Skip to main content
Erschienen in: Clinical Pharmacokinetics 7/2013

01.07.2013 | Original Research Article

A Novel Maturation Function for Clearance of the Cytochrome P450 3A Substrate Midazolam from Preterm Neonates to Adults

verfasst von: Ibrahim Ince, Saskia N. de Wildt, Chengueng Wang, Mariska Y. M. Peeters, Jacobus Burggraaf, Evelyne Jacqz-Aigrain, John N. van den Anker, Dick Tibboel, Meindert Danhof, Catherijne A. J. Knibbe

Erschienen in: Clinical Pharmacokinetics | Ausgabe 7/2013

Einloggen, um Zugang zu erhalten

Abstract

Background and objective

Major changes in cytochrome P450 (CYP) 3A activity may be expected in the first few months of life with, later, relatively limited changes. In this analysis we studied the maturation of in vivo CYP3A-mediated clearance of midazolam, as model drug, from preterm neonates of 26 weeks gestational age (GA) to adults.

Methods

Pharmacokinetic data after intravenous administration of midazolam were obtained from six previously reported studies. Subjects were premature neonates (n = 24; GA 26–33.5 weeks, postnatal age (PNA) 3–11 days, and n = 24; GA 26–37 weeks, PNA 0–1 days), 23 children after elective major craniofacial surgery (age 3–23 months), 18 pediatric intensive-care patients (age 2 days–17 years), 18 pediatric oncology patients (age 3–16 years), and 20 healthy male adults (age 20–31 years). Population pharmacokinetic modeling with systematic covariate analysis was performed by use of NONMEM v6.2.

Results

Across the entire lifespan from premature neonates to adults, bodyweight was a significant covariate for midazolam clearance. The effect of bodyweight was best described by use of an allometric equation with an exponent changing with bodyweight in an exponential manner from 0.84 for preterm neonates (0.77 kg) to 0.44 for adults (89 kg), showing that the most rapid maturation occurs during the youngest age range.

Conclusions

An in-vivo maturation function for midazolam clearance from premature neonates to adults has been developed. This function can be used to derive evidence-based doses for children, and to simulate exposure to midazolam and possibly other CYP3A substrates across the pediatric age range in population pharmacokinetic models or physiologically based pharmacokinetic models.
Literatur
1.
Zurück zum Zitat Finta C, Zaphiropoulos PG. The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons. Gene. 2000;260(1–2):13–23.PubMedCrossRef Finta C, Zaphiropoulos PG. The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons. Gene. 2000;260(1–2):13–23.PubMedCrossRef
2.
Zurück zum Zitat Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol. 1999;39:1–17.PubMedCrossRef Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol. 1999;39:1–17.PubMedCrossRef
3.
Zurück zum Zitat Peeters MY, Prins SA, Knibbe CA, et al. Pharmacokinetics and pharmacodynamics of midazolam and metabolites in nonventilated infants after craniofacial surgery. Anesthesiology. 2006;105(6):1135–46.PubMedCrossRef Peeters MY, Prins SA, Knibbe CA, et al. Pharmacokinetics and pharmacodynamics of midazolam and metabolites in nonventilated infants after craniofacial surgery. Anesthesiology. 2006;105(6):1135–46.PubMedCrossRef
4.
Zurück zum Zitat Reed MD, Rodarte A, Blumer JL, et al. The single-dose pharmacokinetics of midazolam and its primary metabolite in pediatric patients after oral and intravenous administration. J Clin Pharmacol. 2001;41(12):1359–69.PubMedCrossRef Reed MD, Rodarte A, Blumer JL, et al. The single-dose pharmacokinetics of midazolam and its primary metabolite in pediatric patients after oral and intravenous administration. J Clin Pharmacol. 2001;41(12):1359–69.PubMedCrossRef
5.
Zurück zum Zitat Rey E, Delaunay L, Pons G, et al. Pharmacokinetics of midazolam in children: comparative study of intranasal and intravenous administration. Eur J Clin Pharmacol. 1991;41(4):355–7.PubMedCrossRef Rey E, Delaunay L, Pons G, et al. Pharmacokinetics of midazolam in children: comparative study of intranasal and intravenous administration. Eur J Clin Pharmacol. 1991;41(4):355–7.PubMedCrossRef
6.
Zurück zum Zitat de Wildt SN, Kearns GL, Hop WC, et al. Pharmacokinetics and metabolism of intravenous midazolam in preterm infants. Clin Pharmacol Ther. 2001;70(6):525–31.PubMedCrossRef de Wildt SN, Kearns GL, Hop WC, et al. Pharmacokinetics and metabolism of intravenous midazolam in preterm infants. Clin Pharmacol Ther. 2001;70(6):525–31.PubMedCrossRef
7.
Zurück zum Zitat Jacqz-Aigrain E, Wood C, Robieux I. Pharmacokinetics of midazolam in critically ill neonates. Eur J Clin Pharmacol. 1990;39(2):191–2.PubMedCrossRef Jacqz-Aigrain E, Wood C, Robieux I. Pharmacokinetics of midazolam in critically ill neonates. Eur J Clin Pharmacol. 1990;39(2):191–2.PubMedCrossRef
8.
9.
Zurück zum Zitat de Wildt SN, Ito S, Koren G. Challenges for drug studies in children: CYP3A phenotyping as example. Drug Discov Today. 2009;14(1–2):6–15.PubMedCrossRef de Wildt SN, Ito S, Koren G. Challenges for drug studies in children: CYP3A phenotyping as example. Drug Discov Today. 2009;14(1–2):6–15.PubMedCrossRef
10.
Zurück zum Zitat Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994;270(1):414–23.PubMed Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994;270(1):414–23.PubMed
11.
Zurück zum Zitat Ince I, de Wildt SN, Peeters MY, et al. Critical illness is a major determinant of midazolam clearance in children aged 1 month to 17 years. Ther Drug Monit. 2012;34(4):381–9. Ince I, de Wildt SN, Peeters MY, et al. Critical illness is a major determinant of midazolam clearance in children aged 1 month to 17 years. Ther Drug Monit. 2012;34(4):381–9.
12.
Zurück zum Zitat Burtin P, Jacqz-Aigrain E, Girard P, et al. Population pharmacokinetics of midazolam in neonates. Clin Pharmacol Ther. 1994;56(6 Pt 1):615–25.PubMedCrossRef Burtin P, Jacqz-Aigrain E, Girard P, et al. Population pharmacokinetics of midazolam in neonates. Clin Pharmacol Ther. 1994;56(6 Pt 1):615–25.PubMedCrossRef
13.
Zurück zum Zitat Jacqz-Aigrain E, Daoud P, Burtin P, et al. Pharmacokinetics of midazolam during continuous infusion in critically ill neonates. Eur J Clin Pharmacol. 1992;42(3):329–32.PubMedCrossRef Jacqz-Aigrain E, Daoud P, Burtin P, et al. Pharmacokinetics of midazolam during continuous infusion in critically ill neonates. Eur J Clin Pharmacol. 1992;42(3):329–32.PubMedCrossRef
14.
Zurück zum Zitat Lacroix D, Sonnier M, Moncion A, et al. Expression of CYP3A in the human liver–evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997;247(2):625–34.PubMedCrossRef Lacroix D, Sonnier M, Moncion A, et al. Expression of CYP3A in the human liver–evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997;247(2):625–34.PubMedCrossRef
15.
Zurück zum Zitat Stevens JC, Hines RN, Gu C, et al. Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther. 2003;307(2):573–82.PubMedCrossRef Stevens JC, Hines RN, Gu C, et al. Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther. 2003;307(2):573–82.PubMedCrossRef
16.
Zurück zum Zitat de Wildt SN, de Hoog M, Vinks AA, et al. Population pharmacokinetics and metabolism of midazolam in pediatric intensive care patients. Crit Care Med. 2003;31(7):1952–8.PubMedCrossRef de Wildt SN, de Hoog M, Vinks AA, et al. Population pharmacokinetics and metabolism of midazolam in pediatric intensive care patients. Crit Care Med. 2003;31(7):1952–8.PubMedCrossRef
17.
Zurück zum Zitat de Wildt SN, Riva L, van den Anker JN, Murray DJ. Does age alter the pharmacokinetics of midazolam and l-OH-midazolam in paediatric patients? [abstract no. PI-60]. Clin Pharmacol Ther. 2000;67:104. de Wildt SN, Riva L, van den Anker JN, Murray DJ. Does age alter the pharmacokinetics of midazolam and l-OH-midazolam in paediatric patients? [abstract no. PI-60]. Clin Pharmacol Ther. 2000;67:104.
18.
Zurück zum Zitat Jacqz-Aigrain E, Daoud P, Burtin P, et al. Placebo-controlled trial of midazolam sedation in mechanically ventilated newborn babies. Lancet. 1994;344(8923):646–50.PubMedCrossRef Jacqz-Aigrain E, Daoud P, Burtin P, et al. Placebo-controlled trial of midazolam sedation in mechanically ventilated newborn babies. Lancet. 1994;344(8923):646–50.PubMedCrossRef
19.
Zurück zum Zitat van Gerven JM, Roncari G, Schoemaker RC, et al. Integrated pharmacokinetics and pharmacodynamics of Ro 48–8684, a new benzodiazepine, in comparison with midazolam during first administration to healthy male subjects. Br J Clin Pharmacol. 1997;44(5):487–93.PubMedCrossRef van Gerven JM, Roncari G, Schoemaker RC, et al. Integrated pharmacokinetics and pharmacodynamics of Ro 48–8684, a new benzodiazepine, in comparison with midazolam during first administration to healthy male subjects. Br J Clin Pharmacol. 1997;44(5):487–93.PubMedCrossRef
20.
Zurück zum Zitat Boeckmann AJ, Beal SL, Sheiner LB. NONMEM User’s Guide. California: Division of Clinical Pharmacology, University of California at San Francisco; 1998. Boeckmann AJ, Beal SL, Sheiner LB. NONMEM User’s Guide. California: Division of Clinical Pharmacology, University of California at San Francisco; 1998.
21.
Zurück zum Zitat Karlsson MO, Savic RM. Diagnosing model diagnostics. Clin Pharmacol Ther. 2007;82(1):17–20.PubMedCrossRef Karlsson MO, Savic RM. Diagnosing model diagnostics. Clin Pharmacol Ther. 2007;82(1):17–20.PubMedCrossRef
22.
Zurück zum Zitat Montgomery DC, Peck EA, Vining GG. Introduction to linear regression analysis. New York: Wiley; 1982. Montgomery DC, Peck EA, Vining GG. Introduction to linear regression analysis. New York: Wiley; 1982.
23.
Zurück zum Zitat Wang C, Peeters MY, Allegaert K, et al. A bodyweight-dependent allometric exponent for scaling clearance across the human life-span. Pharm Res. 2012. Wang C, Peeters MY, Allegaert K, et al. A bodyweight-dependent allometric exponent for scaling clearance across the human life-span. Pharm Res. 2012.
24.
Zurück zum Zitat Bartelink IH, Boelens JJ, Bredius RG, et al. Body weight-dependent pharmacokinetics of busulfan in paediatric haematopoietic stem cell transplantation patients: towards individualized dosing. Clin Pharmacokinet. 2012;51(5):331–45.PubMedCrossRef Bartelink IH, Boelens JJ, Bredius RG, et al. Body weight-dependent pharmacokinetics of busulfan in paediatric haematopoietic stem cell transplantation patients: towards individualized dosing. Clin Pharmacokinet. 2012;51(5):331–45.PubMedCrossRef
25.
Zurück zum Zitat Krekels EH, van Hasselt JG, Tibboel D, et al. Systematic evaluation of the descriptive and predictive performance of paediatric morphine population models. Pharm Res. 2011;28(4):797–811. Krekels EH, van Hasselt JG, Tibboel D, et al. Systematic evaluation of the descriptive and predictive performance of paediatric morphine population models. Pharm Res. 2011;28(4):797–811.
26.
Zurück zum Zitat Ette EI, Williams PJ, Kim YH, et al. Model appropriateness and population pharmacokinetic modeling. J Clin Pharmacol. 2003;43(6):610–23.PubMed Ette EI, Williams PJ, Kim YH, et al. Model appropriateness and population pharmacokinetic modeling. J Clin Pharmacol. 2003;43(6):610–23.PubMed
27.
Zurück zum Zitat Brendel K, Comets E, Laffont C, et al. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. Pharm Res. 2006;23(9):2036–49.PubMedCrossRef Brendel K, Comets E, Laffont C, et al. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. Pharm Res. 2006;23(9):2036–49.PubMedCrossRef
28.
Zurück zum Zitat Comets E, Brendel K, Mentre F. Computing normalised prediction distribution errors to evaluate non-linear mixed-effect models: the npde add-on package for R. Comput Methods Programs Biomed. 2008;90(2):154–66.PubMedCrossRef Comets E, Brendel K, Mentre F. Computing normalised prediction distribution errors to evaluate non-linear mixed-effect models: the npde add-on package for R. Comput Methods Programs Biomed. 2008;90(2):154–66.PubMedCrossRef
29.
Zurück zum Zitat Kumar P, Denson SE, Mancuso TJ. Premedication for nonemergency endotracheal intubation in the neonate. Pediatrics. 2010;125(3):608–15.PubMedCrossRef Kumar P, Denson SE, Mancuso TJ. Premedication for nonemergency endotracheal intubation in the neonate. Pediatrics. 2010;125(3):608–15.PubMedCrossRef
30.
Zurück zum Zitat VanLooy JW, Schumacher RE, Bhatt-Mehta V. Efficacy of a premedication algorithm for nonemergent intubation in a neonatal intensive care unit. Ann Pharmacother. 2008;42(7):947–55.PubMedCrossRef VanLooy JW, Schumacher RE, Bhatt-Mehta V. Efficacy of a premedication algorithm for nonemergent intubation in a neonatal intensive care unit. Ann Pharmacother. 2008;42(7):947–55.PubMedCrossRef
31.
Zurück zum Zitat Anand KJ, Barton BA, McIntosh N, et al. Analgesia and sedation in preterm neonates who require ventilatory support: results from the NOPAIN trial. Neonatal outcome and prolonged analgesia in neonates. Arch Pediatr Adolesc Med. 1999;153(4):331–8.PubMedCrossRef Anand KJ, Barton BA, McIntosh N, et al. Analgesia and sedation in preterm neonates who require ventilatory support: results from the NOPAIN trial. Neonatal outcome and prolonged analgesia in neonates. Arch Pediatr Adolesc Med. 1999;153(4):331–8.PubMedCrossRef
32.
Zurück zum Zitat de Wildt SN, de Hoog M, Vinks AA, et al. Pharmacodynamics of midazolam in pediatric intensive care patients. Ther Drug Monit. 2005;27(1):98–102.PubMedCrossRef de Wildt SN, de Hoog M, Vinks AA, et al. Pharmacodynamics of midazolam in pediatric intensive care patients. Ther Drug Monit. 2005;27(1):98–102.PubMedCrossRef
33.
Zurück zum Zitat Gorski JC, Hall SD, Jones DR, et al. Regioselective biotransformation of midazolam by members of the human cytochrome P450 3A (CYP3A) subfamily. Biochem Pharmacol. 1994;47(9):1643–53.PubMedCrossRef Gorski JC, Hall SD, Jones DR, et al. Regioselective biotransformation of midazolam by members of the human cytochrome P450 3A (CYP3A) subfamily. Biochem Pharmacol. 1994;47(9):1643–53.PubMedCrossRef
34.
Zurück zum Zitat Hakkola J, Pasanen M, Purkunen R, et al. Expression of xenobiotic-metabolizing cytochrome P450 forms in human adult and fetal liver. Biochem Pharmacol. 1994;48(1):59–64.PubMedCrossRef Hakkola J, Pasanen M, Purkunen R, et al. Expression of xenobiotic-metabolizing cytochrome P450 forms in human adult and fetal liver. Biochem Pharmacol. 1994;48(1):59–64.PubMedCrossRef
35.
Zurück zum Zitat Blake MJ, Gaedigk A, Pearce RE, et al. Ontogeny of dextromethorphan O- and N-demethylation in the first year of life. Clin Pharmacol Ther. 2007;81(4):510–6.PubMedCrossRef Blake MJ, Gaedigk A, Pearce RE, et al. Ontogeny of dextromethorphan O- and N-demethylation in the first year of life. Clin Pharmacol Ther. 2007;81(4):510–6.PubMedCrossRef
36.
Zurück zum Zitat Hines RN. Ontogeny of human hepatic cytochromes P450. J Biochem Mol Toxicol. 2007;21(4):169–75.PubMedCrossRef Hines RN. Ontogeny of human hepatic cytochromes P450. J Biochem Mol Toxicol. 2007;21(4):169–75.PubMedCrossRef
37.
Zurück zum Zitat Johnson TN, Tucker GT, Rostami-Hodjegan A. Development of CYP2D6 and CYP3A4 in the first year of life. Clin Pharmacol Ther. 2008;83(5):670–1.PubMedCrossRef Johnson TN, Tucker GT, Rostami-Hodjegan A. Development of CYP2D6 and CYP3A4 in the first year of life. Clin Pharmacol Ther. 2008;83(5):670–1.PubMedCrossRef
38.
Zurück zum Zitat Leeder JS, Gaedigk R, Marcucci KA, et al. Variability of CYP3A7 expression in human fetal liver. J Pharmacol Exp Ther. 2005;314(2):626–35.PubMedCrossRef Leeder JS, Gaedigk R, Marcucci KA, et al. Variability of CYP3A7 expression in human fetal liver. J Pharmacol Exp Ther. 2005;314(2):626–35.PubMedCrossRef
39.
Zurück zum Zitat Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45(9):931–56.PubMedCrossRef Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45(9):931–56.PubMedCrossRef
40.
Zurück zum Zitat Anderson BJ, Larsson P. A maturation model for midazolam clearance. Paediatr Anaesth. 2011;21(3):302–8.PubMedCrossRef Anderson BJ, Larsson P. A maturation model for midazolam clearance. Paediatr Anaesth. 2011;21(3):302–8.PubMedCrossRef
41.
Zurück zum Zitat Khandelwal AHAC, Karlsson MO. Influence of correlated covariates on predictive performance for different models. [abstract no. 2220]. PAGE 20; 7-11 Jun 2011; Athens. Khandelwal AHAC, Karlsson MO. Influence of correlated covariates on predictive performance for different models. [abstract no. 2220]. PAGE 20; 7-11 Jun 2011; Athens.
42.
Zurück zum Zitat Barrett JS, Della Casa Alberighi O, Laer S, et al. Physiologically based pharmacokinetic (PBPK) modeling in children. Clin Pharmacol Ther. 2012;92(1):40–9.PubMedCrossRef Barrett JS, Della Casa Alberighi O, Laer S, et al. Physiologically based pharmacokinetic (PBPK) modeling in children. Clin Pharmacol Ther. 2012;92(1):40–9.PubMedCrossRef
43.
Zurück zum Zitat Walsky RL, Obach RS, Hyland R, et al. Selective mechanism-based inactivation of CYP3A4 by CYP3cide (PF-04981517) and its utility as an in vitro tool for delineating the relative roles of CYP3A4 versus CYP3A5 in the metabolism of drugs. Drug Metab Dispos. 2012;40(9):1686–97.PubMedCrossRef Walsky RL, Obach RS, Hyland R, et al. Selective mechanism-based inactivation of CYP3A4 by CYP3cide (PF-04981517) and its utility as an in vitro tool for delineating the relative roles of CYP3A4 versus CYP3A5 in the metabolism of drugs. Drug Metab Dispos. 2012;40(9):1686–97.PubMedCrossRef
44.
Zurück zum Zitat Aitken AE, Morgan ET. Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes. Drug Metab Dispos. 2007;35(9):1687–93.PubMedCrossRef Aitken AE, Morgan ET. Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes. Drug Metab Dispos. 2007;35(9):1687–93.PubMedCrossRef
45.
Zurück zum Zitat Kearney RA, Rosales JK, Howes WJ. Craniosynostosis: an assessment of blood loss and transfusion practices. Can J Anaesth. 1989;36(4):473–7.PubMedCrossRef Kearney RA, Rosales JK, Howes WJ. Craniosynostosis: an assessment of blood loss and transfusion practices. Can J Anaesth. 1989;36(4):473–7.PubMedCrossRef
46.
Zurück zum Zitat Ince I, de Wildt SN, Tibboel D, et al. Tailor-made drug treatment for children: creation of an infrastructure for data-sharing and population PK-PD modeling. Drug Discov Today. 2009;14(5–6):316–20.PubMedCrossRef Ince I, de Wildt SN, Tibboel D, et al. Tailor-made drug treatment for children: creation of an infrastructure for data-sharing and population PK-PD modeling. Drug Discov Today. 2009;14(5–6):316–20.PubMedCrossRef
47.
Zurück zum Zitat Tod M, Jullien V, Pons G. Facilitation of drug evaluation in children by population methods and modelling. Clin Pharmacokinet. 2008;47(4):231–43.PubMedCrossRef Tod M, Jullien V, Pons G. Facilitation of drug evaluation in children by population methods and modelling. Clin Pharmacokinet. 2008;47(4):231–43.PubMedCrossRef
48.
Zurück zum Zitat Krekels EH, DeJongh J, van Lingen RA, et al. Predictive performance of a recently developed population pharmacokinetic model for morphine and its metabolites in new datasets of (preterm) neonates, infants and children. Clin Pharmacokinet. 2011;50(1):51–63.PubMedCrossRef Krekels EH, DeJongh J, van Lingen RA, et al. Predictive performance of a recently developed population pharmacokinetic model for morphine and its metabolites in new datasets of (preterm) neonates, infants and children. Clin Pharmacokinet. 2011;50(1):51–63.PubMedCrossRef
49.
Zurück zum Zitat Kearns GL, Robinson PK, Wilson JT, et al. Cisapride disposition in neonates and infants: in vivo reflection of cytochrome P450 3A4 ontogeny. Clin Pharmacol Ther. 2003;74(4):312–25.PubMedCrossRef Kearns GL, Robinson PK, Wilson JT, et al. Cisapride disposition in neonates and infants: in vivo reflection of cytochrome P450 3A4 ontogeny. Clin Pharmacol Ther. 2003;74(4):312–25.PubMedCrossRef
Metadaten
Titel
A Novel Maturation Function for Clearance of the Cytochrome P450 3A Substrate Midazolam from Preterm Neonates to Adults
verfasst von
Ibrahim Ince
Saskia N. de Wildt
Chengueng Wang
Mariska Y. M. Peeters
Jacobus Burggraaf
Evelyne Jacqz-Aigrain
John N. van den Anker
Dick Tibboel
Meindert Danhof
Catherijne A. J. Knibbe
Publikationsdatum
01.07.2013
Verlag
Springer International Publishing AG
Erschienen in
Clinical Pharmacokinetics / Ausgabe 7/2013
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-013-0050-0

Weitere Artikel der Ausgabe 7/2013

Clinical Pharmacokinetics 7/2013 Zur Ausgabe