Skip to main content
Erschienen in: Clinical Pharmacokinetics 9/2013

01.09.2013 | Original Research Article

A Semiphysiological Population Pharmacokinetic Model for Dynamic Inhibition of Liver and Gut Wall Cytochrome P450 3A by Voriconazole

verfasst von: Sebastian Frechen, Lisa Junge, Teijo I. Saari, Ahmed Abbas Suleiman, Dennis Rokitta, Pertti J. Neuvonen, Klaus T. Olkkola, Uwe Fuhr

Erschienen in: Clinical Pharmacokinetics | Ausgabe 9/2013

Einloggen, um Zugang zu erhalten

Abstract

Background

Accurate predictions of cytochrome P450 (CYP) 3A-mediated drug-drug interactions (DDIs) account for dynamic changes of CYP3A activity at both major expression sites (liver and gut wall) by considering the full pharmacokinetic profile of the perpetrator and the substrate. Physiological-based in vitro–in vivo extrapolation models have become of increasing interest. However, due to discrepancies between the predicted and observed magnitude of DDIs, the role of models fully based on in vivo data is still essential.

Objective

The primary objective of this study was to develop a coupled dynamic model for the interaction of the CYP3A inhibitor voriconazole and the prototypical CYP3A substrate midazolam.

Methods

Raw concentration data were obtained from a DDI study. Ten subjects were given either no pretreatment (control) or voriconazole twice daily orally. Midazolam was given either intravenously or orally after the last voriconazole dose and during control phases. Data analysis was performed by the population pharmacokinetic approach using non-linear mixed effects modelling (NONMEM 7.2.0). Model evaluation was performed using visual predictive checks and bootstrap analysis.

Results

A semiphysiological model was able to describe the pharmacokinetics of midazolam, its major metabolite and voriconazole simultaneously. By considering the temporal disposition of all three substances in the liver and gut wall, a time-varying CYP3A inhibition process was implemented. Only the incorporation of hypothetical enzyme site compartments resulted in an adequate fit, suggesting a sustained inhibitory effect through accumulation. Novel key features of this analysis are the identification of (1) an apparent sustained inhibitory effect by voriconazole due to a proposed quasi accumulation at the enzyme site, (2) a significantly reduced inhibitory potency of intravenous voriconazole for oral substrates, (3) voriconazole as a likely uridine diphosphate glucuronosyltransferase (UGT) 2B inhibitor and (4) considerable sources of interindividual variability.

Conclusion

The proposed semiphysiological modelling approach generated a mechanistic description of the complex DDI occurring at major CYP3A expression sites and thus may serve as a powerful tool to maximise information acquired from clinical DDI studies. The model has been shown to draw precise and accurate predictions. Therefore, simulations based on this kind of models may be used for various clinical scenarios to improve pharmacotherapy.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet. 2000;38(1):41–57.PubMedCrossRef Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet. 2000;38(1):41–57.PubMedCrossRef
2.
Zurück zum Zitat Paine MF, Hart HL, Ludington SS, et al. The human intestinal cytochrome P450 “pie”. Drug Metab Dispos. 2006;34(5):880–6.PubMedCrossRef Paine MF, Hart HL, Ludington SS, et al. The human intestinal cytochrome P450 “pie”. Drug Metab Dispos. 2006;34(5):880–6.PubMedCrossRef
3.
Zurück zum Zitat Kolars JC, Lown KS, Schmiedlin-Ren P, et al. CYP3A gene expression in human gut epithelium. Pharmacogenetics. 1994;4(5):247–59.PubMedCrossRef Kolars JC, Lown KS, Schmiedlin-Ren P, et al. CYP3A gene expression in human gut epithelium. Pharmacogenetics. 1994;4(5):247–59.PubMedCrossRef
4.
Zurück zum Zitat Lown KS, Kolars JC, Thummel KE, et al. Interpatient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel. Lack of prediction by the erythromycin breath test. Drug Metab Dispos. 1994;22(6):947–55.PubMed Lown KS, Kolars JC, Thummel KE, et al. Interpatient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel. Lack of prediction by the erythromycin breath test. Drug Metab Dispos. 1994;22(6):947–55.PubMed
5.
Zurück zum Zitat Thummel KE, O’Shea D, Paine MF, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther. 1996;59(5):491–502.PubMedCrossRef Thummel KE, O’Shea D, Paine MF, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther. 1996;59(5):491–502.PubMedCrossRef
6.
Zurück zum Zitat Gorski JC, Jones DR, Haehner-Daniels BD, et al. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther. 1998;64(2):133–43.PubMedCrossRef Gorski JC, Jones DR, Haehner-Daniels BD, et al. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther. 1998;64(2):133–43.PubMedCrossRef
7.
Zurück zum Zitat von Richter O, Burk O, Fromm MF, et al. Cytochrome P450 3A4 and P-glycoprotein expression in human small intestinal enterocytes and hepatocytes: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther. 2004;75(3):172–83.CrossRef von Richter O, Burk O, Fromm MF, et al. Cytochrome P450 3A4 and P-glycoprotein expression in human small intestinal enterocytes and hepatocytes: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther. 2004;75(3):172–83.CrossRef
8.
Zurück zum Zitat Paine MF, Khalighi M, Fisher JM, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther. 1997;283(3):1552–62.PubMed Paine MF, Khalighi M, Fisher JM, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther. 1997;283(3):1552–62.PubMed
9.
Zurück zum Zitat Hall SD, Thummel KE, Watkins PB, et al. Molecular and physical mechanisms of first-pass extraction. Drug Metab Dispos. 1999;27(2):161–6.PubMed Hall SD, Thummel KE, Watkins PB, et al. Molecular and physical mechanisms of first-pass extraction. Drug Metab Dispos. 1999;27(2):161–6.PubMed
10.
Zurück zum Zitat Galetin A, Gertz M, Houston JB. Potential role of intestinal first-pass metabolism in the prediction of drug-drug interactions. Expert Opin Drug Metab Toxicol. 2008;4(7):909–22.PubMedCrossRef Galetin A, Gertz M, Houston JB. Potential role of intestinal first-pass metabolism in the prediction of drug-drug interactions. Expert Opin Drug Metab Toxicol. 2008;4(7):909–22.PubMedCrossRef
11.
Zurück zum Zitat Gertz M, Davis JD, Harrison A, et al. Grapefruit juice-drug interaction studies as a method to assess the extent of intestinal availability: utility and limitations. Curr Drug Metab. 2008;9(8):785–95.PubMedCrossRef Gertz M, Davis JD, Harrison A, et al. Grapefruit juice-drug interaction studies as a method to assess the extent of intestinal availability: utility and limitations. Curr Drug Metab. 2008;9(8):785–95.PubMedCrossRef
12.
Zurück zum Zitat Galetin A, Ito K, Hallifax D, et al. CYP3A4 substrate selection and substitution in the prediction of potential drug-drug interactions. J Pharmacol Exp Ther. 2005;314(1):180–90.PubMedCrossRef Galetin A, Ito K, Hallifax D, et al. CYP3A4 substrate selection and substitution in the prediction of potential drug-drug interactions. J Pharmacol Exp Ther. 2005;314(1):180–90.PubMedCrossRef
13.
Zurück zum Zitat von Moltke LL, Greenblatt DJ, Schmider J, et al. Midazolam hydroxylation by human liver microsomes in vitro: inhibition by fluoxetine, norfluoxetine, and by azole antifungal agents. J Clin Pharmacol. 1996;36(9):783–91.CrossRef von Moltke LL, Greenblatt DJ, Schmider J, et al. Midazolam hydroxylation by human liver microsomes in vitro: inhibition by fluoxetine, norfluoxetine, and by azole antifungal agents. J Clin Pharmacol. 1996;36(9):783–91.CrossRef
14.
Zurück zum Zitat Paine MF, Shen DD, Kunze KL, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther. 1996;60(1):14–24.PubMedCrossRef Paine MF, Shen DD, Kunze KL, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther. 1996;60(1):14–24.PubMedCrossRef
15.
Zurück zum Zitat Heizmann P, Eckert M, Ziegler WH. Pharmacokinetics and bioavailability of midazolam in man. Br J Clin Pharmacol. 1983;16(Suppl 1):43S–9S.PubMedCrossRef Heizmann P, Eckert M, Ziegler WH. Pharmacokinetics and bioavailability of midazolam in man. Br J Clin Pharmacol. 1983;16(Suppl 1):43S–9S.PubMedCrossRef
16.
Zurück zum Zitat Klieber S, Hugla S, Ngo R, et al. Contribution of the N-glucuronidation pathway to the overall in vitro metabolic clearance of midazolam in humans. Drug Metab Dispos. 2008;36(5):851–62.PubMedCrossRef Klieber S, Hugla S, Ngo R, et al. Contribution of the N-glucuronidation pathway to the overall in vitro metabolic clearance of midazolam in humans. Drug Metab Dispos. 2008;36(5):851–62.PubMedCrossRef
17.
Zurück zum Zitat Hyland R, Osborne T, Payne A, et al. In vitro and in vivo glucuronidation of midazolam in humans. Br J Clin Pharmacol. 2009;67(4):445–54.PubMedCrossRef Hyland R, Osborne T, Payne A, et al. In vitro and in vivo glucuronidation of midazolam in humans. Br J Clin Pharmacol. 2009;67(4):445–54.PubMedCrossRef
18.
Zurück zum Zitat Zhu B, Bush D, Doss GA, et al. Characterization of 1′-hydroxymidazolam glucuronidation in human liver microsomes. Drug Metab Dispos. 2008;36(2):331–8.PubMedCrossRef Zhu B, Bush D, Doss GA, et al. Characterization of 1′-hydroxymidazolam glucuronidation in human liver microsomes. Drug Metab Dispos. 2008;36(2):331–8.PubMedCrossRef
19.
Zurück zum Zitat Theuretzbacher U, Ihle F, Derendorf H. Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin Pharmacokinet. 2006;45(7):649–63.PubMedCrossRef Theuretzbacher U, Ihle F, Derendorf H. Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin Pharmacokinet. 2006;45(7):649–63.PubMedCrossRef
20.
Zurück zum Zitat Hyland R, Jones BC, Smith DA. Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metab Dispos. 2003;31(5):540–7.PubMedCrossRef Hyland R, Jones BC, Smith DA. Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metab Dispos. 2003;31(5):540–7.PubMedCrossRef
21.
Zurück zum Zitat Saari TI, Laine K, Leino K, et al. Effect of voriconazole on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Clin Pharmacol Ther. 2006;79(4):362–70.PubMedCrossRef Saari TI, Laine K, Leino K, et al. Effect of voriconazole on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Clin Pharmacol Ther. 2006;79(4):362–70.PubMedCrossRef
22.
Zurück zum Zitat Hisaka A, Ohno Y, Yamamoto T, et al. Prediction of pharmacokinetic drug-drug interaction caused by changes in cytochrome P450 activity using in vivo information. Pharmacol Ther. 2010;125(2):230–48.PubMedCrossRef Hisaka A, Ohno Y, Yamamoto T, et al. Prediction of pharmacokinetic drug-drug interaction caused by changes in cytochrome P450 activity using in vivo information. Pharmacol Ther. 2010;125(2):230–48.PubMedCrossRef
23.
Zurück zum Zitat Hisaka A, Ohno Y, Yamamoto T, et al. Theoretical considerations on quantitative prediction of drug-drug interactions. Drug Metab Pharmacokinet. 2010;25(1):48–61.PubMedCrossRef Hisaka A, Ohno Y, Yamamoto T, et al. Theoretical considerations on quantitative prediction of drug-drug interactions. Drug Metab Pharmacokinet. 2010;25(1):48–61.PubMedCrossRef
24.
Zurück zum Zitat Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov. 2005;4(10):825–33.PubMedCrossRef Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov. 2005;4(10):825–33.PubMedCrossRef
25.
Zurück zum Zitat Perdaems N, Blasco H, Vinson C, et al. Predictions of metabolic drug-drug interactions using physiologically based modelling: Two cytochrome P450 3A4 substrates coadministered with ketoconazole or verapamil. Clin Pharmacokinet. 2010;49(4):239–58.PubMedCrossRef Perdaems N, Blasco H, Vinson C, et al. Predictions of metabolic drug-drug interactions using physiologically based modelling: Two cytochrome P450 3A4 substrates coadministered with ketoconazole or verapamil. Clin Pharmacokinet. 2010;49(4):239–58.PubMedCrossRef
26.
Zurück zum Zitat Boulenc X, Barberan O. Metabolic-based drug–drug interactions prediction, recent approaches for risk assessment along drug development. Drug Metabol Drug Interact. 2011;26(4):147–68.PubMedCrossRef Boulenc X, Barberan O. Metabolic-based drug–drug interactions prediction, recent approaches for risk assessment along drug development. Drug Metabol Drug Interact. 2011;26(4):147–68.PubMedCrossRef
27.
Zurück zum Zitat Einolf HJ. Comparison of different approaches to predict metabolic drug-drug interactions. Xenobiotica. 2007;37(10–11):1257–94.PubMed Einolf HJ. Comparison of different approaches to predict metabolic drug-drug interactions. Xenobiotica. 2007;37(10–11):1257–94.PubMed
28.
Zurück zum Zitat Galetin A, Gertz M, Houston JB. Contribution of intestinal cytochrome p450-mediated metabolism to drug-drug inhibition and induction interactions. Drug Metab Pharmacokinet. 2010;25(1):28–47.PubMedCrossRef Galetin A, Gertz M, Houston JB. Contribution of intestinal cytochrome p450-mediated metabolism to drug-drug inhibition and induction interactions. Drug Metab Pharmacokinet. 2010;25(1):28–47.PubMedCrossRef
29.
Zurück zum Zitat Vossen M, Sevestre M, Niederalt C, et al. Dynamically simulating the interaction of midazolam and the CYP3A4 inhibitor itraconazole using individual coupled whole-body physiologically-based pharmacokinetic (WB-PBPK) models. Theor Biol Med Model. 2007;4:13.PubMedCrossRef Vossen M, Sevestre M, Niederalt C, et al. Dynamically simulating the interaction of midazolam and the CYP3A4 inhibitor itraconazole using individual coupled whole-body physiologically-based pharmacokinetic (WB-PBPK) models. Theor Biol Med Model. 2007;4:13.PubMedCrossRef
30.
Zurück zum Zitat Zhao P, Ragueneau-Majlessi I, Zhang L, et al. Quantitative evaluation of pharmacokinetic inhibition of CYP3A substrates by ketoconazole: a simulation study. J Clin Pharmacol. 2009;49(3):351–9.PubMedCrossRef Zhao P, Ragueneau-Majlessi I, Zhang L, et al. Quantitative evaluation of pharmacokinetic inhibition of CYP3A substrates by ketoconazole: a simulation study. J Clin Pharmacol. 2009;49(3):351–9.PubMedCrossRef
31.
Zurück zum Zitat Guest EJ, Rowland-Yeo K, Rostami-Hodjegan A, et al. Assessment of algorithms for predicting drug-drug interactions via inhibition mechanisms: comparison of dynamic and static models. Br J Clin Pharmacol. 2011;71(1):72–87.PubMedCrossRef Guest EJ, Rowland-Yeo K, Rostami-Hodjegan A, et al. Assessment of algorithms for predicting drug-drug interactions via inhibition mechanisms: comparison of dynamic and static models. Br J Clin Pharmacol. 2011;71(1):72–87.PubMedCrossRef
32.
Zurück zum Zitat Beal SL, Sheiner LB, Boeckmann AJ, et al., (eds) NONMEM 7.2.0 users guides. Ellicott City; 2011. Beal SL, Sheiner LB, Boeckmann AJ, et al., (eds) NONMEM 7.2.0 users guides. Ellicott City; 2011.
33.
Zurück zum Zitat Lindbom L, Ribbing J, Jonsson EN. Perl-speaks-NONMEM (PsN)—a Perl module for NONMEM related programming. Comput Methods Programs Biomed. 2004;75(2):85–94.PubMedCrossRef Lindbom L, Ribbing J, Jonsson EN. Perl-speaks-NONMEM (PsN)—a Perl module for NONMEM related programming. Comput Methods Programs Biomed. 2004;75(2):85–94.PubMedCrossRef
34.
Zurück zum Zitat R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2012. R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2012.
35.
Zurück zum Zitat Lacey LF, Keene ON, Pritchard JF, et al. Common noncompartmental pharmacokinetic variables: are they normally or log-normally distributed? J Biopharm Stat. 1997;7(1):171–8.PubMedCrossRef Lacey LF, Keene ON, Pritchard JF, et al. Common noncompartmental pharmacokinetic variables: are they normally or log-normally distributed? J Biopharm Stat. 1997;7(1):171–8.PubMedCrossRef
36.
Zurück zum Zitat Karlsson MO, Savic RM. Diagnosing model diagnostics. Clin Pharmacol Ther. 2007;82(1):17–20.PubMedCrossRef Karlsson MO, Savic RM. Diagnosing model diagnostics. Clin Pharmacol Ther. 2007;82(1):17–20.PubMedCrossRef
37.
Zurück zum Zitat Ette EI. Stability and performance of a population pharmacokinetic model. J Clin Pharmacol. 1997;37(6):486–95.PubMedCrossRef Ette EI. Stability and performance of a population pharmacokinetic model. J Clin Pharmacol. 1997;37(6):486–95.PubMedCrossRef
38.
Zurück zum Zitat Parke J, Holford NH, Charles BG. A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models. Comput Methods Programs Biomed. 1999;59(1):19–29.PubMedCrossRef Parke J, Holford NH, Charles BG. A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models. Comput Methods Programs Biomed. 1999;59(1):19–29.PubMedCrossRef
39.
Zurück zum Zitat Lindbom L, Pihlgren P, Jonsson EN. PsN-Toolkit: a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79(3):241–57.PubMedCrossRef Lindbom L, Pihlgren P, Jonsson EN. PsN-Toolkit: a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79(3):241–57.PubMedCrossRef
40.
Zurück zum Zitat Post TM, Freijer JI, Ploeger BA, et al. Extensions to the visual predictive check to facilitate model performance evaluation. J Pharmacokinet Pharmacodyn. 2008;35(2):185–202.PubMedCrossRef Post TM, Freijer JI, Ploeger BA, et al. Extensions to the visual predictive check to facilitate model performance evaluation. J Pharmacokinet Pharmacodyn. 2008;35(2):185–202.PubMedCrossRef
41.
Zurück zum Zitat Katzenmaier S, Markert C, Riedel KD, et al. Determining the time course of CYP3A inhibition by potent reversible and irreversible CYP3A inhibitors using A limited sampling strategy. Clin Pharmacol Ther. 2011;90(5):666–73.PubMedCrossRef Katzenmaier S, Markert C, Riedel KD, et al. Determining the time course of CYP3A inhibition by potent reversible and irreversible CYP3A inhibitors using A limited sampling strategy. Clin Pharmacol Ther. 2011;90(5):666–73.PubMedCrossRef
42.
Zurück zum Zitat Park GR, Manara AR, Dawling S. Extra-hepatic metabolism of midazolam. Br J Clin Pharmacol. 1989;27(5):634–7.PubMedCrossRef Park GR, Manara AR, Dawling S. Extra-hepatic metabolism of midazolam. Br J Clin Pharmacol. 1989;27(5):634–7.PubMedCrossRef
43.
Zurück zum Zitat Gordi T, Xie R, Huong NV, et al. A semiphysiological pharmacokinetic model for artemisinin in healthy subjects incorporating autoinduction of metabolism and saturable first-pass hepatic extraction. Br J Clin Pharmacol. 2005;59(2):189–98.PubMedCrossRef Gordi T, Xie R, Huong NV, et al. A semiphysiological pharmacokinetic model for artemisinin in healthy subjects incorporating autoinduction of metabolism and saturable first-pass hepatic extraction. Br J Clin Pharmacol. 2005;59(2):189–98.PubMedCrossRef
44.
Zurück zum Zitat Murray GI, Barnes TS, Sewell HF, et al. The immunocytochemical localisation and distribution of cytochrome P-450 in normal human hepatic and extrahepatic tissues with a monoclonal antibody to human cytochrome P-450. Br J Clin Pharmacol. 1988;25(4):465–75.PubMedCrossRef Murray GI, Barnes TS, Sewell HF, et al. The immunocytochemical localisation and distribution of cytochrome P-450 in normal human hepatic and extrahepatic tissues with a monoclonal antibody to human cytochrome P-450. Br J Clin Pharmacol. 1988;25(4):465–75.PubMedCrossRef
45.
Zurück zum Zitat Yang J, Jamei M, Yeo KR, et al. Prediction of intestinal first-pass drug metabolism. Curr Drug Metab. 2007;8(7):676–84.PubMedCrossRef Yang J, Jamei M, Yeo KR, et al. Prediction of intestinal first-pass drug metabolism. Curr Drug Metab. 2007;8(7):676–84.PubMedCrossRef
46.
Zurück zum Zitat Gertz M, Harrison A, Houston JB, et al. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38(7):1147–58.PubMedCrossRef Gertz M, Harrison A, Houston JB, et al. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38(7):1147–58.PubMedCrossRef
47.
Zurück zum Zitat Weiss M. A novel extravascular input function for the assessment of drug absorption in bioavailability studies. Pharm Res. 1996;13(10):1547–53.PubMedCrossRef Weiss M. A novel extravascular input function for the assessment of drug absorption in bioavailability studies. Pharm Res. 1996;13(10):1547–53.PubMedCrossRef
48.
Zurück zum Zitat Mandema JW, Tuk B, van Steveninck AL, et al. Pharmacokinetic-pharmacodynamic modeling of the central nervous system effects of midazolam and its main metabolite alpha-hydroxymidazolam in healthy volunteers. Clin Pharmacol Ther. 1992;51(6):715–28.PubMedCrossRef Mandema JW, Tuk B, van Steveninck AL, et al. Pharmacokinetic-pharmacodynamic modeling of the central nervous system effects of midazolam and its main metabolite alpha-hydroxymidazolam in healthy volunteers. Clin Pharmacol Ther. 1992;51(6):715–28.PubMedCrossRef
49.
Zurück zum Zitat Hope WW. Population pharmacokinetics of voriconazole in adults. Antimicrob Agents Chemother. 2012;56(1):526–31.PubMedCrossRef Hope WW. Population pharmacokinetics of voriconazole in adults. Antimicrob Agents Chemother. 2012;56(1):526–31.PubMedCrossRef
50.
Zurück zum Zitat Karlsson MO, Lutsar I, Milligan PA. Population pharmacokinetic analysis of voriconazole plasma concentration data from pediatric studies. Antimicrob Agents Chemother. 2009;53(3):935–44.PubMedCrossRef Karlsson MO, Lutsar I, Milligan PA. Population pharmacokinetic analysis of voriconazole plasma concentration data from pediatric studies. Antimicrob Agents Chemother. 2009;53(3):935–44.PubMedCrossRef
51.
Zurück zum Zitat Jeong S, Nguyen PD, Desta Z. Comprehensive in vitro analysis of voriconazole inhibition of eight cytochrome P450 (CYP) enzymes: major effect on CYPs 2B6, 2C9, 2C19, and 3A. Antimicrob Agents Chemother. 2009;53(2):541–51.PubMedCrossRef Jeong S, Nguyen PD, Desta Z. Comprehensive in vitro analysis of voriconazole inhibition of eight cytochrome P450 (CYP) enzymes: major effect on CYPs 2B6, 2C9, 2C19, and 3A. Antimicrob Agents Chemother. 2009;53(2):541–51.PubMedCrossRef
52.
Zurück zum Zitat Yamazaki H, Nakamoto M, Shimizu M, et al. Potential impact of cytochrome P450 3A5 in human liver on drug interactions with triazoles. Br J Clin Pharmacol. 2010;69(6):593–7.PubMedCrossRef Yamazaki H, Nakamoto M, Shimizu M, et al. Potential impact of cytochrome P450 3A5 in human liver on drug interactions with triazoles. Br J Clin Pharmacol. 2010;69(6):593–7.PubMedCrossRef
53.
Zurück zum Zitat Nishimuta H, Sato K, Yabuki M, et al. Prediction of the intestinal first-pass metabolism of CYP3A and UGT substrates in humans from in vitro data. Drug Metab Pharmacokinet. 2011;26(6):592–601.PubMedCrossRef Nishimuta H, Sato K, Yabuki M, et al. Prediction of the intestinal first-pass metabolism of CYP3A and UGT substrates in humans from in vitro data. Drug Metab Pharmacokinet. 2011;26(6):592–601.PubMedCrossRef
54.
Zurück zum Zitat Rowland Yeo K, Rostami-Hodjegan A, Tucker G. Abundance of cytochrome P450 in human liver: a meta-analysis. Br J Clin Pharmacol. 2004;57(5):687–8. Rowland Yeo K, Rostami-Hodjegan A, Tucker G. Abundance of cytochrome P450 in human liver: a meta-analysis. Br J Clin Pharmacol. 2004;57(5):687–8.
55.
Zurück zum Zitat Wilson ZE, Rostami-Hodjegan A, Burn JL, et al. Inter-individual variability in levels of human microsomal protein and hepatocellularity per gram of liver. Br J Clin Pharmacol. 2003;56(4):433–40.PubMedCrossRef Wilson ZE, Rostami-Hodjegan A, Burn JL, et al. Inter-individual variability in levels of human microsomal protein and hepatocellularity per gram of liver. Br J Clin Pharmacol. 2003;56(4):433–40.PubMedCrossRef
56.
Zurück zum Zitat Brown RP, Delp MD, Lindstedt SL, et al. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997;13(4):407–84.PubMed Brown RP, Delp MD, Lindstedt SL, et al. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997;13(4):407–84.PubMed
57.
Zurück zum Zitat Chien JY, Lucksiri A, Ernest CS 2nd, et al. Stochastic prediction of CYP3A-mediated inhibition of midazolam clearance by ketoconazole. Drug Metab Dispos. 2006;34(7):1208–19.PubMedCrossRef Chien JY, Lucksiri A, Ernest CS 2nd, et al. Stochastic prediction of CYP3A-mediated inhibition of midazolam clearance by ketoconazole. Drug Metab Dispos. 2006;34(7):1208–19.PubMedCrossRef
58.
59.
Zurück zum Zitat Templeton IE, Thummel KE, Kharasch ED, et al. Contribution of itraconazole metabolites to inhibition of CYP3A4 in vivo. Clin Pharmacol Ther. 2008;83(1):77–85.PubMedCrossRef Templeton IE, Thummel KE, Kharasch ED, et al. Contribution of itraconazole metabolites to inhibition of CYP3A4 in vivo. Clin Pharmacol Ther. 2008;83(1):77–85.PubMedCrossRef
60.
Zurück zum Zitat Takeda S, Kitajima Y, Ishii Y, et al. Inhibition of UDP-glucuronosyltransferase 2b7-catalyzed morphine glucuronidation by ketoconazole: dual mechanisms involving a novel noncompetitive mode. Drug Metab Dispos. 2006;34(8):1277–82.PubMedCrossRef Takeda S, Kitajima Y, Ishii Y, et al. Inhibition of UDP-glucuronosyltransferase 2b7-catalyzed morphine glucuronidation by ketoconazole: dual mechanisms involving a novel noncompetitive mode. Drug Metab Dispos. 2006;34(8):1277–82.PubMedCrossRef
61.
Zurück zum Zitat Langdon G, Davis J, Layton G, et al. Effects of ketoconazole and valproic acid on the pharmacokinetics of the next generation NNRTI, lersivirine (UK-453,061), in healthy adult subjects. Br J Clin Pharmacol. 2012;73(5):768–75.PubMedCrossRef Langdon G, Davis J, Layton G, et al. Effects of ketoconazole and valproic acid on the pharmacokinetics of the next generation NNRTI, lersivirine (UK-453,061), in healthy adult subjects. Br J Clin Pharmacol. 2012;73(5):768–75.PubMedCrossRef
62.
Zurück zum Zitat Walsky RL, Bauman JN, Bourcier K, et al. Optimized assays for human UDP-glucuronosyltransferase (UGT) activities: altered alamethicin concentration and utility to screen for UGT inhibitors. Drug Metab Dispos. 2012;40(5):1051–65.PubMedCrossRef Walsky RL, Bauman JN, Bourcier K, et al. Optimized assays for human UDP-glucuronosyltransferase (UGT) activities: altered alamethicin concentration and utility to screen for UGT inhibitors. Drug Metab Dispos. 2012;40(5):1051–65.PubMedCrossRef
63.
Zurück zum Zitat Raungrut P, Uchaipichat V, Elliot DJ, et al. In vitro-in vivo extrapolation predicts drug-drug interactions arising from inhibition of codeine glucuronidation by dextropropoxyphene, fluconazole, ketoconazole, and methadone in humans. J Pharmacol Exp Ther. 2010;334(2):609–18.PubMedCrossRef Raungrut P, Uchaipichat V, Elliot DJ, et al. In vitro-in vivo extrapolation predicts drug-drug interactions arising from inhibition of codeine glucuronidation by dextropropoxyphene, fluconazole, ketoconazole, and methadone in humans. J Pharmacol Exp Ther. 2010;334(2):609–18.PubMedCrossRef
64.
Zurück zum Zitat Congiu M, Mashford ML, Slavin JL, et al. UDP glucuronosyltransferase mRNA levels in human liver disease. Drug Metab Dispos. 2002;30(2):129–34.PubMedCrossRef Congiu M, Mashford ML, Slavin JL, et al. UDP glucuronosyltransferase mRNA levels in human liver disease. Drug Metab Dispos. 2002;30(2):129–34.PubMedCrossRef
65.
Zurück zum Zitat Fisher MB, Vandenbranden M, Findlay K, et al. Tissue distribution and interindividual variation in human UDP-glucuronosyltransferase activity: relationship between UGT1A1 promoter genotype and variability in a liver bank. Pharmacogenetics. 2000;10(8):727–39.PubMedCrossRef Fisher MB, Vandenbranden M, Findlay K, et al. Tissue distribution and interindividual variation in human UDP-glucuronosyltransferase activity: relationship between UGT1A1 promoter genotype and variability in a liver bank. Pharmacogenetics. 2000;10(8):727–39.PubMedCrossRef
66.
Zurück zum Zitat Han K, Bies R, Johnson H, et al. Population pharmacokinetic evaluation with external validation and Bayesian estimator of voriconazole in liver transplant recipients. Clin Pharmacokinet. 2011;50(3):201–14.PubMedCrossRef Han K, Bies R, Johnson H, et al. Population pharmacokinetic evaluation with external validation and Bayesian estimator of voriconazole in liver transplant recipients. Clin Pharmacokinet. 2011;50(3):201–14.PubMedCrossRef
67.
Zurück zum Zitat Pascual A, Csajka C, Buclin T, et al. Challenging recommended oral and intravenous voriconazole doses for improved efficacy and safety: population pharmacokinetics-based analysis of adult patients with invasive fungal infections. Clin Infect Dis. 2012;55(3):381–90.PubMedCrossRef Pascual A, Csajka C, Buclin T, et al. Challenging recommended oral and intravenous voriconazole doses for improved efficacy and safety: population pharmacokinetics-based analysis of adult patients with invasive fungal infections. Clin Infect Dis. 2012;55(3):381–90.PubMedCrossRef
68.
Zurück zum Zitat Han K, Capitano B, Bies R, et al. Bioavailability and population pharmacokinetics of voriconazole in lung transplant recipients. Antimicrob Agents Chemother. 2010;54(10):4424–31.PubMedCrossRef Han K, Capitano B, Bies R, et al. Bioavailability and population pharmacokinetics of voriconazole in lung transplant recipients. Antimicrob Agents Chemother. 2010;54(10):4424–31.PubMedCrossRef
69.
Zurück zum Zitat Shi HY, Yan J, Zhu WH, et al. Effects of erythromycin on voriconazole pharmacokinetics and association with CYP2C19 polymorphism. Eur J Clin Pharmacol. 2010;66(11):1131–6.PubMedCrossRef Shi HY, Yan J, Zhu WH, et al. Effects of erythromycin on voriconazole pharmacokinetics and association with CYP2C19 polymorphism. Eur J Clin Pharmacol. 2010;66(11):1131–6.PubMedCrossRef
70.
Zurück zum Zitat Lin JH, Lu AY. Interindividual variability in inhibition and induction of cytochrome P450 enzymes. Annu Rev Pharmacol Toxicol. 2001;41:535–67.PubMedCrossRef Lin JH, Lu AY. Interindividual variability in inhibition and induction of cytochrome P450 enzymes. Annu Rev Pharmacol Toxicol. 2001;41:535–67.PubMedCrossRef
71.
Zurück zum Zitat Gibbs MA, Thummel KE, Shen DD, et al. Inhibition of cytochrome P-450 3A (CYP3A) in human intestinal and liver microsomes: comparison of Ki values and impact of CYP3A5 expression. Drug Metab Dispos. 1999;27(2):180–7.PubMed Gibbs MA, Thummel KE, Shen DD, et al. Inhibition of cytochrome P-450 3A (CYP3A) in human intestinal and liver microsomes: comparison of Ki values and impact of CYP3A5 expression. Drug Metab Dispos. 1999;27(2):180–7.PubMed
72.
Zurück zum Zitat Greenblatt DJ, Venkatakrishnan K, Harmatz JS, et al. Sources of variability in ketoconazole inhibition of human cytochrome P450 3A in vitro. Xenobiotica. 2010;40(10):713–20.PubMedCrossRef Greenblatt DJ, Venkatakrishnan K, Harmatz JS, et al. Sources of variability in ketoconazole inhibition of human cytochrome P450 3A in vitro. Xenobiotica. 2010;40(10):713–20.PubMedCrossRef
73.
Zurück zum Zitat Kilford PJ, Stringer R, Sohal B, et al. Prediction of drug clearance by glucuronidation from in vitro data: use of combined cytochrome P450 and UDP-glucuronosyltransferase cofactors in alamethicin-activated human liver microsomes. Drug Metab Dispos. 2009;37(1):82–9.PubMedCrossRef Kilford PJ, Stringer R, Sohal B, et al. Prediction of drug clearance by glucuronidation from in vitro data: use of combined cytochrome P450 and UDP-glucuronosyltransferase cofactors in alamethicin-activated human liver microsomes. Drug Metab Dispos. 2009;37(1):82–9.PubMedCrossRef
74.
Zurück zum Zitat Liu Y, She M, Wu Z, et al. The inhibition study of human UDP-glucuronosyltransferases with cytochrome P450 selective substrates and inhibitors. J Enzyme Inhib Med Chem. 2011;26(3):386–93.PubMedCrossRef Liu Y, She M, Wu Z, et al. The inhibition study of human UDP-glucuronosyltransferases with cytochrome P450 selective substrates and inhibitors. J Enzyme Inhib Med Chem. 2011;26(3):386–93.PubMedCrossRef
75.
Zurück zum Zitat Ehmer U, Vogel A, Schutte JK, et al. Variation of hepatic glucuronidation: novel functional polymorphisms of the UDP-glucuronosyltransferase UGT1A4. Hepatology. 2004;39(4):970–7.PubMedCrossRef Ehmer U, Vogel A, Schutte JK, et al. Variation of hepatic glucuronidation: novel functional polymorphisms of the UDP-glucuronosyltransferase UGT1A4. Hepatology. 2004;39(4):970–7.PubMedCrossRef
76.
Zurück zum Zitat Herbrecht R, Denning DW, Patterson TF, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med. 2002;347(6):408–15.PubMedCrossRef Herbrecht R, Denning DW, Patterson TF, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med. 2002;347(6):408–15.PubMedCrossRef
77.
Zurück zum Zitat Spriet I, Grootaert V, Meyfroidt G, et al. Switching from intravenous to oral tacrolimus and voriconazole leads to a more pronounced drug-drug interaction. Eur J Clin Pharmacol. 2013;69(3):737–8. Spriet I, Grootaert V, Meyfroidt G, et al. Switching from intravenous to oral tacrolimus and voriconazole leads to a more pronounced drug-drug interaction. Eur J Clin Pharmacol. 2013;69(3):737–8.
78.
Zurück zum Zitat Fang J, McKay G, Hubbard JW, et al. Dose staggering as a strategy to reduce drug–drug interactions due to reversible enzyme inhibition between orally administered drugs with high first pass effect: a computer simulation study. Biopharm Drug Dispos. 2000;21(7):249–59.PubMedCrossRef Fang J, McKay G, Hubbard JW, et al. Dose staggering as a strategy to reduce drug–drug interactions due to reversible enzyme inhibition between orally administered drugs with high first pass effect: a computer simulation study. Biopharm Drug Dispos. 2000;21(7):249–59.PubMedCrossRef
80.
Zurück zum Zitat Ohno Y, Hisaka A, Suzuki H. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Clin Pharmacokinet. 2007;46(8):681–96.PubMedCrossRef Ohno Y, Hisaka A, Suzuki H. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Clin Pharmacokinet. 2007;46(8):681–96.PubMedCrossRef
81.
Zurück zum Zitat Hisaka A, Kusama M, Ohno Y, et al. A proposal for a pharmacokinetic interaction significance classification system (PISCS) based on predicted drug exposure changes and its potential application to alert classifications in product labelling. Clin Pharmacokinet. 2009;48(10):653–66.PubMedCrossRef Hisaka A, Kusama M, Ohno Y, et al. A proposal for a pharmacokinetic interaction significance classification system (PISCS) based on predicted drug exposure changes and its potential application to alert classifications in product labelling. Clin Pharmacokinet. 2009;48(10):653–66.PubMedCrossRef
82.
Zurück zum Zitat Rowland Yeo K, Jamei M, Yang J, et al. Physiologically based mechanistic modelling to predict complex drug-drug interactions involving simultaneous competitive and time-dependent enzyme inhibition by parent compound and its metabolite in both liver and gut—the effect of diltiazem on the time-course of exposure to triazolam. Eur J Pharm Sci. 2010;39(5):298–309.PubMedCrossRef Rowland Yeo K, Jamei M, Yang J, et al. Physiologically based mechanistic modelling to predict complex drug-drug interactions involving simultaneous competitive and time-dependent enzyme inhibition by parent compound and its metabolite in both liver and gut—the effect of diltiazem on the time-course of exposure to triazolam. Eur J Pharm Sci. 2010;39(5):298–309.PubMedCrossRef
83.
Zurück zum Zitat Ito K, Ogihara K, Kanamitsu S, et al. Prediction of the in vivo interaction between midazolam and macrolides based on in vitro studies using human liver microsomes. Drug Metab Dispos. 2003;31(7):945–54.PubMedCrossRef Ito K, Ogihara K, Kanamitsu S, et al. Prediction of the in vivo interaction between midazolam and macrolides based on in vitro studies using human liver microsomes. Drug Metab Dispos. 2003;31(7):945–54.PubMedCrossRef
84.
Zurück zum Zitat Roffey SJ, Cole S, Comby P, et al. The disposition of voriconazole in mouse, rat, rabbit, guinea pig, dog, and human. Drug Metab Dispos. 2003;31(6):731–41.PubMedCrossRef Roffey SJ, Cole S, Comby P, et al. The disposition of voriconazole in mouse, rat, rabbit, guinea pig, dog, and human. Drug Metab Dispos. 2003;31(6):731–41.PubMedCrossRef
85.
Zurück zum Zitat Williams LR, Leggett RW. Reference values for resting blood flow to organs of man. Clin Phys Physiol Meas. 1989;10(3):187–217.PubMedCrossRef Williams LR, Leggett RW. Reference values for resting blood flow to organs of man. Clin Phys Physiol Meas. 1989;10(3):187–217.PubMedCrossRef
Metadaten
Titel
A Semiphysiological Population Pharmacokinetic Model for Dynamic Inhibition of Liver and Gut Wall Cytochrome P450 3A by Voriconazole
verfasst von
Sebastian Frechen
Lisa Junge
Teijo I. Saari
Ahmed Abbas Suleiman
Dennis Rokitta
Pertti J. Neuvonen
Klaus T. Olkkola
Uwe Fuhr
Publikationsdatum
01.09.2013
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 9/2013
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-013-0070-9

Weitere Artikel der Ausgabe 9/2013

Clinical Pharmacokinetics 9/2013 Zur Ausgabe