pleomorphic lymphoma, and combined lymphoma in both males and females
 104-week oncogenicity of oral (gavage) pimecrolimus in Wistar rats (2 replicates)
The increased incidence of benign thymoma is a significant finding but may not be relevant to humans; the safety factor for females is “adequate” for use in humans, but not for males
Yes
(males: 42 ng·h/mL; 1.1-fold/females: 805 ng·h/mL; 21-fold)
• Oral pimecrolimus 5 mg/kg/day (males) and 10 mg/kg/day (males and females) were associated with a “biologically significant” increase in the incidence of benign thymoma
 104-week carcinogenicity of topical pimecrolimus cream (marketed formulation) in Wistar ratsc
The increased incidence of follicular cell adenoma of the thyroid is a significant finding but may not be relevant to humans; the safety margin is not as great as noted in other carcinogenicity studies, but since the highest feasible dose was used, the study was considered adequate
Not clear; but no significant toxicity was noted
(57 ng·h/mL based on highest feasible dose; 1.5-fold)
• A statistically significant increase in the incidence of follicular cell adenoma in the thyroid in all topical pimecrolimus cream dose groups (0.2, 0.6, and 1.0 %) was noted in males onlyd
• A slight (non-significant) increase in benign thymoma was seen in males at all doses and in females at the 0.2 % dose levele
• Non-neoplastic minimal-to-moderate application site epithelial hyperplasia was noted for both pimecrolimus cream and vehicle; this was attributed to vehicle effects
• No lymphomas were noted
AUC area under concentration–time curve, NA not available, NOAEL no observed adverse effect level
aAUC is based on NOAEL unless otherwise noted; safety margin is in comparison to highest AUC seen with topical administration in humans
bBoth the mouse and rat oral (in feed) studies were deemed as inadequate because of inadequate duration and low systemic exposure; however, since these studies are heavily referenced in the FDA toxicology review, they are included in this table
cNo malignancies were found in an additional 104-week carcinogenicity study of topical pimecrolimus in ethanol in CD-1 mice; however, the study was deemed unacceptable by the FDA because of inadequate high dose and is not included in this table
dMale rats are more sensitive to thyroid effects than female rats or humans because of lower T4 hormone levels; this finding may not be relevant to humans
eValues fell within the historical range for Wistar rats and/or showed no dose dependence; this finding was determined to be not significant
The most common forms of malignancy seen in transplant patients treated with systemic (oral or intravenous) tacrolimus for graph-versus-host prophylaxis are skin carcinomas and non-Hodgkin’s lymphomas (NHL) associated with Epstein–Barr virus infection, which may regress with treatment discontinuation [47]. In order to determine if systemically administered oral pimecrolimus can act through a similar mechanism, a 39-week oral (gavage) toxicity study was conducted in monkeys. The results of this study, reviewed by the FDA in February 2005, confirmed that oral pimecrolimus, given at doses sufficient to result in systemic immune suppression (~30-fold greater than the maximal exposure in humans with topical application), can elicit lymphomas associated with Epstein–Barr-like primate viruses similar to oral tacrolimus [49]. These results were cited as part of the basis for the boxed warning requirement for topical application [14, 50] despite the fact that administration was oral rather than topical and that evidence of systemic immune suppression was not detected following topical administration.

3.2 Epidemiological Data

The literature review considered at the March 2010 PAC meeting [51, 52] included conflicting data, summarized by Tennis et al. [53]. In comparison to untreated AD patients, Hui et al. [54] reported an increased risk of T cell lymphoma among tacrolimus ointment users (hazard ratio [95 % CI]; 3.13 [1.41–6.94]), but not among pimecrolimus cream users [1.86 (0.71–4.87)]. On the other hand, Arellano et al. [55] found no association between TCI use (pimecrolimus cream or tacrolimus ointment) and lymphoma of any type (adjusted odds ratio [95 % CI]; 0.82 [0.42–1.61] and 0.79 [0.37–1.71], respectively) compared with untreated AD patients. Schneeweiss et al. [56] also report no significant increase in risk for lymphoma of any type (rate ratio [95 % CI]; pimecrolimus cream: 1.79 [0.92–3.48]; tacrolimus ointment: 1.97 [0.87–4.50], respectively) nor for cutaneous lymphomas (1.49 [0.36–6.24]; 2.53 [0.51–12.6], respectively) when TCI users were compared with untreated AD patients. As with all retrospective studies, each of these reports has significant limitations, including low numbers of pediatric patients, short duration, potential association between AD and lymphoma, no assessment by lymphoma subtype, exclusion of a lag period, and lack of case verification.
A full report of an additional long-term study was available for the May 2011 PAC meeting [52]. This study found no evidence for increased risk of lymphoma of any type for the overall population (625,915 patients; adjusted odds ratio [95 % CI]; pimecrolimus cream: 0.76 [0.54–1.08]; tacrolimus ointment: 1.24 [0.80–1.91]) or among those patients younger than 20 years of age (396,069 patients; pimecrolimus cream: 0.64 [0.34–1.21]; tacrolimus ointment: 0.96 [0.38–2.45]) compared with untreated AD patients (patients were followed from 6 months to over 10 years). Among patients exposed to the highest cumulative dose of tacrolimus ointment (≥0.10 g), the risk of lymphoma was significantly increased (2.08 [1.24–3.49]); however, no association was evident for pimecrolimus cream. When T cell lymphomas were evaluated alone, they found an increased risk of T cell lymphoma among tacrolimus ointment users (4.95 [1.86–13.19]), which was dose-dependent (<0.03 g: 4.27 [0.24–75.49]; ≥0.03 to <0.06 g: 5.36 [0.78–37.05]; ≥0.06 to <0.10 g: 6.03 [1.31–27.70]; ≥0.10 g; 12.76 [3.35–48.68]). T cell lymphoma risk was not elevated among pimecrolimus cream users (0.85 [0.25–2.90]) and showed no dose-dependence. Dose-dependence results for T cell lymphoma should be interpreted with caution, however, because of the low number of cases in each category.

3.3 Clinical Databases

Relative cancer risk may be best appreciated by comparing the actual number of reports in the entire exposed population compared with the general population. In order to make such a comparison, the cumulative worldwide exposure was calculated by dividing the total amount (in grams) of cream or ointment sold worldwide since launch by the average amount of drug dispensed per year per patient in the USA to obtain cumulative ‘patient-years’ (PY) of exposure (Eq. 1). Thus, cumulative exposure, expressed as PY accounts not only for the number of patients exposed but also for duration of exposure. This method assumes constant distribution of tube sizes and number of ‘fills’ over time, in different countries, and for all age ranges.
$$ \frac{{{\text{Amount }}\;{\text{sold}}\;{\text{worldwide }}\;{\text{since }}\;{\text{launch}} \;({\text{g}})}}{{{\text{Average}}\;{\text{amount}}\;{\text{dispensed}}\;({\text{g/patient/year}})}} = {\text{Cumulative}}\;{\text{exposure}}\;({\text{PY}}) $$
(1)
The number of reports that would be expected in the general population (of similar age range) over the same duration of observation (PY) was calculated on the basis of age-adjusted incidences (per 100,000 PY) found in the Surveillance, Epidemiology and End Results (SEER) database (Eq. 2). In comparing these numbers, the rate of malignancies and lymphomas with TCIs observed in several clinical databases, including AERS, is similar to or lower than the rate seen in the general population (Table 2) [5765]. In cases where only the number of exposed patients is known (e.g., sponsored clinical trials databases), and no information is available about the duration of exposure, the expected number of malignancies cannot be calculated in a manner that would allow for a comparison across different study durations.
Table 2
Actual number of malignancy and lymphoma (Hodgkin’s and Non-Hodgkin’s) reports in clinical databases compared with the expected number of reports in the general population (based on SEER [57])
https://static-content.springer.com/image/art%3A10.1007%2Fs40257-013-0020-1/MediaObjects/40257_2013_20_Tab2_HTML.gif
APPLES and PEER are the ongoing 10-year prospective registries (planned N = 8,000 for each) designed to assess the risk of malignancies in children
AD atopic dermatitis, AERS FDA’s adverse event reporting system, CI confidence interval, CTCL cutaneous T cell lymphoma, CT/BCL cutaneous T cell and B cell lymphoma, HL Hodgkin lymphoma, incl. includes, NA not available, NHL non-Hodgkin lymphoma, pts patients, PY patient-years, TCI topical calcineurin inhibitor, YO year olds, – not calculable
aCalculated by dividing the total amount (g) of cream or ointment sold worldwide since launch by the average amount of drug dispensed per year per patient (g/year/patient)
bEstimated based on age-adjusted incidences (per 100,000 PY) for 2009 (the most recent estimate available) in the SEER database [57]; estimates were rounded to the nearest whole number unless estimate was <10, then estimate was rounded to the nearest tenth; Lower limits of 95 % confidence intervals were rounded to the next lower whole number, upper limits were rounded to the next higher whole number)
cEstimated by multiplying the approximate number of patients exposed by the factor (3,000,000 PY/1,700,000 patients) given in the Tacrolimus Ointment February 2005 PAC Briefing Book [64]
dAge range not further specified
eOnly incidence of overall lymphoma available
fCalculated by adding the expected (95 % CI) number of reports for HL and NHL to obtain expected (95 % CI) number of reports for all lymphomas
gBased on exposure data as of December 2009, the most recent estimate available
hIncludes clinical trial (solicited), spontaneous, and literature reports
iActual reports were in patients ranging in age from 11 months to 70 years
jIncludes 13 unspecified lymphomas
kIncludes 4 unspecified lymphomas in patients <20 YO
lCalculated by multiplying the cumulative exposure (PY) by the proportion of prescriptions dispensed to <17 YO estimated using SDI Vector One® data from 2004 to 2008 [65] (assuming that number and distribution of prescriptions were similar between 2002–2003 and 2004 and between 2009–2011 and 2008)
$$ \frac{{{\text{Age}\hbox{-}\text{adjusted }}\;{\text{SEER }}\;{\text{incidence}}}}{{100,000\; ( {\text{PY)}}}} \times {\text{cumulative}} \;{\text{exposure}}\;({\text{PY}}) = {\text{Expected}}\;{\text{reports}} $$
(2)

4 Critical Evaluation of the Evidence

A number of generally confounding factors must be considered when evaluating the strength of the evidence that led to the FDA decision to apply the boxed warning—the difficulty in assessing the risk of rare events, possible confounding effects of disease state and severity, and a consideration of risks and benefits across a number of alternative therapies. Confounding factors specific to this examination include the relative importance of preclinical versus clinical data and the intrinsic properties of each of the compounds.

4.1 Inherent Difficulties in Assessing the Risk of Rare Events

Assessing risk based on spontaneous adverse event reports (such as AERS) is complicated because of variable under-reporting, indeterminate population size, and inconsistent data quality, especially for details on drug exposure and underlying diseases [66]. Spontaneous reporting might be especially problematic for adverse events with long latency times. Adverse events are believed to be under-reported to the FDA by a factor of as much as 10 and the reporting rate changes for the same product over time, with new and highly publicized drugs susceptible to increased reporting rates.

4.2 Confounding Factors: Disease State and Severity

The interpretation of results of studies examining risk associated with TCI exposure alone may be challenging because of several confounding factors. Namely, that AD like psoriasis (another inflammatory skin disease) may be independently associated with a risk of developing lymphoma, which increases with severity [53, 6771]. On the other hand, in some cases, cutaneous T cell lymphoma may be misdiagnosed as AD (and treated as such) owing to similar clinical signs and symptoms [29, 7274]. In addition, patients receiving TCIs as second-line therapy or at higher doses may bias the patient population toward more severe disease and greater exposure, thereby also increasing the potential for misleading results.

4.3 Benefit–Risk Analysis: Considering Alternative Therapies

In order to properly weigh the risks and benefits of AD treatment, one must consider the benefits and adverse effects of all possible treatments. Topical corticosteroids (TCS) are the mainstay of treatment for AD flares. However, no TCSs are indicated for long-term (>4 weeks) use and few are approved for patients younger than 2 years of age [75] because of skin-thinning potential and rebound effects. TCIs, on the other hand, have low atrophogenic potential [76] and skin permeation (as discussed in Sect. 4.5.1) and can be used for long periods, even on sensitive skin areas, without risk of developing tachyphylaxis [7786].
There are no preclinical carcinogenicity studies of TCS due to rapid toxicity in mice and rats, although, as an immune suppressant, there is a plausible link. In fact, other alternative anti-inflammatory AD treatments (i.e., oral corticosteroids, oral immunosuppressives, and phototherapy) all carry a risk of cancer [42, 71], and malignancy risk with TCS is unclear [56, 8789].

4.4 Sufficient Evidence for TCI Boxed Warning?

According to FDA guidance, boxed warnings are ordinarily applied when (a) there is an adverse reaction so serious in proportion to the potential benefit from the drug (e.g., fatal, life-threatening, or permanently disabling) that it is essential that it be considered when assessing the benefit–risk ratio of prescribing the drug; (b) there is a serious adverse reaction that can be prevented or reduced in frequency or severity by appropriate use of the drug (e.g., patient selection, careful monitoring, avoiding use in a specific clinical situation); or (c) the FDA approved the drug with restrictions to ensure safe use [90]. According to the guidance, a boxed warning can also be used to highlight information that is considered especially important to the prescriber (e.g., reduced effectiveness in certain patient populations). Boxed warnings are most often based on observed serious adverse reactions (i.e., clinical data) or, in some cases, based on anticipated adverse reactions [i.e., an expected adverse reaction based on pharmacologic action of the drug (preclinical data)]. Beach et al. [91] found that over 80 % of boxed warnings (in the 1995 Physicians’ Desk Reference) were based on clinical data including adverse event reports obtained through clinical trials and spontaneous reports. Only 9 % of warnings were based on ‘other’ evidence.
The boxed warning for TCIs was implemented despite the fact that “a causal relationship has not been established” [3, 16]. While no specific risks have been identified, the label indicates that “long-term safety of topical calcineurin inhibitors has not been established…[and] rare cases of malignancy (e.g., skin and lymphoma) have been reported in patients treated with [TCIs]” [3, 16]. In contrast, the boxed warning for long-acting β-agonists for childhood asthma is based on data from large placebo-controlled trials that showed an increase in asthma-related deaths [92].
There is some precedent for removing a boxed warning based on differences in systemic exposure between oral and topical formulations and/or new clinical data [9395]. Given the inconclusive nature of prior evidence, the clinical value of TCIs, and the negative impact of limiting patients’ access to TCIs, significant weight should be given to more recent epidemiological and clinical data when considering the ongoing need for the boxed warning.

4.5 Justification for a Class Labeling?

The FDA applies pharmacological classes to drugs in order to help prescribers avoid duplicative therapy and drug interactions. In order to maintain consistency, the agency considers applying warnings, contraindications, and boxed warnings to all members of a pharmacological class; however, it does allow for these to be applied to a single member of a class if the benefit–risk ratio is shown to apply to only one member [90]. Low systemic exposure with TCIs and striking differences between pimecrolimus cream and tacrolimus ointment in terms of pharmacology and clinical development programs might justify reconsideration of class labeling and/or warnings.

4.5.1 Low Systemic Exposure

Many studies with both pimecrolimus cream and tacrolimus ointment have shown systemic exposure to be low after topical treatment in AD patients as young as 3 months of age [7, 96106]. In a head-to-head comparison study, the highest blood concentrations detected in adults with moderate-to-severe AD were 1.51 ng/mL in the pimecrolimus cream group and 2.39 ng/mL in the tacrolimus ointment group, both of which are substantially below target trough concentrations for systemic immunosuppression for tacrolimus (5–20 ng/mL) in transplant patients [107]. In infants, blood concentrations are similar to those seen in adults with no evidence of accumulation for up to 1 year [101106]. The highest blood concentrations reported for infants with pimecrolimus cream 1 % range from 1.8 to 4.14 ng/mL [101105] and the average maximum concentration with tacrolimus ointment 0.03 % was 3 % of that observed in pediatric liver-transplant patients receiving oral tacrolimus [106].
In vitro skin penetration (into) for each compound is approximately equal, but skin permeation (through) is greater for tacrolimus ointment than pimecrolimus cream [108, 109]. When comparing relative permeation in normal versus inflamed or corticosteroid-pretreated skin, both compounds permeated inflamed and corticosteroid-pretreated skin to a greater extent (up to a factor of 6 times greater than normal skin) [108]. Thus, exposure to TCIs is self-limiting—as skin barrier function is restored, exposure decreases. There is also the argument that pediatric patients may have greater systemic exposure because of their greater body surface area to weight ratio. In the head-to-head trial, when blood concentrations after tacrolimus ointment application were analyzed by total body surface area (TBSA) affected by AD, they were detectable in more patients as TBSA affected by AD increased [107].

4.5.2 Differences in Pharmacology

Unlike tacrolimus, which was originally developed for its antirejection activity, pimecrolimus was developed specifically to target inflammatory skin diseases on the basis of its pharmacology [110]. After oral administration in rats, skin concentrations of pimecrolimus were consistently greater (twofold) than that of tacrolimus whereas in other tissues tested (blood, lymph nodes), concentrations of tacrolimus were greater (6-fold and 50-fold, respectively) [111]. In several animal models, pimecrolimus demonstrated much lower immunosuppressive potential than tacrolimus [1, 110, 112115].

4.5.3 Differences in Clinical Programs

In addition, there are substantial differences in the number of patients studied (and duration of treatment) with each drug (Table 3) [63, 81, 116118]. At the time of approval, pimecrolimus cream had been studied in more pediatric patients, including infants, for significantly longer durations, yet the indications for both drugs in these regards are remarkably similar.
Table 3
Pimecrolimus cream and tacrolimus ointment clinical development programs in atopic dermatitis
https://static-content.springer.com/image/art%3A10.1007%2Fs40257-013-0020-1/MediaObjects/40257_2013_20_Tab3_HTML.gif
NA not applicable
aIncluded in total adult subjects despite overlapping age range
bTime frames differ due to data availability
cIncludes duration of ongoing registry studies (APPLES and PEER); current duration of exposure is shorter
dInterim analysis

5 Implications for Daily Practice

5.1 Increased Burden on Medical Providers and their Patients

Practicing physicians and their office staff bear the bulk of administrative burden generated by the boxed warning, while patients assume additional personal and financial burden. In response to the warning, third-party payers restricted off-label access to TCIs for children with conditions other than TCS-failing AD, and for all infants. Most third-party payers require time-consuming prior authorization for all TCI prescriptions. In many states, Medicaid-insured children have no access to these corticosteroid-sparing medications [119] based on disease and age-specific labeling, amounting to discriminatory denials. Some physicians may be hesitant to prescribe TCIs because of a higher perceived medicolegal liability [120].

5.2 Consequences of Inaccurate Diagnosis

Cutaneous T cell lymphoma is a chronic condition with insidious onset that may be misdiagnosed as AD, complicating assessment of a true lymphoma risk associated with TCIs.

5.3 Consequences of Inadequate Treatment

Active AD can have significant negative impact on quality of life for patients and their caregivers. Adequate treatment has been shown to significantly improve quality of life and patient satisfaction [121, 122]. In addition, early disease control may slow or prevent the “atopic march” to subsequent allergic rhinitis, food allergy, and asthma [123]. Suboptimal management of AD leads to more frequent flares and greater likelihood of exposure to medications like systemic corticosteroids, cyclosporine, or other immunosuppressants with higher toxicity risks [42]. And in contrast to frequent application of TCS, daily maintenance therapy with TCIs does not interfere with skin barrier integrity or enhance percutaneous absorption. Recommendations to limit exposure to topical therapy with TCIs places disproportionate importance on theoretical drug-related risks compared with well-established risks of chronic skin disease.
In addition, the costs of inadequately treated AD are substantial [124127]. Dermatology is among the most difficult subspecialty to gain access to for publically insured children [128]. The frequency of emergency department (ED) visits for AD observed in one Midwest urban hospital suggests restricted access to outpatient care and suboptimal maintenance treatment, adding significant cost [119]. Emergency medicine providers receive limited training in the management of dermatological issues [119, 129]. Furthermore, prescription assistance programs (including the Allergy and Asthma Foundation, the Health Well Foundation, and the Chronic Disease Fund) do not include AD as an eligible indication.

5.4 Optimal Use of TCIs

Most treatment algorithms recommend regular use of emollients for control of dry skin with short-term TCS for treatment of AD flares. Under certain circumstances, TCIs are a more appropriate first-line choice and/or useful adjunct to TCS.
1.
As a corticosteroid-sparing agent: Reducing the risks of chronic TCS exposure is important, especially in children treated with intranasal, inhaled, or systemic corticosteroids for other atopic diseases such as asthma or allergic rhinitis. The corticosteroid-sparing effect of pimecrolimus cream has been demonstrated in clinical trials [7779, 130134]. A reduced number of flares and prolonged time-to-flare quantified in tacrolimus ointment clinical trials also supports a corticosteroid-sparing effect [135140].
 
2.
To treat face and skin fold disease: Skin atrophy, perioral dermatitis, and increased percutaneous absorption are TCS risks prompting greatest concern in patients with inflammatory skin disease involving sensitive skin areas on the face, eyelids, and diaper area. TCIs are well suited for use in these areas due to low acnegenic and atrophogenic potential [76, 78, 83, 131, 141152].
 
3.
To simplify treatment regimens: Risks associated with TCS use are highest with more potent products, especially when applied to sensitive skin areas. To minimize these risks, a popular approach is to recommend a two-drug treatment regimen using a lower potency TCS on the face and a higher potency product on the body. Patients are often confused about the appropriate drug to use on the affected sites, and monitoring the optimal quantity used can also be complicated. Maintenance treatment with a TCI requires use of only one product on all affected sites. This not only simplifies treatment for the patient, but also allows easier monitoring of drug quantity used over time.
 
4.
For children who require daily treatment: Safety of TCS has been studied for durations of no longer than 4 weeks for a limited number of products. In contrast, safety of TCIs for durations of up to 1 year has been documented in several prospective trials and registries [8386].
 
5.
In patients who are TCS intolerant or dependent: Well-described but under-recognized complications of long-term use of TCS include delayed-type hypersensitivity reactions, and rebound erythroderma. Neither pimecrolimus cream nor tacrolimus ointment carry these risks [150153].
 
6.
In patients with confirmed or suspected skin infection: ‘In cognito’ TCS-associated skin infections are another complication that has been well-described but underappreciated [154]. The proposed mechanism of action is via dendritic cells and antigen presentation [155]. In contrast, TCIs do not affect the differentiation, maturation, or function of dendritic cells [156162]. Clinical trials have not identified an increased incidence of skin infection for either TCI [82, 163, 164].
 

5.5 Effective Communication with Patient About the Benefit–Risk Ratio

Even when a physician has weighed the risks and benefits and determined that TCIs are the appropriate therapy for a particular patient, an additional hurdle remains—discussing the boxed warning and medication guide. The ‘real’ risk of lymphoma with TCIs can be made more understandable to patients and caregivers by using some reassuring language. Suggested talking points include
1.
The risk of lymphoma and other cancers is no higher than what you see in the general population.
 
2.
TCI molecules are about twice the size of corticosteroids, which makes it more difficult for them to permeate the skin and cause systemic adverse effects.
 
3.
All drugs, including TCIs and corticosteroids, have risks and benefits.
 
4.
The American Academy of Dermatology (AAD) and other professional organizations do not support the boxed warning.
 
5.
Pharmacists and other healthcare professionals may provide you with information that conflicts with what we have discussed.
 
6.
As your physician, I have carefully weighed the risks and benefits of prescribing a TCI and feel that this drug is well suited to manage your skin condition.
 

6 Conclusions

The TCIs were a welcome therapeutic option for the management of AD when they were approved over 10 years ago, and they remain the only approved treatment for long-term use in children 2 years of age and older. Physicians quickly adopted the TCIs as a corticosteroid-sparing adjunct to topical corticosteroids. Despite the utility of TCIs, in January 2006, the FDA implemented a boxed warning regarding the safety of long-term use and a possible risk of lymphoma and limited the indication to “second-line therapy for the short-term and noncontinuous chronic treatment of (mild-to-moderate or moderate-to-severe AD) in nonimmunocompromised adults and children (≥2 years of age) who have failed to respond adequately to other topical prescription treatments for (AD), or when those treatments are not advisable” [3, 16]. This had a significant impact on physician prescribing patterns and patient access to these medications, leading to decreased disease control and quality of life for patients and their families. Many members of the medical community criticized the actions of the FDA. They questioned the validity of the boxed warning in large part because no definitive human clinical trial data has demonstrated an increased risk of malignancy with TCI exposure. In addition, several epidemiological studies have shown no association between TCI use and lymphoma risk in clinical practice, and the incidences of malignancy and lymphoma in clinical databases are below that of the general population. In addition, a possible association between AD itself and malignancy further erodes the basis for the warning. In order to provide patients with optimal care, physicians must have strategies for mitigating the impact of the boxed warning on the quality and costs of AD management. These include using TCIs appropriately as corticosteroid-sparing agents and proactively communicating the relative risks and benefits of TCIs to patients and their caregivers.

Acknowledgments

This manuscript was developed independent of any funding source. Dr. Siegfried is a full-time employee of Saint Louis University. Dr. Hebert is a full-time employee of the University of Texas Medical School at Houston. Drs. Siegfried and Hebert provided clinical perspective, guided the overall direction and content of the manuscript, and approved the final version for submission; neither received additional financial support for this work. Jennifer Jaworski, a full-time employee of Prescott Medical Communications Group (Chicago, IL, USA), drafted the manuscript at their direction and performed background research and data calculations with financial support from Valeant Pharmaceuticals North America LLC (Bridgewater, NJ, USA).
Dr. Siegfried has participated in contract research with Astellas Pharma US (prior to 2001) and Novartis Pharmaceuticals Corporation (prior to 2004); financial compensation for this work was paid directly to her employer. She received travel expenses related to presentation of some of this contract research from Valeant Pharmaceuticals North America LLC (in 2012). She has received consulting fees from Novartis Pharmaceuticals Corporation (prior to 2006).
Dr. Hebert has received consulting fees, been a member of speakers’ bureaus, and/or served on advisory boards for Astellas Pharma US, Novartis Pharmaceutical Corporation (prior to 2008), and Valeant Pharmaceuticals North America LLC. In addition, she has participated in contract research with Astellas Pharma US and Novartis Pharmaceuticals Corporation; financial compensation for this work was paid directly to her employer. She has also served as a member of data safety monitoring boards for Valeant Pharmaceuticals North America LLC and Novartis Pharmaceuticals Corporation.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. The exclusive right to any commercial use of the article is with Springer.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Dermatologie

Kombi-Abonnement

Mit e.Med Dermatologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Dermatologie, den Premium-Inhalten der dermatologischen Fachzeitschriften, inklusive einer gedruckten dermatologischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Stuetz A, Baumann K, Grassberger M, et al. Discovery of topical calcineurin inhibitors and pharmacological profile of pimecrolimus. Int Arch Allergy Immunol. 2006;141(3):199–212.PubMedCrossRef Stuetz A, Baumann K, Grassberger M, et al. Discovery of topical calcineurin inhibitors and pharmacological profile of pimecrolimus. Int Arch Allergy Immunol. 2006;141(3):199–212.PubMedCrossRef
2.
Zurück zum Zitat Protopic® (tacrolimus) ointment 0.03% and ointment 0.1% [US prescribing information]. Deerfield: Fujisawa Healthcare, Inc. 2000. Protopic® (tacrolimus) ointment 0.03% and ointment 0.1% [US prescribing information]. Deerfield: Fujisawa Healthcare, Inc. 2000.
3.
Zurück zum Zitat Elidel® (pimecrolimus) cream 1% [US prescribing information]. East Hanover: Novartis Pharmaceuticals Corporation. 2010. Elidel® (pimecrolimus) cream 1% [US prescribing information]. East Hanover: Novartis Pharmaceuticals Corporation. 2010.
6.
Zurück zum Zitat Data on file, Astellas Pharma US, 2012. Data on file, Astellas Pharma US, 2012.
7.
Zurück zum Zitat Krueger GG, Eichenfield L, Goodman JJ, et al. Pharmacokinetics of tacrolimus following topical application of tacrolimus ointment in adult and pediatric patients with moderate to severe atopic dermatitis. J Drugs Dermatol. 2007;6(2):185–93.PubMed Krueger GG, Eichenfield L, Goodman JJ, et al. Pharmacokinetics of tacrolimus following topical application of tacrolimus ointment in adult and pediatric patients with moderate to severe atopic dermatitis. J Drugs Dermatol. 2007;6(2):185–93.PubMed
8.
Zurück zum Zitat Margolis DJ, Hoffstad O, Bilker W. Lack of association between exposure to topical calcineurin inhibitors and skin cancer in adults. Dermatology. 2007;214(4):289–95.PubMedCrossRef Margolis DJ, Hoffstad O, Bilker W. Lack of association between exposure to topical calcineurin inhibitors and skin cancer in adults. Dermatology. 2007;214(4):289–95.PubMedCrossRef
9.
Zurück zum Zitat Hanifin JM, Boguniewicz M, Eichenfield LF, et al. Long-term study of safety and allergic comorbidity development in a randomized trial of pimecrolimus cream in infants with atopic dermatitis [abstract]. J Invest Dermatol. 2010;130:S55 (Abstract 328).CrossRef Hanifin JM, Boguniewicz M, Eichenfield LF, et al. Long-term study of safety and allergic comorbidity development in a randomized trial of pimecrolimus cream in infants with atopic dermatitis [abstract]. J Invest Dermatol. 2010;130:S55 (Abstract 328).CrossRef
10.
Zurück zum Zitat Hanifin JM, Paller AS, Eichenfield LF, et al. The demographic profile of a large population of infants with atopic dermatitis: a longitudinal study on development of asthma and allergies [abstract]. J Am Acad Dermatol. 2007;56(Suppl 2):AB68 (Abstract P703). Hanifin JM, Paller AS, Eichenfield LF, et al. The demographic profile of a large population of infants with atopic dermatitis: a longitudinal study on development of asthma and allergies [abstract]. J Am Acad Dermatol. 2007;56(Suppl 2):AB68 (Abstract P703).
11.
Zurück zum Zitat Paller AS, Figliomeni ML, Hultsch T, et al. Efficacy and safety of pimecrolimus cream 1% in 1088 infants with atopic dermatitis: Results of the three year double-blind, vehicle controlled phase of the study of the atopic march [abstract]. Dermatitis. 2008;19(5):294–5. Paller AS, Figliomeni ML, Hultsch T, et al. Efficacy and safety of pimecrolimus cream 1% in 1088 infants with atopic dermatitis: Results of the three year double-blind, vehicle controlled phase of the study of the atopic march [abstract]. Dermatitis. 2008;19(5):294–5.
12.
Zurück zum Zitat Bishop M, Poulin Y, Qaqundah P, et al. A 5-year randomized study to investigate the safety of pimecrolimus cream 1% in the treatment of mild-to-moderate atopic dermatitis in infants: clinical safety [abstract]. J Am Acad Dermatol. 2011;64(2 Suppl 1):AB56 (Abstract P1301). Bishop M, Poulin Y, Qaqundah P, et al. A 5-year randomized study to investigate the safety of pimecrolimus cream 1% in the treatment of mild-to-moderate atopic dermatitis in infants: clinical safety [abstract]. J Am Acad Dermatol. 2011;64(2 Suppl 1):AB56 (Abstract P1301).
13.
Zurück zum Zitat Poulin Y, Bishop M, Johnson A, et al. A 5-year randomized study to investigate the safety of pimecrolimus cream 1% in the treatment of mild-to-moderate atopic dermatitis in infants: immunological parameters [abstract]. J Am Acad Dermatol. 2011;64(2 Suppl 1):AB58 (Abstract P1310). Poulin Y, Bishop M, Johnson A, et al. A 5-year randomized study to investigate the safety of pimecrolimus cream 1% in the treatment of mild-to-moderate atopic dermatitis in infants: immunological parameters [abstract]. J Am Acad Dermatol. 2011;64(2 Suppl 1):AB58 (Abstract P1310).
16.
Zurück zum Zitat Protopic® (tacrolimus) ointment 0.03% and ointment 0.1% [US prescribing information]. Deerfield: Astellas Pharma US, Inc. 2011. Protopic® (tacrolimus) ointment 0.03% and ointment 0.1% [US prescribing information]. Deerfield: Astellas Pharma US, Inc. 2011.
19.
Zurück zum Zitat FDA cautions doctors on eczema treatment. Associated Press. USA Today. 2005 Mar 10. FDA cautions doctors on eczema treatment. Associated Press. USA Today. 2005 Mar 10.
20.
Zurück zum Zitat Stein R. FDA considers warnings for eczema creams. Washington Post. 2005 Feb 12;Sect A: A.09. Stein R. FDA considers warnings for eczema creams. Washington Post. 2005 Feb 12;Sect A: A.09.
21.
Zurück zum Zitat Cancer warning over eczema creams. BBC News. 2005 Mar 11. Cancer warning over eczema creams. BBC News. 2005 Mar 11.
22.
Zurück zum Zitat New warnings, risks, or restrictions for three skin drugs. ConsumerReports.org. 2005 Mar 15. New warnings, risks, or restrictions for three skin drugs. ConsumerReports.org. 2005 Mar 15.
28.
Zurück zum Zitat Siegfried E, Silverman RA, Mancini AJ. ‘Black box’ warning ill-advised for eczema drugs. Dermatol Times. 2006;27(3):6. Siegfried E, Silverman RA, Mancini AJ. ‘Black box’ warning ill-advised for eczema drugs. Dermatol Times. 2006;27(3):6.
29.
Zurück zum Zitat Berger TG, Duvic M, Van Voorhees AS, et al. The use of topical calcineurin inhibitors in dermatology: safety concerns. Report of the American Academy of Dermatology Association Task Force. J Am Acad Dermatol. 2006;54(5):818–23.PubMedCrossRef Berger TG, Duvic M, Van Voorhees AS, et al. The use of topical calcineurin inhibitors in dermatology: safety concerns. Report of the American Academy of Dermatology Association Task Force. J Am Acad Dermatol. 2006;54(5):818–23.PubMedCrossRef
30.
Zurück zum Zitat Lebwohl M, Gower T. A safety assessment of topical calcineurin inhibitors in the treatment of atopic dermatitis. MedGenMed. 2006;8(4):8.PubMed Lebwohl M, Gower T. A safety assessment of topical calcineurin inhibitors in the treatment of atopic dermatitis. MedGenMed. 2006;8(4):8.PubMed
31.
Zurück zum Zitat Thaci D, Salgo R. The topical calcineurin inhibitor pimecrolimus in atopic dermatitis: a safety update. Acta Dermatovenerol Alp Panonica Adriat. 2007;16(2):58, 60–62. Thaci D, Salgo R. The topical calcineurin inhibitor pimecrolimus in atopic dermatitis: a safety update. Acta Dermatovenerol Alp Panonica Adriat. 2007;16(2):58, 60–62.
32.
Zurück zum Zitat Orlow S. Calcineurin inhibitors and black boxes. Pediatric News. Mar 2006:24. Orlow S. Calcineurin inhibitors and black boxes. Pediatric News. Mar 2006:24.
33.
Zurück zum Zitat Fleischer AB Jr. Black box warning for topical calcineurin inhibitors and the death of common sense. Dermatol Online J. 2006;12(6):2.PubMed Fleischer AB Jr. Black box warning for topical calcineurin inhibitors and the death of common sense. Dermatol Online J. 2006;12(6):2.PubMed
34.
Zurück zum Zitat Maddin S. Pimecrolimus and tacrolimus: the US FDA public health advisory. Skin Therapy Lett. 2005;10(4):1–3.PubMed Maddin S. Pimecrolimus and tacrolimus: the US FDA public health advisory. Skin Therapy Lett. 2005;10(4):1–3.PubMed
37.
Zurück zum Zitat Fleischer AB. Show me the signal, FDA. Skin Allergy News. May 2005:10. Fleischer AB. Show me the signal, FDA. Skin Allergy News. May 2005:10.
38.
Zurück zum Zitat Spergel JM, Leung DY. Safety of topical calcineurin inhibitors in atopic dermatitis: evaluation of the evidence. Curr Allergy Asthma Rep. 2006;6(4):270–4.PubMedCrossRef Spergel JM, Leung DY. Safety of topical calcineurin inhibitors in atopic dermatitis: evaluation of the evidence. Curr Allergy Asthma Rep. 2006;6(4):270–4.PubMedCrossRef
39.
Zurück zum Zitat Lebwohl M. Labeling changes for the topical calcineurin inhibitors: an expert interview with Mark Lebwohl, MD. Medscape Dermatol. 2006;7(1). Lebwohl M. Labeling changes for the topical calcineurin inhibitors: an expert interview with Mark Lebwohl, MD. Medscape Dermatol. 2006;7(1).
40.
Zurück zum Zitat Bieber T, Cork M, Ellis C, et al. Consensus statement on the safety profile of topical calcineurin inhibitors. Dermatology. 2005;211(2):77–8.PubMedCrossRef Bieber T, Cork M, Ellis C, et al. Consensus statement on the safety profile of topical calcineurin inhibitors. Dermatology. 2005;211(2):77–8.PubMedCrossRef
41.
Zurück zum Zitat Eichenfield L. Topical pimecrolimus, tacrolimus, and the risk for cancer: an expert interview with Lawrence Eichenfield, MD. Medscape Dermatol. 2005;6(1). Eichenfield L. Topical pimecrolimus, tacrolimus, and the risk for cancer: an expert interview with Lawrence Eichenfield, MD. Medscape Dermatol. 2005;6(1).
42.
Zurück zum Zitat Fonacier L, Spergel J, Charlesworth EN, et al. Report of the topical calcineurin inhibitor task force of the American College of Allergy, Asthma and Immunology and the American Academy of Allergy, Asthma and Immunology. J Allergy Clin Immunol. 2005;115(6):1249–53.PubMedCrossRef Fonacier L, Spergel J, Charlesworth EN, et al. Report of the topical calcineurin inhibitor task force of the American College of Allergy, Asthma and Immunology and the American Academy of Allergy, Asthma and Immunology. J Allergy Clin Immunol. 2005;115(6):1249–53.PubMedCrossRef
43.
Zurück zum Zitat Ceilley R, Eisenthal A. The unintended effects of a boxed warning. J Clin Aesthet Dermatol. 2009;2(9):33–9.PubMed Ceilley R, Eisenthal A. The unintended effects of a boxed warning. J Clin Aesthet Dermatol. 2009;2(9):33–9.PubMed
47.
Zurück zum Zitat Prograf® (tacrolimus) capsules and injection [US prescribing information]. Deerfield: Astellas Pharma US, Inc. 2011. Prograf® (tacrolimus) capsules and injection [US prescribing information]. Deerfield: Astellas Pharma US, Inc. 2011.
48.
Zurück zum Zitat Sandimmune® (cyclosporine) soft gelatin capsules, oral solution, and injection [US prescribing information]. East Hanover: Novartis Pharmaceuticals Corporation. 2010. Sandimmune® (cyclosporine) soft gelatin capsules, oral solution, and injection [US prescribing information]. East Hanover: Novartis Pharmaceuticals Corporation. 2010.
53.
Zurück zum Zitat Tennis P, Gelfand JM, Rothman KJ. Evaluation of cancer risk related to atopic dermatitis and use of topical calcineurin inhibitors. Br J Dermatol. 2011;165(3):465–73.PubMedCrossRef Tennis P, Gelfand JM, Rothman KJ. Evaluation of cancer risk related to atopic dermatitis and use of topical calcineurin inhibitors. Br J Dermatol. 2011;165(3):465–73.PubMedCrossRef
54.
Zurück zum Zitat Hui RL, Lide W, Chan J, et al. Association between exposure to topical tacrolimus or pimecrolimus and cancers. Ann Pharmacother. 2009;43(12):1956–63.PubMedCrossRef Hui RL, Lide W, Chan J, et al. Association between exposure to topical tacrolimus or pimecrolimus and cancers. Ann Pharmacother. 2009;43(12):1956–63.PubMedCrossRef
55.
Zurück zum Zitat Arellano FM, Wentworth CE, Arana A, et al. Risk of lymphoma following exposure to calcineurin inhibitors and topical steroids in patients with atopic dermatitis. J Invest Dermatol. 2007;127(4):808–16.PubMedCrossRef Arellano FM, Wentworth CE, Arana A, et al. Risk of lymphoma following exposure to calcineurin inhibitors and topical steroids in patients with atopic dermatitis. J Invest Dermatol. 2007;127(4):808–16.PubMedCrossRef
56.
Zurück zum Zitat Schneeweiss S, Doherty M, Zhu S, et al. Topical treatments with pimecrolimus, tacrolimus and medium- to high-potency corticosteroids, and risk of lymphoma. Dermatology. 2009;219(1):7–21.PubMedCrossRef Schneeweiss S, Doherty M, Zhu S, et al. Topical treatments with pimecrolimus, tacrolimus and medium- to high-potency corticosteroids, and risk of lymphoma. Dermatology. 2009;219(1):7–21.PubMedCrossRef
58.
Zurück zum Zitat Carroll CL, Fleischer AB Jr. Tacrolimus: focusing on atopic dermatitis. Drugs Today (Barc). 2006;42(7):431–9.CrossRef Carroll CL, Fleischer AB Jr. Tacrolimus: focusing on atopic dermatitis. Drugs Today (Barc). 2006;42(7):431–9.CrossRef
61.
Zurück zum Zitat Ohtsuki M, Ohara H, Santos V, et al. Safety profiles of two large cohort studies of tacrolimus ointment for the treatment of atopic dermatitis: a prospective pediatric longitudinal evaluation study (APPLES) and japanese long-term safety study (J-LSS) [abstract]. In: Proceedings of the 22nd World Congress of Dermatology Meeting; 2011; Seoul, Korea, Poster P0327. Ohtsuki M, Ohara H, Santos V, et al. Safety profiles of two large cohort studies of tacrolimus ointment for the treatment of atopic dermatitis: a prospective pediatric longitudinal evaluation study (APPLES) and japanese long-term safety study (J-LSS) [abstract]. In: Proceedings of the 22nd World Congress of Dermatology Meeting; 2011; Seoul, Korea, Poster P0327.
63.
Zurück zum Zitat Data on file, Valeant Pharmaceuticals North America LLC, 2012. Data on file, Valeant Pharmaceuticals North America LLC, 2012.
66.
Zurück zum Zitat Gibbons RD, Amatya AK, Brown CH, et al. Post-approval drug safety surveillance. Annu Rev Public Health. 2010;31:419–37.PubMedCrossRef Gibbons RD, Amatya AK, Brown CH, et al. Post-approval drug safety surveillance. Annu Rev Public Health. 2010;31:419–37.PubMedCrossRef
67.
Zurück zum Zitat Arana A, Wentworth CE, Fernandez-Vidaurre C, et al. Incidence of cancer in the general population and in patients with or without atopic dermatitis in the UK. Br J Dermatol. 2010;163(5):1036–43.PubMedCrossRef Arana A, Wentworth CE, Fernandez-Vidaurre C, et al. Incidence of cancer in the general population and in patients with or without atopic dermatitis in the UK. Br J Dermatol. 2010;163(5):1036–43.PubMedCrossRef
68.
Zurück zum Zitat Margolis D, Bilker W, Hennessy S, et al. The risk of malignancy associated with psoriasis. Arch Dermatol. 2001;137(6):778–83.PubMed Margolis D, Bilker W, Hennessy S, et al. The risk of malignancy associated with psoriasis. Arch Dermatol. 2001;137(6):778–83.PubMed
69.
Zurück zum Zitat Soderberg KC, Hagmar L, Schwartzbaum J, et al. Allergic conditions and risk of hematological malignancies in adults: a cohort study. BMC Public Health. 2004;4:51.PubMedCrossRef Soderberg KC, Hagmar L, Schwartzbaum J, et al. Allergic conditions and risk of hematological malignancies in adults: a cohort study. BMC Public Health. 2004;4:51.PubMedCrossRef
70.
Zurück zum Zitat Hagstromer L, Ye W, Nyren O, et al. Incidence of cancer among patients with atopic dermatitis. Arch Dermatol. 2005;141(9):1123–7.PubMedCrossRef Hagstromer L, Ye W, Nyren O, et al. Incidence of cancer among patients with atopic dermatitis. Arch Dermatol. 2005;141(9):1123–7.PubMedCrossRef
71.
Zurück zum Zitat Zhang Y, Holford TR, Leaderer B, et al. Prior medical conditions and medication use and risk of non-Hodgkin lymphoma in Connecticut United States women. Cancer Causes Control. 2004;15(4):419–28.PubMedCrossRef Zhang Y, Holford TR, Leaderer B, et al. Prior medical conditions and medication use and risk of non-Hodgkin lymphoma in Connecticut United States women. Cancer Causes Control. 2004;15(4):419–28.PubMedCrossRef
72.
Zurück zum Zitat Miyagaki T, Sugaya M. Erythrodermic cutaneous T-cell lymphoma: how to differentiate this rare disease from atopic dermatitis. J Dermatol Sci. 2011;64(1):1–6.PubMedCrossRef Miyagaki T, Sugaya M. Erythrodermic cutaneous T-cell lymphoma: how to differentiate this rare disease from atopic dermatitis. J Dermatol Sci. 2011;64(1):1–6.PubMedCrossRef
73.
Zurück zum Zitat Krol A, Krafchik B. The differential diagnosis of atopic dermatitis in childhood. Dermatol Ther. 2006;19(2):73–82.PubMedCrossRef Krol A, Krafchik B. The differential diagnosis of atopic dermatitis in childhood. Dermatol Ther. 2006;19(2):73–82.PubMedCrossRef
74.
Zurück zum Zitat Elmer KB, George RM. Cutaneous T-cell lymphoma presenting as benign dermatoses. Am Fam Phys. 1999;59(10):2809–13. Elmer KB, George RM. Cutaneous T-cell lymphoma presenting as benign dermatoses. Am Fam Phys. 1999;59(10):2809–13.
76.
Zurück zum Zitat Aschoff R, Schmitt J, Knuschke P, et al. Evaluation of the atrophogenic potential of hydrocortisone 1% cream and pimecrolimus 1% cream in uninvolved forehead skin of patients with atopic dermatitis using optical coherence tomography. Exp Dermatol. 2011;20(10):832–6.PubMedCrossRef Aschoff R, Schmitt J, Knuschke P, et al. Evaluation of the atrophogenic potential of hydrocortisone 1% cream and pimecrolimus 1% cream in uninvolved forehead skin of patients with atopic dermatitis using optical coherence tomography. Exp Dermatol. 2011;20(10):832–6.PubMedCrossRef
77.
Zurück zum Zitat Wahn U, Bos JD, Goodfield M, et al. Efficacy and safety of pimecrolimus cream in the long-term management of atopic dermatitis in children. Pediatrics. 2002;110(1 Pt 1):e2.PubMedCrossRef Wahn U, Bos JD, Goodfield M, et al. Efficacy and safety of pimecrolimus cream in the long-term management of atopic dermatitis in children. Pediatrics. 2002;110(1 Pt 1):e2.PubMedCrossRef
78.
Zurück zum Zitat Zuberbier T, Brautigam M. Long-term management of facial atopic eczema with pimecrolimus cream 1% in paediatric patients with mild to moderate disease. J Eur Acad Dermatol Venereol. 2008;22(6):718–21.PubMedCrossRef Zuberbier T, Brautigam M. Long-term management of facial atopic eczema with pimecrolimus cream 1% in paediatric patients with mild to moderate disease. J Eur Acad Dermatol Venereol. 2008;22(6):718–21.PubMedCrossRef
79.
Zurück zum Zitat Kapp A, Papp K, Bingham A, et al. Long-term management of atopic dermatitis in infants with topical pimecrolimus, a nonsteroid anti-inflammatory drug. J Allergy Clin Immunol. 2002;110(2):277–84.PubMedCrossRef Kapp A, Papp K, Bingham A, et al. Long-term management of atopic dermatitis in infants with topical pimecrolimus, a nonsteroid anti-inflammatory drug. J Allergy Clin Immunol. 2002;110(2):277–84.PubMedCrossRef
80.
Zurück zum Zitat Papp KA, Werfel T, Folster-Holst R, et al. Long-term control of atopic dermatitis with pimecrolimus cream 1% in infants and young children: a two-year study. J Am Acad Dermatol. 2005;52(2):240–6.PubMedCrossRef Papp KA, Werfel T, Folster-Holst R, et al. Long-term control of atopic dermatitis with pimecrolimus cream 1% in infants and young children: a two-year study. J Am Acad Dermatol. 2005;52(2):240–6.PubMedCrossRef
81.
Zurück zum Zitat Mandelin JM, Rubins A, Remitz A, et al. Long-term efficacy and tolerability of tacrolimus 0.03% ointment in infants: a two-year open-label study. Int J Dermatol. 2012;51(1):104–10.PubMedCrossRef Mandelin JM, Rubins A, Remitz A, et al. Long-term efficacy and tolerability of tacrolimus 0.03% ointment in infants: a two-year open-label study. Int J Dermatol. 2012;51(1):104–10.PubMedCrossRef
82.
Zurück zum Zitat Hanifin JM, Paller AS, Eichenfield L, et al. Efficacy and safety of tacrolimus ointment treatment for up to 4 years in patients with atopic dermatitis. J Am Acad Dermatol. 2005;53(2 Suppl 2):S186–94.PubMedCrossRef Hanifin JM, Paller AS, Eichenfield L, et al. Efficacy and safety of tacrolimus ointment treatment for up to 4 years in patients with atopic dermatitis. J Am Acad Dermatol. 2005;53(2 Suppl 2):S186–94.PubMedCrossRef
83.
Zurück zum Zitat Langley RG, Eichenfield LF, Lucky AW, et al. Sustained efficacy and safety of pimecrolimus cream 1% when used long-term (up to 26 weeks) to treat children with atopic dermatitis. Pediatr Dermatol. 2008;25(3):301–7.PubMedCrossRef Langley RG, Eichenfield LF, Lucky AW, et al. Sustained efficacy and safety of pimecrolimus cream 1% when used long-term (up to 26 weeks) to treat children with atopic dermatitis. Pediatr Dermatol. 2008;25(3):301–7.PubMedCrossRef
84.
Zurück zum Zitat Remitz A, Harper J, Rustin M, et al. Long-term safety and efficacy of tacrolimus ointment for the treatment of atopic dermatitis in children. Acta Derm Venereol. 2007;87(1):54–61.PubMedCrossRef Remitz A, Harper J, Rustin M, et al. Long-term safety and efficacy of tacrolimus ointment for the treatment of atopic dermatitis in children. Acta Derm Venereol. 2007;87(1):54–61.PubMedCrossRef
85.
Zurück zum Zitat Reitamo S, Rustin M, Harper J, et al. A 4-year follow-up study of atopic dermatitis therapy with 0.1% tacrolimus ointment in children and adult patients. Br J Dermatol. 2008;159(4):942–51.PubMedCrossRef Reitamo S, Rustin M, Harper J, et al. A 4-year follow-up study of atopic dermatitis therapy with 0.1% tacrolimus ointment in children and adult patients. Br J Dermatol. 2008;159(4):942–51.PubMedCrossRef
86.
Zurück zum Zitat Kang S, Lucky AW, Pariser D, et al. Long-term safety and efficacy of tacrolimus ointment for the treatment of atopic dermatitis in children. J Am Acad Dermatol. 2001;44(1 Suppl):S58–64.PubMedCrossRef Kang S, Lucky AW, Pariser D, et al. Long-term safety and efficacy of tacrolimus ointment for the treatment of atopic dermatitis in children. J Am Acad Dermatol. 2001;44(1 Suppl):S58–64.PubMedCrossRef
87.
Zurück zum Zitat Arellano FM, Arana A, Wentworth CE, et al. Lymphoma among patients with atopic dermatitis and/or treated with topical immunosuppressants in the United Kingdom. J Allergy Clin Immunol. 2009;123(5):1111–6, 116 e1–13. Arellano FM, Arana A, Wentworth CE, et al. Lymphoma among patients with atopic dermatitis and/or treated with topical immunosuppressants in the United Kingdom. J Allergy Clin Immunol. 2009;123(5):1111–6, 116 e1–13.
88.
Zurück zum Zitat Arana A, Wentworth CW, Rivero E, et al. Lymphoma among patients with atopic dermatitis treated with topical corticosteroids (TCS) and/or topical calcineurin inhibitors (TCIs) [abstract]. Pharmacoepidemiol Drug Saf. 2010;19:S12 (Abstract 28).CrossRef Arana A, Wentworth CW, Rivero E, et al. Lymphoma among patients with atopic dermatitis treated with topical corticosteroids (TCS) and/or topical calcineurin inhibitors (TCIs) [abstract]. Pharmacoepidemiol Drug Saf. 2010;19:S12 (Abstract 28).CrossRef
89.
Zurück zum Zitat Arana A, Wentworth CW, Rivero E, et al. Lymphoma among patients with atopic dermatitis treated with topical corticosteroids and/or topical calcineurin inhibitors [abstract]. J Am Acad Dermatol. 2011;64(2 Suppl 1):AB3 (Abstract P203). Arana A, Wentworth CW, Rivero E, et al. Lymphoma among patients with atopic dermatitis treated with topical corticosteroids and/or topical calcineurin inhibitors [abstract]. J Am Acad Dermatol. 2011;64(2 Suppl 1):AB3 (Abstract P203).
91.
Zurück zum Zitat Beach JE, Faich GA, Bormel FG, et al. Black box warnings in prescription drug labeling: results of a survey of 206 drugs. Food Drug Law J. 1998;53(3):403–11.PubMed Beach JE, Faich GA, Bormel FG, et al. Black box warnings in prescription drug labeling: results of a survey of 206 drugs. Food Drug Law J. 1998;53(3):403–11.PubMed
92.
Zurück zum Zitat Advair Diskus 100/50, 250/50, and 500/50 (fluticasone propionate 100/250/500 mcg and salmeterol 50 mcg inhalation powder) [US prescribing information]. Research Triangle Park: GlaxoSmithKline. 2011. Advair Diskus 100/50, 250/50, and 500/50 (fluticasone propionate 100/250/500 mcg and salmeterol 50 mcg inhalation powder) [US prescribing information]. Research Triangle Park: GlaxoSmithKline. 2011.
93.
Zurück zum Zitat Metronidazole tablets USP [US prescribing information]. Corona: Watson Pharma, Inc. 2010. Metronidazole tablets USP [US prescribing information]. Corona: Watson Pharma, Inc. 2010.
94.
Zurück zum Zitat Metronidazole gel 0.75% USP [US prescribing information]. Hawthorne: Taro Pharmaceuticals USA, Inc. 2011. Metronidazole gel 0.75% USP [US prescribing information]. Hawthorne: Taro Pharmaceuticals USA, Inc. 2011.
96.
Zurück zum Zitat Van Leent EJ, Ebelin ME, Burtin P, et al. Low systemic exposure after repeated topical application of Pimecrolimus (Elidel), SD Z ASM 981) in patients with atopic dermatitis. Dermatology. 2002;204(1):63–8.PubMedCrossRef Van Leent EJ, Ebelin ME, Burtin P, et al. Low systemic exposure after repeated topical application of Pimecrolimus (Elidel), SD Z ASM 981) in patients with atopic dermatitis. Dermatology. 2002;204(1):63–8.PubMedCrossRef
97.
Zurück zum Zitat Rubins A, Gutmane R, Valdmane N, et al. Pharmacokinetics of 0.1% tacrolimus ointment after first and repeated application to adults with moderate to severe atopic dermatitis. J Invest Dermatol. 2005;125(1):68–71.PubMedCrossRef Rubins A, Gutmane R, Valdmane N, et al. Pharmacokinetics of 0.1% tacrolimus ointment after first and repeated application to adults with moderate to severe atopic dermatitis. J Invest Dermatol. 2005;125(1):68–71.PubMedCrossRef
98.
Zurück zum Zitat Ling M, Gottlieb A, Pariser D, et al. A randomized study of the safety, absorption and efficacy of pimecrolimus cream 1% applied twice or four times daily in patients with atopic dermatitis. J Dermatolog Treat. 2005;16(3):142–8.PubMedCrossRef Ling M, Gottlieb A, Pariser D, et al. A randomized study of the safety, absorption and efficacy of pimecrolimus cream 1% applied twice or four times daily in patients with atopic dermatitis. J Dermatolog Treat. 2005;16(3):142–8.PubMedCrossRef
99.
Zurück zum Zitat Van Leent EJ, De Vries HJ, Ebelin ME, et al. Blood concentrations of pimecrolimus in adult patients with atopic dermatitis following intermittent administration of pimecrolimus cream 1% (Elidel) for up to 1 year. J Dermatolog Treat. 2007;18(1):19–22.PubMedCrossRef Van Leent EJ, De Vries HJ, Ebelin ME, et al. Blood concentrations of pimecrolimus in adult patients with atopic dermatitis following intermittent administration of pimecrolimus cream 1% (Elidel) for up to 1 year. J Dermatolog Treat. 2007;18(1):19–22.PubMedCrossRef
100.
Zurück zum Zitat Undre NA, Moloney FJ, Ahmadi S, et al. Skin and systemic pharmacokinetics of tacrolimus following topical application of tacrolimus ointment in adults with moderate to severe atopic dermatitis. Br J Dermatol. 2009;160(3):665–9.PubMedCrossRef Undre NA, Moloney FJ, Ahmadi S, et al. Skin and systemic pharmacokinetics of tacrolimus following topical application of tacrolimus ointment in adults with moderate to severe atopic dermatitis. Br J Dermatol. 2009;160(3):665–9.PubMedCrossRef
101.
Zurück zum Zitat Harper J, Green A, Scott G, et al. First experience of topical SDZ ASM 981 in children with atopic dermatitis. Br J Dermatol. 2001;144(4):781–7.PubMedCrossRef Harper J, Green A, Scott G, et al. First experience of topical SDZ ASM 981 in children with atopic dermatitis. Br J Dermatol. 2001;144(4):781–7.PubMedCrossRef
102.
Zurück zum Zitat Lakhanpaul M, Davies T, Allen BR, et al. Low systemic exposure in infants with atopic dermatitis in a 1-year pharmacokinetic study with pimecrolimus cream 1%. Exp Dermatol. 2006;15(2):138–41.PubMedCrossRef Lakhanpaul M, Davies T, Allen BR, et al. Low systemic exposure in infants with atopic dermatitis in a 1-year pharmacokinetic study with pimecrolimus cream 1%. Exp Dermatol. 2006;15(2):138–41.PubMedCrossRef
103.
Zurück zum Zitat Eichenfield LF, Ho V, Matsunaga J, et al. Blood concentrations, tolerability and efficacy of pimecrolimus cream 1% in Japanese infants and children with atopic dermatitis. J Dermatol. 2007;34(4):231–6.PubMedCrossRef Eichenfield LF, Ho V, Matsunaga J, et al. Blood concentrations, tolerability and efficacy of pimecrolimus cream 1% in Japanese infants and children with atopic dermatitis. J Dermatol. 2007;34(4):231–6.PubMedCrossRef
104.
Zurück zum Zitat Staab D, Pariser D, Gottlieb AB, et al. Low systemic absorption and good tolerability of pimecrolimus, administered as 1% cream (Elidel) in infants with atopic dermatitis—a multicenter, 3-week, open-label study. Pediatr Dermatol. 2005;22(5):465–71.PubMedCrossRef Staab D, Pariser D, Gottlieb AB, et al. Low systemic absorption and good tolerability of pimecrolimus, administered as 1% cream (Elidel) in infants with atopic dermatitis—a multicenter, 3-week, open-label study. Pediatr Dermatol. 2005;22(5):465–71.PubMedCrossRef
105.
Zurück zum Zitat Allen BR, Lakhanpaul M, Morris A, et al. Systemic exposure, tolerability, and efficacy of pimecrolimus cream 1% in atopic dermatitis patients. Arch Dis Child. 2003;88(11):969–73.PubMedCrossRef Allen BR, Lakhanpaul M, Morris A, et al. Systemic exposure, tolerability, and efficacy of pimecrolimus cream 1% in atopic dermatitis patients. Arch Dis Child. 2003;88(11):969–73.PubMedCrossRef
106.
Zurück zum Zitat Reitamo S, Mandelin J, Rubins A, et al. The pharmacokinetics of tacrolimus after first and repeated dosing with 0.03% ointment in infants with atopic dermatitis. Int J Dermatol. 2009;48(4):348–55.PubMedCrossRef Reitamo S, Mandelin J, Rubins A, et al. The pharmacokinetics of tacrolimus after first and repeated dosing with 0.03% ointment in infants with atopic dermatitis. Int J Dermatol. 2009;48(4):348–55.PubMedCrossRef
107.
Zurück zum Zitat Draelos Z, Nayak A, Pariser D, et al. Pharmacokinetics of topical calcineurin inhibitors in adult atopic dermatitis: a randomized, investigator-blind comparison. J Am Acad Dermatol. 2005;53(4):602–9.PubMedCrossRef Draelos Z, Nayak A, Pariser D, et al. Pharmacokinetics of topical calcineurin inhibitors in adult atopic dermatitis: a randomized, investigator-blind comparison. J Am Acad Dermatol. 2005;53(4):602–9.PubMedCrossRef
108.
Zurück zum Zitat Meingassner JG, Aschauer H, Stuetz A, et al. Pimecrolimus permeates less than tacrolimus through normal, inflamed, or corticosteroid-pretreated skin. Exp Dermatol. 2005;14(10):752–7.PubMedCrossRef Meingassner JG, Aschauer H, Stuetz A, et al. Pimecrolimus permeates less than tacrolimus through normal, inflamed, or corticosteroid-pretreated skin. Exp Dermatol. 2005;14(10):752–7.PubMedCrossRef
109.
Zurück zum Zitat Billich A, Aschauer H, Aszodi A, et al. Percutaneous absorption of drugs used in atopic eczema: pimecrolimus permeates less through skin than corticosteroids and tacrolimus. Int J Pharm. 2004;269(1):29–35.PubMedCrossRef Billich A, Aschauer H, Aszodi A, et al. Percutaneous absorption of drugs used in atopic eczema: pimecrolimus permeates less through skin than corticosteroids and tacrolimus. Int J Pharm. 2004;269(1):29–35.PubMedCrossRef
110.
Zurück zum Zitat Stuetz A, Grassberger M, Meingassner JG. Pimecrolimus (Elidel, SDZ ASM 981)—preclinical pharmacologic profile and skin selectivity. Semin Cutan Med Surg. 2001;20(4):233–41.PubMedCrossRef Stuetz A, Grassberger M, Meingassner JG. Pimecrolimus (Elidel, SDZ ASM 981)—preclinical pharmacologic profile and skin selectivity. Semin Cutan Med Surg. 2001;20(4):233–41.PubMedCrossRef
111.
Zurück zum Zitat Schweitzer A, Figueiredo J, Zehender H, et al. Pimecrolimus (SDZ ASM 981) has higher affinity for the skin than tacrolimus (FK 506)—a tissue distribution study in rats [abstract]. J Eur Acad Dermatol Venereol. 2002;16(Suppl 1):257 (Abstract P24-27). Schweitzer A, Figueiredo J, Zehender H, et al. Pimecrolimus (SDZ ASM 981) has higher affinity for the skin than tacrolimus (FK 506)—a tissue distribution study in rats [abstract]. J Eur Acad Dermatol Venereol. 2002;16(Suppl 1):257 (Abstract P24-27).
112.
Zurück zum Zitat Grassberger M, Steinhoff M, Schneider D, et al. Pimecrolimus—an anti-inflammatory drug targeting the skin. Exp Dermatol. 2004;13(12):721–30.PubMedCrossRef Grassberger M, Steinhoff M, Schneider D, et al. Pimecrolimus—an anti-inflammatory drug targeting the skin. Exp Dermatol. 2004;13(12):721–30.PubMedCrossRef
113.
Zurück zum Zitat Meingassner JG, Grassberger M, Fahrngruber H, et al. A novel anti-inflammatory drug, SDZ ASM 981, for the topical and oral treatment of skin diseases: in vivo pharmacology. Br J Dermatol. 1997;137(4):568–76.PubMedCrossRef Meingassner JG, Grassberger M, Fahrngruber H, et al. A novel anti-inflammatory drug, SDZ ASM 981, for the topical and oral treatment of skin diseases: in vivo pharmacology. Br J Dermatol. 1997;137(4):568–76.PubMedCrossRef
114.
Zurück zum Zitat Meingassner J, Di Padova F, Hiestand P, et al. Pimecrolimus (Elidel®,SDZ ASM 981): highly effective in animal models of skin inflammation but low activity in models of immunosuppression [abstract]. J Eur Acad Dermatol Venereol. 2001;15(Suppl 2):214 (Abstract P20-25). Meingassner J, Di Padova F, Hiestand P, et al. Pimecrolimus (Elidel®,SDZ ASM 981): highly effective in animal models of skin inflammation but low activity in models of immunosuppression [abstract]. J Eur Acad Dermatol Venereol. 2001;15(Suppl 2):214 (Abstract P20-25).
115.
Zurück zum Zitat Meingassner J, Hiestand P, Bigout M, et al. SDZ ASM 981 is highly effective in animal models of skin inflammation, but has only low activity in models indicating immunosuppressive potential, in contrast to cyclosporin A and FK 506 [abstract]. J Invest Dermatol. 2001;117(2):532 (Abstract 858). Meingassner J, Hiestand P, Bigout M, et al. SDZ ASM 981 is highly effective in animal models of skin inflammation, but has only low activity in models indicating immunosuppressive potential, in contrast to cyclosporin A and FK 506 [abstract]. J Invest Dermatol. 2001;117(2):532 (Abstract 858).
119.
Zurück zum Zitat Prodanovic E, Siegfried E, Peter J. Number and cost analysis of ed admissions for atopic dermatitis [abstract]. Caribbean Dermatology Symposium; 2010 Jan 19–23; San Juan, Puerto Rico. Prodanovic E, Siegfried E, Peter J. Number and cost analysis of ed admissions for atopic dermatitis [abstract]. Caribbean Dermatology Symposium; 2010 Jan 19–23; San Juan, Puerto Rico.
121.
Zurück zum Zitat Ingram JR, Martin JA, Finlay AY. Impact of topical calcineurin inhibitors on quality of life in patients with atopic dermatitis. Am J Clin Dermatol. 2009;10(4):229–37.PubMedCrossRef Ingram JR, Martin JA, Finlay AY. Impact of topical calcineurin inhibitors on quality of life in patients with atopic dermatitis. Am J Clin Dermatol. 2009;10(4):229–37.PubMedCrossRef
122.
Zurück zum Zitat Schiffner R, Schiffner-Rohe J, Landthaler M, et al. Treatment of atopic dermatitis and impact on quality of life: a review with emphasis on topical non-corticosteroids. Pharmacoeconomics. 2003;21(3):159–79.PubMedCrossRef Schiffner R, Schiffner-Rohe J, Landthaler M, et al. Treatment of atopic dermatitis and impact on quality of life: a review with emphasis on topical non-corticosteroids. Pharmacoeconomics. 2003;21(3):159–79.PubMedCrossRef
123.
Zurück zum Zitat Spergel JM, Paller AS. Atopic dermatitis and the atopic march. J Allergy Clin Immunol. 2003;112(6 Suppl):S118–27.PubMedCrossRef Spergel JM, Paller AS. Atopic dermatitis and the atopic march. J Allergy Clin Immunol. 2003;112(6 Suppl):S118–27.PubMedCrossRef
124.
Zurück zum Zitat Ellis CN, Drake LA, Prendergast MM, et al. Cost of atopic dermatitis and eczema in the United States. J Am Acad Dermatol. 2002;46(3):361–70.PubMedCrossRef Ellis CN, Drake LA, Prendergast MM, et al. Cost of atopic dermatitis and eczema in the United States. J Am Acad Dermatol. 2002;46(3):361–70.PubMedCrossRef
125.
Zurück zum Zitat Mancini AJ, Kaulback K, Chamlin SL. The socioeconomic impact of atopic dermatitis in the United States: a systematic review. Pediatr Dermatol. 2008;25(1):1–6.PubMedCrossRef Mancini AJ, Kaulback K, Chamlin SL. The socioeconomic impact of atopic dermatitis in the United States: a systematic review. Pediatr Dermatol. 2008;25(1):1–6.PubMedCrossRef
126.
Zurück zum Zitat Lapidus CS, Schwarz DF, Honig PJ. Atopic dermatitis in children: who cares? Who pays? J Am Acad Dermatol. 1993;28(5 Pt 1):699–703.PubMedCrossRef Lapidus CS, Schwarz DF, Honig PJ. Atopic dermatitis in children: who cares? Who pays? J Am Acad Dermatol. 1993;28(5 Pt 1):699–703.PubMedCrossRef
127.
Zurück zum Zitat Fivenson D, Arnold RJ, Kaniecki DJ, et al. The effect of atopic dermatitis on total burden of illness and quality of life on adults and children in a large managed care organization. J Manag Care Pharm. 2002;8(5):333–42.PubMed Fivenson D, Arnold RJ, Kaniecki DJ, et al. The effect of atopic dermatitis on total burden of illness and quality of life on adults and children in a large managed care organization. J Manag Care Pharm. 2002;8(5):333–42.PubMed
128.
Zurück zum Zitat Bisgaier J, Rhodes KV. Auditing access to specialty care for children with public insurance. N Engl J Med. 2011;364(24):2324–33.PubMedCrossRef Bisgaier J, Rhodes KV. Auditing access to specialty care for children with public insurance. N Engl J Med. 2011;364(24):2324–33.PubMedCrossRef
129.
Zurück zum Zitat Wang E, Lim BL, Than KY. Dermatological conditions presenting at an emergency department in Singapore. Singap Med J. 2009;50(9):881–4. Wang E, Lim BL, Than KY. Dermatological conditions presenting at an emergency department in Singapore. Singap Med J. 2009;50(9):881–4.
130.
Zurück zum Zitat Siegfried E, Korman N, Molina C, et al. Safety and efficacy of early intervention with pimecrolimus cream 1% combined with corticosteroids for major flares in infants and children with atopic dermatitis. J Dermatolog Treat. 2006;17(3):143–50.PubMedCrossRef Siegfried E, Korman N, Molina C, et al. Safety and efficacy of early intervention with pimecrolimus cream 1% combined with corticosteroids for major flares in infants and children with atopic dermatitis. J Dermatolog Treat. 2006;17(3):143–50.PubMedCrossRef
131.
Zurück zum Zitat Zuberbier T, Heinzerling L, Bieber T, et al. Steroid-sparing effect of pimecrolimus cream 1% in children with severe atopic dermatitis. Dermatology. 2007;215(4):325–30.PubMedCrossRef Zuberbier T, Heinzerling L, Bieber T, et al. Steroid-sparing effect of pimecrolimus cream 1% in children with severe atopic dermatitis. Dermatology. 2007;215(4):325–30.PubMedCrossRef
132.
Zurück zum Zitat Sigurgeirsson B, Ho V, Ferrandiz C, et al. Effectiveness and safety of a prevention-of-flare-progression strategy with pimecrolimus cream 1% in the management of paediatric atopic dermatitis. J Eur Acad Dermatol Venereol. 2008;22(11):1290–301.PubMedCrossRef Sigurgeirsson B, Ho V, Ferrandiz C, et al. Effectiveness and safety of a prevention-of-flare-progression strategy with pimecrolimus cream 1% in the management of paediatric atopic dermatitis. J Eur Acad Dermatol Venereol. 2008;22(11):1290–301.PubMedCrossRef
133.
Zurück zum Zitat Gollnick H, Kaufmann R, Stough D, et al. Pimecrolimus cream 1% in the long-term management of adult atopic dermatitis: prevention of flare progression. A randomized controlled trial. Br J Dermatol. 2008;158(5):1083–93.PubMedCrossRef Gollnick H, Kaufmann R, Stough D, et al. Pimecrolimus cream 1% in the long-term management of adult atopic dermatitis: prevention of flare progression. A randomized controlled trial. Br J Dermatol. 2008;158(5):1083–93.PubMedCrossRef
134.
Zurück zum Zitat Meurer M, Folster-Holst R, Wozel G, et al. Pimecrolimus cream in the long-term management of atopic dermatitis in adults: a six-month study. Dermatology. 2002;205(3):271–7.PubMedCrossRef Meurer M, Folster-Holst R, Wozel G, et al. Pimecrolimus cream in the long-term management of atopic dermatitis in adults: a six-month study. Dermatology. 2002;205(3):271–7.PubMedCrossRef
135.
Zurück zum Zitat Doss N, Kamoun MR, Dubertret L, et al. Efficacy of tacrolimus 0.03% ointment as second-line treatment for children with moderate-to-severe atopic dermatitis: evidence from a randomized, double-blind non-inferiority trial vs. fluticasone 0.005% ointment. Pediatr Allergy Immunol. 2010;21(2 Pt 1):321–9.PubMedCrossRef Doss N, Kamoun MR, Dubertret L, et al. Efficacy of tacrolimus 0.03% ointment as second-line treatment for children with moderate-to-severe atopic dermatitis: evidence from a randomized, double-blind non-inferiority trial vs. fluticasone 0.005% ointment. Pediatr Allergy Immunol. 2010;21(2 Pt 1):321–9.PubMedCrossRef
136.
Zurück zum Zitat Thaci D, Chambers C, Sidhu M, et al. Twice-weekly treatment with tacrolimus 0.03% ointment in children with atopic dermatitis: clinical efficacy and economic impact over 12 months. J Eur Acad Dermatol Venereol. 2010;24(9):1040–6.PubMed Thaci D, Chambers C, Sidhu M, et al. Twice-weekly treatment with tacrolimus 0.03% ointment in children with atopic dermatitis: clinical efficacy and economic impact over 12 months. J Eur Acad Dermatol Venereol. 2010;24(9):1040–6.PubMed
137.
Zurück zum Zitat Reitamo S, Allsopp R. Treatment with twice-weekly tacrolimus ointment in patients with moderate to severe atopic dermatitis: results from two randomized, multicentre, comparative studies. J Dermatolog Treat. 2010;21(1):34–44.PubMedCrossRef Reitamo S, Allsopp R. Treatment with twice-weekly tacrolimus ointment in patients with moderate to severe atopic dermatitis: results from two randomized, multicentre, comparative studies. J Dermatolog Treat. 2010;21(1):34–44.PubMedCrossRef
138.
Zurück zum Zitat Breneman D, Fleischer AB Jr, Abramovits W, et al. Intermittent therapy for flare prevention and long-term disease control in stabilized atopic dermatitis: a randomized comparison of 3-times-weekly applications of tacrolimus ointment versus vehicle. J Am Acad Dermatol. 2008;58(6):990–9.PubMedCrossRef Breneman D, Fleischer AB Jr, Abramovits W, et al. Intermittent therapy for flare prevention and long-term disease control in stabilized atopic dermatitis: a randomized comparison of 3-times-weekly applications of tacrolimus ointment versus vehicle. J Am Acad Dermatol. 2008;58(6):990–9.PubMedCrossRef
139.
Zurück zum Zitat Thaci D, Reitamo S, Gonzalez Ensenat MA, et al. Proactive disease management with 0.03% tacrolimus ointment for children with atopic dermatitis: results of a randomized, multicentre, comparative study. Br J Dermatol. 2008;159(6):1348–56.PubMedCrossRef Thaci D, Reitamo S, Gonzalez Ensenat MA, et al. Proactive disease management with 0.03% tacrolimus ointment for children with atopic dermatitis: results of a randomized, multicentre, comparative study. Br J Dermatol. 2008;159(6):1348–56.PubMedCrossRef
140.
Zurück zum Zitat Wollenberg A, Reitamo S, Atzori F, et al. Proactive treatment of atopic dermatitis in adults with 0.1% tacrolimus ointment. Allergy. 2008;63(6):742–50.CrossRef Wollenberg A, Reitamo S, Atzori F, et al. Proactive treatment of atopic dermatitis in adults with 0.1% tacrolimus ointment. Allergy. 2008;63(6):742–50.CrossRef
141.
Zurück zum Zitat Jensen JM, Pfeiffer S, Witt M, et al. Different effects of pimecrolimus and betamethasone on the skin barrier in patients with atopic dermatitis. J Allergy Clin Immunol. 2009;123(5):1124–33.PubMedCrossRef Jensen JM, Pfeiffer S, Witt M, et al. Different effects of pimecrolimus and betamethasone on the skin barrier in patients with atopic dermatitis. J Allergy Clin Immunol. 2009;123(5):1124–33.PubMedCrossRef
142.
Zurück zum Zitat Queille-Roussel C, Graeber M, Thurston M, et al. SDZ ASM 981 is the first non-steroid that suppresses established nickel contact dermatitis elicited by allergen challenge. Contact Dermatitis. 2000;42(6):349–50.PubMedCrossRef Queille-Roussel C, Graeber M, Thurston M, et al. SDZ ASM 981 is the first non-steroid that suppresses established nickel contact dermatitis elicited by allergen challenge. Contact Dermatitis. 2000;42(6):349–50.PubMedCrossRef
143.
Zurück zum Zitat Reitamo S, Rissanen J, Remitz A, et al. Tacrolimus ointment does not affect collagen synthesis: results of a single-center randomized trial. J Invest Dermatol. 1998;111(3):396–8.PubMedCrossRef Reitamo S, Rissanen J, Remitz A, et al. Tacrolimus ointment does not affect collagen synthesis: results of a single-center randomized trial. J Invest Dermatol. 1998;111(3):396–8.PubMedCrossRef
144.
Zurück zum Zitat Kyllonen H, Remitz A, Mandelin JM, et al. Effects of 1-year intermittent treatment with topical tacrolimus monotherapy on skin collagen synthesis in patients with atopic dermatitis. Br J Dermatol. 2004;150(6):1174–81.PubMedCrossRef Kyllonen H, Remitz A, Mandelin JM, et al. Effects of 1-year intermittent treatment with topical tacrolimus monotherapy on skin collagen synthesis in patients with atopic dermatitis. Br J Dermatol. 2004;150(6):1174–81.PubMedCrossRef
145.
Zurück zum Zitat Lubbe J, Friedlander SF, Cribier B, et al. Safety, efficacy, and dosage of 1% pimecrolimus cream for the treatment of atopic dermatitis in daily practice. Am J Clin Dermatol. 2006;7(2):121–31.PubMedCrossRef Lubbe J, Friedlander SF, Cribier B, et al. Safety, efficacy, and dosage of 1% pimecrolimus cream for the treatment of atopic dermatitis in daily practice. Am J Clin Dermatol. 2006;7(2):121–31.PubMedCrossRef
146.
Zurück zum Zitat Freeman AK, Serle J, VanVeldhuisen P, et al. Tacrolimus ointment in the treatment of eyelid dermatitis. Cutis. 2004;73(4):267–71.PubMed Freeman AK, Serle J, VanVeldhuisen P, et al. Tacrolimus ointment in the treatment of eyelid dermatitis. Cutis. 2004;73(4):267–71.PubMed
147.
Zurück zum Zitat Kang S, Paller A, Soter N, et al. Safe treatment of head/neck AD with tacrolimus ointment. J Dermatolog Treat. 2003;14(2):86–94.PubMedCrossRef Kang S, Paller A, Soter N, et al. Safe treatment of head/neck AD with tacrolimus ointment. J Dermatolog Treat. 2003;14(2):86–94.PubMedCrossRef
148.
Zurück zum Zitat Doss N, Reitamo S, Dubertret L, et al. Superiority of tacrolimus 0.1% ointment compared with fluticasone 0.005% in adults with moderate to severe atopic dermatitis of the face: results from a randomized, double-blind trial. Br J Dermatol. 2009;161(2):427–34.PubMedCrossRef Doss N, Reitamo S, Dubertret L, et al. Superiority of tacrolimus 0.1% ointment compared with fluticasone 0.005% in adults with moderate to severe atopic dermatitis of the face: results from a randomized, double-blind trial. Br J Dermatol. 2009;161(2):427–34.PubMedCrossRef
149.
Zurück zum Zitat Nivenius E, van der Ploeg I, Jung K, et al. Tacrolimus ointment vs steroid ointment for eyelid dermatitis in patients with atopic keratoconjunctivitis. Eye (Lond). 2007;21(7):968–75.CrossRef Nivenius E, van der Ploeg I, Jung K, et al. Tacrolimus ointment vs steroid ointment for eyelid dermatitis in patients with atopic keratoconjunctivitis. Eye (Lond). 2007;21(7):968–75.CrossRef
150.
Zurück zum Zitat Kawakami T, Soma Y, Morita E, et al. Safe and effective treatment of refractory facial lesions in atopic dermatitis using topical tacrolimus following corticosteroid discontinuation. Dermatology. 2001;203(1):32–7.PubMedCrossRef Kawakami T, Soma Y, Morita E, et al. Safe and effective treatment of refractory facial lesions in atopic dermatitis using topical tacrolimus following corticosteroid discontinuation. Dermatology. 2001;203(1):32–7.PubMedCrossRef
151.
Zurück zum Zitat Hoeger PH, Lee KH, Jautova J, et al. The treatment of facial atopic dermatitis in children who are intolerant of, or dependent on, topical corticosteroids: a randomized, controlled clinical trial. Br J Dermatol. 2009;160(2):415–22.PubMedCrossRef Hoeger PH, Lee KH, Jautova J, et al. The treatment of facial atopic dermatitis in children who are intolerant of, or dependent on, topical corticosteroids: a randomized, controlled clinical trial. Br J Dermatol. 2009;160(2):415–22.PubMedCrossRef
152.
Zurück zum Zitat Murrell DF, Calvieri S, Ortonne JP, et al. A randomized controlled trial of pimecrolimus cream 1% in adolescents and adults with head and neck atopic dermatitis and intolerant of, or dependent on, topical corticosteroids. Br J Dermatol. 2007;157(5):954–9.PubMedCrossRef Murrell DF, Calvieri S, Ortonne JP, et al. A randomized controlled trial of pimecrolimus cream 1% in adolescents and adults with head and neck atopic dermatitis and intolerant of, or dependent on, topical corticosteroids. Br J Dermatol. 2007;157(5):954–9.PubMedCrossRef
153.
Zurück zum Zitat Leung DY, Hanifin JM, Pariser DM, et al. Effects of pimecrolimus cream 1% in the treatment of patients with atopic dermatitis who demonstrate a clinical insensitivity to topical corticosteroids: a randomized, multicentre vehicle-controlled trial. Br J Dermatol. 2009;161(2):435–43.PubMedCrossRef Leung DY, Hanifin JM, Pariser DM, et al. Effects of pimecrolimus cream 1% in the treatment of patients with atopic dermatitis who demonstrate a clinical insensitivity to topical corticosteroids: a randomized, multicentre vehicle-controlled trial. Br J Dermatol. 2009;161(2):435–43.PubMedCrossRef
154.
Zurück zum Zitat Hengge UR, Ruzicka T, Schwartz RA, et al. Adverse effects of topical glucocorticosteroids. J Am Acad Dermatol. 2006;54(1):1–15 (quiz 16-8).PubMedCrossRef Hengge UR, Ruzicka T, Schwartz RA, et al. Adverse effects of topical glucocorticosteroids. J Am Acad Dermatol. 2006;54(1):1–15 (quiz 16-8).PubMedCrossRef
155.
Zurück zum Zitat Hultsch T, Kapp A, Spergel J. Immunomodulation and safety of topical calcineurin inhibitors for the treatment of atopic dermatitis. Dermatology. 2005;211(2):174–87.PubMedCrossRef Hultsch T, Kapp A, Spergel J. Immunomodulation and safety of topical calcineurin inhibitors for the treatment of atopic dermatitis. Dermatology. 2005;211(2):174–87.PubMedCrossRef
156.
Zurück zum Zitat Kalthoff FS, Chung J, Musser P, et al. Pimecrolimus does not affect the differentiation, maturation and function of human monocyte-derived dendritic cells, in contrast to corticosteroids. Clin Exp Immunol. 2003;133(3):350–9.PubMedCrossRef Kalthoff FS, Chung J, Musser P, et al. Pimecrolimus does not affect the differentiation, maturation and function of human monocyte-derived dendritic cells, in contrast to corticosteroids. Clin Exp Immunol. 2003;133(3):350–9.PubMedCrossRef
157.
Zurück zum Zitat Meingassner JG, Kowalsky E, Schwendinger H, et al. Pimecrolimus does not affect Langerhans cells in murine epidermis. Br J Dermatol. 2003;149(4):853–7.PubMedCrossRef Meingassner JG, Kowalsky E, Schwendinger H, et al. Pimecrolimus does not affect Langerhans cells in murine epidermis. Br J Dermatol. 2003;149(4):853–7.PubMedCrossRef
158.
Zurück zum Zitat Kwiek B, Peng WM, Allam JP, et al. Tacrolimus and TGF-beta act synergistically on the generation of Langerhans cells. J Allergy Clin Immunol. 2008;122(1):126–32, 132 e1. Kwiek B, Peng WM, Allam JP, et al. Tacrolimus and TGF-beta act synergistically on the generation of Langerhans cells. J Allergy Clin Immunol. 2008;122(1):126–32, 132 e1.
159.
Zurück zum Zitat Meindl S, Vaculik C, Meingassner JG, et al. Differential effects of corticosteroids and pimecrolimus on the developing skin immune system in humans and mice. J Invest Dermatol. 2009;129(9):2184–92.PubMedCrossRef Meindl S, Vaculik C, Meingassner JG, et al. Differential effects of corticosteroids and pimecrolimus on the developing skin immune system in humans and mice. J Invest Dermatol. 2009;129(9):2184–92.PubMedCrossRef
160.
Zurück zum Zitat Schuller E, Oppel T, Bornhovd E, et al. Tacrolimus ointment causes inflammatory dendritic epidermal cell depletion but no Langerhans cell apoptosis in patients with atopic dermatitis. J Allergy Clin Immunol. 2004;114(1):137–43.PubMedCrossRef Schuller E, Oppel T, Bornhovd E, et al. Tacrolimus ointment causes inflammatory dendritic epidermal cell depletion but no Langerhans cell apoptosis in patients with atopic dermatitis. J Allergy Clin Immunol. 2004;114(1):137–43.PubMedCrossRef
161.
Zurück zum Zitat Krummen MB, Varga G, Steinert M, et al. Effect of pimecrolimus vs. corticosteroids on murine bone marrow-derived dendritic cell differentiation, maturation and function. Exp Dermatol. 2006;15(1):43–50.PubMedCrossRef Krummen MB, Varga G, Steinert M, et al. Effect of pimecrolimus vs. corticosteroids on murine bone marrow-derived dendritic cell differentiation, maturation and function. Exp Dermatol. 2006;15(1):43–50.PubMedCrossRef
162.
Zurück zum Zitat Hoetzenecker W, Ecker R, Kopp T, et al. Pimecrolimus leads to an apoptosis-induced depletion of T cells but not Langerhans cells in patients with atopic dermatitis. J Allergy Clin Immunol. 2005;115(6):1276–83.PubMedCrossRef Hoetzenecker W, Ecker R, Kopp T, et al. Pimecrolimus leads to an apoptosis-induced depletion of T cells but not Langerhans cells in patients with atopic dermatitis. J Allergy Clin Immunol. 2005;115(6):1276–83.PubMedCrossRef
163.
Zurück zum Zitat Fleischer AB Jr, Ling M, Eichenfield L, et al. Tacrolimus ointment for the treatment of atopic dermatitis is not associated with an increase in cutaneous infections. J Am Acad Dermatol. 2002;47(4):562–70.PubMedCrossRef Fleischer AB Jr, Ling M, Eichenfield L, et al. Tacrolimus ointment for the treatment of atopic dermatitis is not associated with an increase in cutaneous infections. J Am Acad Dermatol. 2002;47(4):562–70.PubMedCrossRef
164.
Zurück zum Zitat Langley RG, Luger TA, Cork MJ, et al. An update on the safety and tolerability of pimecrolimus cream 1%: evidence from clinical trials and post-marketing surveillance. Dermatology. 2007;215(Suppl 1):27–44.PubMedCrossRef Langley RG, Luger TA, Cork MJ, et al. An update on the safety and tolerability of pimecrolimus cream 1%: evidence from clinical trials and post-marketing surveillance. Dermatology. 2007;215(Suppl 1):27–44.PubMedCrossRef
Metadaten
Titel
Topical Calcineurin Inhibitors and Lymphoma Risk: Evidence Update with Implications for Daily Practice
verfasst von
Elaine C. Siegfried
Jennifer C. Jaworski
Adelaide A. Hebert
Publikationsdatum
01.06.2013
Verlag
Springer International Publishing AG
Erschienen in
American Journal of Clinical Dermatology / Ausgabe 3/2013
Print ISSN: 1175-0561
Elektronische ISSN: 1179-1888
DOI
https://doi.org/10.1007/s40257-013-0020-1

Weitere Artikel der Ausgabe 3/2013

American Journal of Clinical Dermatology 3/2013 Zur Ausgabe

Leitlinien kompakt für die Dermatologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Dermatologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.