Skip to main content
Log in

A Physiologically Based Pharmacokinetic Model for Pregnant Women to Predict the Pharmacokinetics of Drugs Metabolized Via Several Enzymatic Pathways

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Physiologically based pharmacokinetic modeling is considered a valuable tool for predicting pharmacokinetic changes in pregnancy to subsequently guide in-vivo pharmacokinetic trials in pregnant women. The objective of this study was to extend and verify a previously developed physiologically based pharmacokinetic model for pregnant women for the prediction of pharmacokinetics of drugs metabolized via several cytochrome P450 enzymes.

Methods

Quantitative information on gestation-specific changes in enzyme activity available in the literature was incorporated in a pregnancy physiologically based pharmacokinetic model and the pharmacokinetics of eight drugs metabolized via one or multiple cytochrome P450 enzymes was predicted. The tested drugs were caffeine, midazolam, nifedipine, metoprolol, ondansetron, granisetron, diazepam, and metronidazole. Pharmacokinetic predictions were evaluated by comparison with in-vivo pharmacokinetic data obtained from the literature.

Results

The pregnancy physiologically based pharmacokinetic model successfully predicted the pharmacokinetics of all tested drugs. The observed pregnancy-induced pharmacokinetic changes were qualitatively and quantitatively reasonably well predicted for all drugs. Ninety-seven percent of the mean plasma concentrations predicted in pregnant women fell within a twofold error range and 63% within a 1.25-fold error range. For all drugs, the predicted area under the concentration–time curve was within a 1.25-fold error range.

Conclusion

The presented pregnancy physiologically based pharmacokinetic model can quantitatively predict the pharmacokinetics of drugs that are metabolized via one or multiple cytochrome P450 enzymes by integrating prior knowledge of the pregnancy-related effect on these enzymes. This pregnancy physiologically based pharmacokinetic model may thus be used to identify potential exposure changes in pregnant women a priori and to eventually support informed decision making when clinical trials are designed in this special population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dawes M, Chowienczyk PJ. Pharmacokinetics in pregnancy. Best Pract Res Clin Obstet Gynaecol. 2001;15(6):819–26.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson GD. Pregnancy-induced changes in pharmacokinetics. Clin Pharmacokinet. 2005;44(10):989–1008.

    Article  PubMed  CAS  Google Scholar 

  3. Isoherranen N, Thummel KE. Drug metabolism and transport during pregnancy: how does drug disposition change during pregnancy and what are the mechanisms that cause such changes? Drug Metab Dispos. 2013;41(2):256–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Hebert MF. Impact of pregnancy on maternal pharmacokinetics of medications. In: Mattison DR, editor. Clinical pharmacology during pregnancy. 1st ed. New York: Academic Press/Elsevier; 2013. p. 17–39.

    Chapter  Google Scholar 

  5. Costantine MM. Physiologic and pharmacokinetic changes in pregnancy. Front Pharmacol. 2014;5:65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Tasnif Y, Morado J, Hebert MF. Pregnancy-related pharmacokinetic changes. Clin Pharmacol Ther. 2016;100(1):53–62.

    Article  PubMed  CAS  Google Scholar 

  7. O’Hare M, Leahey W, Murnaghan G, McDevitt D. Pharmacokinetics of sotalol during pregnancy. Eur J Clin Pharmacol. 1983;24(4):521–4.

    Article  PubMed  Google Scholar 

  8. O’Hare M, Kinney C, Murnaghan G, McDevitt D. Pharmacokinetics of propranolol during pregnancy. Eur J Clin Pharmacol. 1984;27(5):583–7.

    Article  PubMed  Google Scholar 

  9. Philipson A, Stiernstedt G, Ehrnebo M. Comparison of the pharmacokinetics of cephradine and cefazolin in pregnant and non-pregnant women. Clin Pharmacokinet. 1987;12(2):136–44.

    Article  PubMed  CAS  Google Scholar 

  10. Heikkilä A, Erkkola R. Pharmacokinetics of piperacillin during pregnancy. J Antimicrob Chemother. 1991;28(3):419–23.

    Article  PubMed  Google Scholar 

  11. Eyal S, Easterling TR, Carr D, Umans JG, Miodovnik M, Hankins GD, et al. Pharmacokinetics of metformin during pregnancy. Drug Metab Dispos. 2010;38(5):833–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Frederiksen MC, Ruo TI, Chow MJ, Atkinson AJ. Theophylline pharmacokinetics in pregnancy. Clin Pharmacol Ther. 1986;40(3):321–8.

    Article  PubMed  CAS  Google Scholar 

  13. Brazier J, Ritter J, Berland M, Khenfer D, Faucon G. Pharmacokinetics of caffeine during and after pregnancy. Dev Pharmacol Ther. 1983;6(5):315–22.

    Article  PubMed  CAS  Google Scholar 

  14. Högstedt S, Lindberg B, Peng DR, Regårdh CG, Rane A. Pregnancy-induced increase in metoprolol metabolism. Clin Pharmacol Ther. 1985;37(6):688–92.

    Article  PubMed  Google Scholar 

  15. Rey E, d’Athis P, Giraux P, De Lauture D, Turquais J, Chavinie J, et al. Pharmacokinetics of clorazepate in pregnant and non-pregnant women. Eur J Clin Pharmacol. 1979;15(3):175–80.

    Article  PubMed  CAS  Google Scholar 

  16. Hebert M, Easterling T, Kirby B, Carr D, Buchanan M, Rutherford T, et al. Effects of pregnancy on CYP3A and P-glycoprotein activities as measured by disposition of midazolam and digoxin: a University of Washington Specialized Center of Research study. Clin Pharmacol Ther. 2008;84(2):248–53.

    Article  PubMed  CAS  Google Scholar 

  17. Hebert MF, Carr DB, Anderson GD, Blough D, Green GE, Brateng DA, et al. Pharmacokinetics and pharmacodynamics of atenolol during pregnancy and postpartum. J Clin Pharmacol. 2005;45(1):25–33.

    Article  PubMed  CAS  Google Scholar 

  18. Philipson A, Stiernstedt G. Pharmacokinetics of cefuroxime in pregnancy. Am J Obstet Gynecol. 1982;142(7):823–8.

    Article  PubMed  CAS  Google Scholar 

  19. Theil F-P, Guentert TW, Haddad S, Poulin P. Utility of physiologically based pharmacokinetic models to drug development and rational drug discovery candidate selection. Toxicol Lett. 2003;138(1):29–49.

    Article  PubMed  CAS  Google Scholar 

  20. Lüpfert C, Reichel A. Development and application of physiologically based pharmacokinetic-modeling tools to support drug discovery. Chem Biodivers. 2005;2(11):1462–86.

    Article  PubMed  Google Scholar 

  21. Jones HM, Gardner IB, Watson KJ. Modelling and PBPK simulation in drug discovery. AAPS J. 2009;11(1):155–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Dallmann A, Ince I, Solodenko J, Meyer M, Willmann S, Eissing T, et al. Physiologically based pharmacokinetic modeling of renally cleared drugs in pregnant women. Clin Pharmacokinet. 2017. doi:10.1007/s40262-017-0538-0 (epub ahead of print).

  23. Eissing T, Kuepfer L, Becker C, Block M, Coboeken K, Gaub T, et al. A computational systems biology software platform for multiscale modeling and simulation: integrating whole-body physiology, disease biology, and molecular reaction networks. Front Physiol. 2011;2(4):1–10.

    Google Scholar 

  24. Willmann S, Lippert J, Sevestre M, Solodenko J, Fois F, Schmitt W. PK-Sim®: a physiologically based pharmacokinetic ‘whole-body’ model. Biosilico. 2003;1(4):121–4.

    Article  CAS  Google Scholar 

  25. Willmann S, Höhn K, Edginton A, Sevestre M, Solodenko J, Weiss W, et al. Development of a physiology-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. J Pharmacokinet Pharmacodyn. 2007;34(3):401–31.

    Article  PubMed  Google Scholar 

  26. Dallmann A, Ince I, Meyer M, Willmann S, Eissing T, Hempel G. Gestation-specific changes in the anatomy and physiology of healthy pregnant women: an extended repository of model parameters for physiologically based pharmacokinetic modeling in pregnancy. Clin Pharmacokinet. 2017. doi:10.1007/s40262-017-0539-z (epub ahead of print).

  27. Meyer M, Schneckener S, Ludewig B, Kuepfer L, Lippert J. Using expression data for quantification of active processes in physiologically based pharmacokinetic modeling. Drug Metab Dispos. 2012;40(5):892–901.

    Article  PubMed  CAS  Google Scholar 

  28. Bologa M, Tang B, Klein J, Tesoro A, Koren G. Pregnancy-induced changes in drug metabolism in epileptic women. J Pharmacol Exp Ther. 1991;257(2):735–40.

    PubMed  CAS  Google Scholar 

  29. Tracy TS, Venkataramanan R, Glover DD, Caritis SN. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A activity) during pregnancy. Am J Obstet Gynecol. 2005;192(2):633–9.

    Article  PubMed  CAS  Google Scholar 

  30. Tsutsumi K, Kotegawa T, Matsuki S, Tanaka Y, Ishii Y, Kodama Y, et al. The effect of pregnancy on cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activities in humans. Clin Pharmacol Ther. 2001;70(2):121–5.

    Article  PubMed  CAS  Google Scholar 

  31. Messina E, Tyndale R, Sellers E. A major role for CYP2A6 in nicotine C-oxidation by human liver microsomes. J Pharmacol Exp Ther. 1997;282(3):1608–14.

    PubMed  CAS  Google Scholar 

  32. Kimura M, Yamazaki H, Fujieda M, Kiyotani K, Honda G, Saruwatari J, et al. CYP2A6 is a principal enzyme involved in hydroxylation of 1, 7-dimethylxanthine, a main caffeine metabolite, in humans. Drug Metab Dispos. 2005;33(9):1361–6.

    Article  PubMed  CAS  Google Scholar 

  33. Dempsey D, Jacob P, Benowitz NL. Accelerated metabolism of nicotine and cotinine in pregnant smokers. J Pharmacol Exp Ther. 2002;301(2):594–8.

    Article  PubMed  CAS  Google Scholar 

  34. Kulo A, Peeters MY, Allegaert K, Smits A, Hoon J, Verbesselt R, et al. Pharmacokinetics of paracetamol and its metabolites in women at delivery and post-partum. Br J Clin Pharmacol. 2013;75(3):850–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Manyike PT, Kharasch ED, Kalhorn TF, Slattery JT. Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther. 2000;67(3):275–82.

    Article  PubMed  CAS  Google Scholar 

  36. Nylén H, Sergel S, Forsberg L, Lindemalm S, Bertilsson L, Wide K, et al. Cytochrome P450 3A activity in mothers and their neonates as determined by plasma 4β-hydroxycholesterol. Eur J Clin Pharmacol. 2011;67(7):715–22.

    Article  PubMed  CAS  Google Scholar 

  37. Ke A, Nallani S, Zhao P, Rostami-Hodjegan A, Unadkat JD. A PBPK model to predict disposition of CYP3A-metabolized drugs in pregnant women: verification and discerning the site of CYP3A induction. CPT Pharmacometrics Syst Pharmacol. 2012;1(9):1–10.

    Article  CAS  Google Scholar 

  38. De Sousa Mendes M, Lui G, Zheng Y, Pressiat C, Hirt D, Valade E, et al. A physiologically-based pharmacokinetic model to predict human fetal exposure for a drug metabolized by several CYP450 pathways. Clin Pharmacokinet. 2017;56(5):537–50.

    Article  CAS  Google Scholar 

  39. Ke AB, Nallani SC, Zhao P, Rostami-Hodjegan A, Unadkat JD. Expansion of a PBPK model to predict disposition in pregnant women of drugs cleared via multiple CYP enzymes, including CYP2B6, CYP2C9 and CYP2C19. Br J Clin Pharmacol. 2014;77(3):554–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ke AB, Nallani SC, Zhao P, Rostami-Hodjegan A, Isoherranen N, Unadkat JD. A physiologically based pharmacokinetic model to predict disposition of CYP2D6 and CYP1A2 metabolized drugs in pregnant women. Drug Metab Dispos. 2013;41(4):801–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Farooq M, Kelly EJ, Unadkat JD. CYP2D6 is inducible by endogenous and exogenous corticosteroids. Drug Metab Dispos. 2016;44(5):750–7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fuhr U, Rost KL, Engelhardt R, Sachs M, Liermann D, Belloc C, et al. Evaluation of caffeine as a test drug for CYP1A2, NAT2 and CYP2E1 phenotyping in man by in vivo versus in vitro correlations. Pharmacogenet Genom. 1996;6(2):159–76.

    Article  CAS  Google Scholar 

  43. Blanchard J, Sawers SJ. Comparative pharmacokinetics of caffeine in young and elderly men. J Pharmacokinet Biopharm. 1983;11(2):109–26.

    Article  PubMed  CAS  Google Scholar 

  44. Kaplan GB, Greenblatt DJ, Ehrenberg BL, Goddard JE, Cotreau MM, Harmatz JS, et al. Dose-dependent pharmacokinetics and psychomotor effects of caffeine in humans. J Clin Pharmacol. 1997;37(8):693–703.

    Article  PubMed  CAS  Google Scholar 

  45. Thelen K, Coboeken K, Willmann S, Burghaus R, Dressman JB, Lippert J. Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, part 1: oral solutions. J Pharm Sci. 2011;100(12):5324–45.

    Article  PubMed  CAS  Google Scholar 

  46. Heizmann P, Ziegler W. Excretion and metabolism of 14C-midazolam in humans following oral dosing. Arzneimittelforschung. 1980;31(12a):2220–3.

    Google Scholar 

  47. Patki KC, von Moltke LL, Greenblatt DJ. In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of cyp3a4 and cyp3a5. Drug Metab Dispos. 2003;31(7):938–44.

    Article  PubMed  CAS  Google Scholar 

  48. Moj D, Hanke N, Britz H, Frechen S, Kanacher T, Wendl T, et al. Clarithromycin, midazolam, and digoxin: application of PBPK modeling to gain new insights into drug–drug interactions and co-medication regimens. AAPS J. 2017;19(1):298–312.

    Article  PubMed  CAS  Google Scholar 

  49. Bode H, Brendel E, Ahr G, Fuhr U, Harder S, Staib A. Investigation of nifedipine absorption in different regions of the human gastrointestinal (GI) tract after simultaneous administration of 13C-and 12C-nifedipine. Eur J Clin Pharmacol. 1996;50(3):195–201.

    Article  PubMed  CAS  Google Scholar 

  50. Rashid T, Martin U, Clarke H, Waller D, Renwick A, George C. Factors affecting the absolute bioavailability of nifedipine. Br J Clin Pharmacol. 1995;40(1):51–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Soons P, Schoemaker H, Cohen A, Breimer D. Intraindividual variability in nifedipine pharmacokinetics and effects in healthy subjects. J Clin Pharmacol. 1992;32(4):324–31.

    Article  PubMed  CAS  Google Scholar 

  52. Reitberg DP, Love SJ, Quercia GT, Zinny MA. Effect of food on nifedipine pharmacokinetics. Clin Pharmacol Ther. 1987;42(1):72–5.

    Article  PubMed  CAS  Google Scholar 

  53. Renwick A, Vie J, Challenor V, Waller D, Gruchy B, George C. Factors affecting the pharmacokinetics of nifedipine. Eur J Clin Pharmacol. 1987;32(4):351–5.

    Article  PubMed  CAS  Google Scholar 

  54. Ahsan C, Renwick A, Macklin B, Challenor V, Waller D, George C. Ethnic differences in the pharmacokinetics of oral nifedipine. Br J Clin Pharmacol. 1991;31(4):399–403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Harris RZ, Inglis AML, Miller AK, Thompson KA, Finnerty D, Patterson S, et al. Rosiglitazone has no clinically significant effect on nifedipine pharmacokinetics. J Clin Pharmacol. 1999;39(11):1189–94.

    PubMed  CAS  Google Scholar 

  56. Smith S, Kendall M, Lobo J, Beerahee A, Jack D, Wilkins M. Ranitidine and cimetidine; drug interactions with single dose and steady-state nifedipine administration. Br J Clin Pharmacol. 1987;23(3):311–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Quinney S, Mohamed A, Hebert MF, Haas D, Clark S, Umans J, et al. A semi-mechanistic metabolism model of CYP3A substrates in pregnancy: predicting changes in midazolam and nifedipine pharmacokinetics. CPT Pharmacomet Syst Pharmacol. 2012;1(9):1–9.

    Article  CAS  Google Scholar 

  58. Regårdh CG, Borg KO, Johansson R, Johnsson G, Palmer L. Pharmacokinetic studies on the selective β1-receptor antagonist metoprolol in man. J Pharmacokinet Biopharm. 1974;2(4):347–64.

    Article  PubMed  Google Scholar 

  59. Otton S, Crewe H, Lennard M, Tucker G, Woods H. Use of quinidine inhibition to define the role of the sparteine/debrisoquine cytochrome P450 in metoprolol oxidation by human liver microsomes. J Pharmacol Exp Ther. 1988;247(1):242–7.

    PubMed  CAS  Google Scholar 

  60. Simpson KH, Hicks FM. Clinical pharmacokinetics of ondansetron: a review. J Pharm Pharmacol. 1996;48(8):774–81.

    Article  PubMed  CAS  Google Scholar 

  61. Elkomy MH, Sultan P, Carvalho B, Peltz G, Wu M, Clavijo C, et al. Ondansetron pharmacokinetics in pregnant women and neonates: towards a new treatment for neonatal abstinence syndrome. Clin Pharmacol Ther. 2015;97(2):167–76.

    Article  PubMed  CAS  Google Scholar 

  62. Dixon C, Colthup P, Serabjit-Singh C, Kerr B, Boehlert C, Park G, et al. Multiple forms of cytochrome P450 are involved in the metabolism of ondansetron in humans. Drug Metab Dispos. 1995;23(11):1225–30.

    PubMed  CAS  Google Scholar 

  63. Clarke S, Austin N, Bloomer J, Haddock R, Higham F, Hollis F, et al. Metabolism and disposition of 14C-granisetron in rat, dog and man after intravenous and oral dosing. Xenobiotica. 1994;24(11):1119–31.

    Article  PubMed  CAS  Google Scholar 

  64. Nakamura H, Ariyoshi N, Okada K, Nakasa H, Nakazawa K, Kitada M. CYP1A1 is a major enzyme responsible for the metabolism of granisetron in human liver microsomes. Curr Drug Metab. 2005;6(5):469–80.

    Article  PubMed  CAS  Google Scholar 

  65. Carmichael J, Cantwell B, Edwards C, Zussman B, Thompson S, Rapeport W, et al. A pharmacokinetic study of granisetron (BRL 43694A), a selective 5-HT3 receptor antagonist: correlation with anti-emetic response. Cancer Chemother Pharmacol. 1989;24(1):45–9.

    Article  PubMed  CAS  Google Scholar 

  66. Bustos ML, Zhao Y, Chen H, Caritis SN, Venkataramanan R. Polymorphisms in CYP1A1 and CYP3A5 genes contribute to the variability in granisetron clearance and exposure in pregnant women with nausea and vomiting. Pharmacotherapy. 2016;36(12):1238–44.

    Article  PubMed  CAS  Google Scholar 

  67. Klotz U, Avant G, Hoyumpa A, Schenker S, Wilkinson G. The effects of age and liver disease on the disposition and elimination of diazepam in adult man. J Clin Invest. 1975;55(2):347–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Klotz U, Antonin K, Bieck P. Comparison of the pharmacokinetics of diazepam after single and subchronic doses. Eur J Clin Pharmacol. 1976;10(2):121–6.

    Article  PubMed  CAS  Google Scholar 

  69. Jack M, Colburn W. Pharmacokinetic model for diazepam and its major metabolite desmethyldiazepam following diazepam administration. J Pharm Sci. 1983;72(11):1318–23.

    Article  PubMed  CAS  Google Scholar 

  70. Greenblatt DJ, Divoll MK, Soong MH, Boxenbaum HG, Harmatz JS, Shader RI. Desmethyldiazepam pharmacokinetics: studies following intravenous and oral desmethyldiazepam, oral clorazepate, and intravenous diazepam. J Clin Pharmacol. 1988;28(9):853–9.

    Article  PubMed  CAS  Google Scholar 

  71. Bertilsson L, Henthorn TK, Sanz E, Tybring G, Säwe J, Villén T. Importance of genetic factors in the regulation of diazepam metabolism: relationship to S-mephenytoin, but not debrisoquin, hydroxylation phenotype. Clin Pharmacol Ther. 1989;45(4):348–55.

    Article  PubMed  CAS  Google Scholar 

  72. Andersson T, Miners J, Veronese M, Birkett D. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol. 1994;38(2):131–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Ono S, Hatanaka T, Miyazawa S, Tsutsui M, Aoyama T, Gonzalez F, et al. Human liver microsomal diazepam metabolism using cDNA-expressed cytochrome P450s: role of CYP2B6, 2C19 and the 3A subfamily. Xenobiotica. 1996;26(11):1155–66.

    Article  PubMed  CAS  Google Scholar 

  74. Magnussen I, Oxlund H, Alsbirk K, Arnold E. Absorption of diazepam in man following rectal and parenteral administration. Acta Pharmacol Toxicol. 1979;45(2):87–90.

    Article  CAS  Google Scholar 

  75. Greenblatt DJ, Ehrenberg BL, Gunderman J, Locniskar A, Scavone JM, Harmatz JS, et al. Pharmacokinetic and electroencephalographic study of intravenous diazepam, midazolam, and placebo. Clin Pharmacol Ther. 1989;45(4):356–65.

    Article  PubMed  CAS  Google Scholar 

  76. Ridd MJ, Brown KF, Nation RL, Collier CB. The disposition and placental transfer of diazepam in cesarean section. Clin Pharmacol Ther. 1989;45(5):506–12.

    Article  PubMed  CAS  Google Scholar 

  77. Mandelli M, Morselli P, Nordio S, Pardi G, Principi N, Sereni F, et al. Placental transfer of diazepam and its disposition in the newborn. Clin Pharmacol Ther. 1975;17(5):564–72.

    Article  PubMed  CAS  Google Scholar 

  78. Moore R, McBride W. The disposition kinetics of diazepam in pregnant women at parturition. Eur J Clin Pharmacol. 1978;13(4):275–84.

    Article  PubMed  CAS  Google Scholar 

  79. Loft S. Metronidazole and antipyrine as probes for the study of foreign compound metabolism. Pharmacol Toxicol. 1990;66(s6):1–31.

    Article  PubMed  CAS  Google Scholar 

  80. Houghton G, Thorne P, Smith J, Templeton R, Collier J. Comparison of the pharmacokinetics of metronidazole in healthy female volunteers following either a single oral or intravenous dose. Br J Clin Pharmacol. 1979;8(4):337–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Pearce RE, Cohen-Wolkowiez M, Sampson MR, Kearns GL. The role of human cytochrome P450 enzymes in the formation of 2-hydroxymetronidazole: CYP2A6 is the high affinity (low Km) catalyst. Drug Metab Dispos. 2013;41(9):1686–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Visser A, Hundt H. The pharmacokinetics of a single intravenous dose of metronidazole in pregnant patients. J Antimicrob Chemother. 1984;13(3):279–83.

    Article  PubMed  CAS  Google Scholar 

  83. Quattrochi L, Vu T, Tukey R. The human CYP1A2 gene and induction by 3-methylcholanthrene: a region of DNA that supports AH-receptor binding and promoter-specific induction. J Biol Chem. 1994;269(9):6949–54.

    PubMed  CAS  Google Scholar 

  84. Daujat M, Charrasse S, Fabre I, Lesca P, Jounaidi Y, Larroque C, et al. Induction of CYP1A1 gene by benzimidazole derivatives during Caco-2 cell differentiation. FEBS J. 1996;237(3):642–52.

    CAS  Google Scholar 

  85. Ricci MS, Toscano DG, Mattingly CJ, Toscano WA. Estrogen receptor reduces CYP1A1 induction in cultured human endometrial cells. J Biol Chem. 1999;274(6):3430–8.

    Article  PubMed  CAS  Google Scholar 

  86. Lai K, Wong M, Wong CK. Modulation of Ahr-mediated CYP1A1 mRNA and EROD activities by 17β-estradiol and dexamethasone in TCDD-induced H411E cells. Toxicol Sci. 2004;78(1):41–9.

    Article  PubMed  CAS  Google Scholar 

  87. Williams JM, Gandhi KK, Benowitz NL. Carbamazepine but not valproate induces CYP2A6 activity in smokers with mental illness. Cancer Epidemiol Biomark Prev. 2010;19(10):2582–9.

    Article  CAS  Google Scholar 

  88. Al Koudsi N, Hoffmann EB, Assadzadeh A, Tyndale RF. Hepatic CYP2A6 levels and nicotine metabolism: impact of genetic, physiological, environmental, and epigenetic factors. Eur J Clin Pharmacol. 2010;66(3):239–51.

    Article  PubMed  CAS  Google Scholar 

  89. Poland RE, Pechnick RN, Cloak CC, Wan Y-JY, Nuccio I, Lin K-M. Effect of cigarette smoking on coumarin metabolism in humans. Nicotine Tob Res. 2000;2(4):351–4.

    Article  PubMed  CAS  Google Scholar 

  90. Iscan M, Rostami H, Güray T, Pelkonen O, Rautio A. Interindividual variability of coumarin 7-hydroxylation in a Turkish population. Eur J Clin Pharmacol. 1994;47(4):315–8.

    Article  PubMed  CAS  Google Scholar 

  91. Hendricks CH, Quilligan EJ. Cardiac output during labor. Am J Obstet Gynecol. 1956;71(5):953–72.

    Article  PubMed  CAS  Google Scholar 

  92. Robson S, Dunlop W, Boys R, Hunter S. Cardiac output during labour. Br Med J (Clin Res Ed). 1987;295(6607):1169–72.

    Article  CAS  Google Scholar 

  93. Klotz U, Antonin K, Bieck P. Pharmacokinetics and plasma binding of diazepam in man, dog, rabbit, guinea pig and rat. J Pharmacol Exp Ther. 1976;199(1):67–73.

    PubMed  CAS  Google Scholar 

  94. Xia B, Heimbach T, Gollen R, Nanavati C, He H. A simplified PBPK modeling approach for prediction of pharmacokinetics of four primarily renally excreted and CYP3A metabolized compounds during pregnancy. AAPS J. 2013;15(4):1012–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Philipson A. Pharmacokinetics of ampicillin during pregnancy. J Infect Dis. 1977;136(3):370–6.

    Article  PubMed  CAS  Google Scholar 

  96. Sandhar B, Elliott R, Windram I, Rowbotham D. Peripartum changes in gastric emptying. Anaesthesia. 1992;47(3):196–8.

    Article  PubMed  CAS  Google Scholar 

  97. Chiloiro M, Darconza G, Piccioli E, De Carne M, Clemente C, Riezzo G. Gastric emptying and orocecal transit time in pregnancy. J Gastroenterol. 2001;36(8):538–43.

    Article  PubMed  CAS  Google Scholar 

  98. Wong CA, Loffredi M, Ganchiff JN, Zhao J, Wang Z, Avram MJ. Gastric emptying of water in term pregnancy. J Am Soc Anesthesiol. 2002;96(6):1395–400.

    Article  Google Scholar 

  99. Wald A, Van Thiel DH, Hoechstetter L, Gavaler JS, Egler KM, Verm R, et al. Effect of pregnancy on gastrointestinal transit. Digest Dis Sci. 1982;27(11):1015–8.

    Article  PubMed  CAS  Google Scholar 

  100. Cripps A, Williams V. The effect of pregnancy and lactation on food intake, gastrointestinal anatomy and the absorptive capacity of the small intestine in the albino rat. Br J Nutr. 1975;33(01):17–32.

    Article  PubMed  CAS  Google Scholar 

  101. Sarvestani FS, Rahmanifar F, Tamadon A. Histomorphometric changes of small intestine in pregnant rat. Vet Res Forum. 2015;6(1):69–73.

    Google Scholar 

  102. Villikka K, Kivistö KT, Neuvonen PJ. The effect of rifampin on the pharmacokinetics of oral and intravenous ondansetron. Clin Pharmacol Ther. 1999;65(4):377–81.

    Article  PubMed  CAS  Google Scholar 

  103. Ashforth E, Palmer J, Bye A, Bedding A. The pharmacokinetics of ondansetron after intravenous injection in healthy volunteers phenotyped as poor or extensive metabolisers of debrisoquine. Br J Clin Pharmacol. 1994;37(4):389–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Drugbank.ca. http://www.drugbank.ca/. Accessed 2 Mar 2016.

  105. Newton DW, Kluza RB. pKa values of medicinal compounds in pharmacy practice. Ann Pharmacother. 1978;12(9):546–54.

    CAS  Google Scholar 

  106. Otto J, Lesko L. Protein binding of nifedipine. J Pharm Pharmacol. 1986;38(5):399–400.

    Article  PubMed  CAS  Google Scholar 

  107. Yamazaki K, Kanaoka M. Computational prediction of the plasma protein-binding percent of diverse pharmaceutical compounds. J Pharm Sci. 2004;93(6):1480–94.

    Article  PubMed  CAS  Google Scholar 

  108. Obach RS, Lombardo F, Waters NJ. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Dispos. 2008;36(7):1385–405.

    Article  PubMed  CAS  Google Scholar 

  109. Belpaire F, Bogaert M, Rosseneu M. Binding of β-adrenoceptor blocking drugs to human serum albumin, to α1-acid glycoprotein and to human serum. Eur J Clin Pharmacol. 1982;22(3):253–6.

    Article  PubMed  CAS  Google Scholar 

  110. Clarysse S, Psachoulias D, Brouwers J, Tack J, Annaert P, Duchateau G, et al. Postprandial changes in solubilizing capacity of human intestinal fluids for BCS class II drugs. Pharm Res. 2009;26(6):1456–66.

    Article  PubMed  CAS  Google Scholar 

  111. PK-Sim user manual and software, 6.3. Leverkusen, Germany: Bayer Technology Services GmbH. 2016.

  112. Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76.

    Article  PubMed  CAS  Google Scholar 

  113. Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57.

    Article  PubMed  CAS  Google Scholar 

  114. Galetin A, Houston JB. Intestinal and hepatic metabolic activity of five cytochrome P450 enzymes: impact on prediction of first-pass metabolism. J Pharm Exp Ther. 2006;318(3):1220–9.

    Article  CAS  Google Scholar 

  115. Madani S, Paine MF, Lewis L, Thummel KE, Shen DD. Comparison of CYP2D6 content and metoprolol oxidation between microsomes isolated from human livers and small intestines. Pharm Res. 1999;16(8):1199–205.

    Article  PubMed  CAS  Google Scholar 

  116. Claassen K, Thelen K, Coboeken K, Gaub T, Lippert J, Allegaert K, et al. Development of a physiologically-based pharmacokinetic model for preterm neonates: evaluation with in vivo data. Curr Pharm Des. 2015;21(39):5688–98.

    Article  PubMed  CAS  Google Scholar 

  117. Caron G, Ermondi G, Damiano A, Novaroli L, Tsinman O, Ruell JA, et al. Ionization, lipophilicity, and molecular modeling to investigate permeability and other biological properties of amlodipine. Bioorg Med Chem. 2004;12(23):6107–18.

    Article  PubMed  CAS  Google Scholar 

  118. Mannhold R, Rodenkirchen R, Bayer R, Haas W. The importance of drug ionization for the action of calcium-antagonists and related compounds. Arzneimittelforschung. 1983;34(4):407–9.

    Google Scholar 

  119. Somers G, Harris A, Bayliss M, Houston J. The metabolism of the 5HT3 antagonists ondansetron, alosetron and GR87442 I: a comparison of in vitro and in vivo metabolism and in vitro enzyme kinetics in rat, dog and human hepatocytes, microsomes and recombinant human enzymes. Xenobiotica. 2007;37(8):832–54.

    Article  PubMed  CAS  Google Scholar 

  120. Zhang F, Xue J, Shao J, Jia L. Compilation of 222 drugs’ plasma protein binding data and guidance for study designs. Drug Discov Today. 2012;17(9):475–85.

    Article  PubMed  CAS  Google Scholar 

  121. Perucca E, Ruprah M, Richens A. Altered drug binding to serum proteins in pregnant women: therapeutic relevance. J R Soc Med. 1981;74(6):422–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Poulin P, Schoenlein K, Theil FP. Prediction of adipose tissue: plasma partition coefficients for structurally unrelated drugs. J Pharm Sci. 2001;90(4):436–47.

    Article  PubMed  CAS  Google Scholar 

  123. Poulin P, Theil FP. A priori prediction of tissue: plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J Pharm Sci. 2000;89(1):16–35.

    Article  PubMed  CAS  Google Scholar 

  124. Alelyunas YW, Empfield JR, McCarthy D, Spreen RC, Bui K, Pelosi-Kilby L, et al. Experimental solubility profiling of marketed CNS drugs, exploring solubility limit of CNS discovery candidate. Bioorg Med Chem Lett. 2010;20(24):7312–6.

    Article  PubMed  CAS  Google Scholar 

  125. Crifasi JA, Bruder MF, Long CW, Janssen K. Performance evaluation of thermal desorption system (TDS) for detection of basic drugs in forensic samples by GC-MS. J Anal Toxicol. 2006;30(8):581–92.

    Article  PubMed  CAS  Google Scholar 

  126. Machatha SG, Yalkowsky SH. Comparison of the octanol/water partition coefficients calculated by ClogP®, ACDlogP and KowWin® to experimentally determined values. Int J Pharm. 2005;294(1–2):185–92.

    Article  PubMed  CAS  Google Scholar 

  127. Shalaeva M, Kenseth J, Lombardo F, Bastin A. Measurement of dissociation constants (pKa values) of organic compounds by multiplexed capillary electrophoresis using aqueous and cosolvent buffers. J Pharm Sci. 2008;97(7):2581–606.

    Article  PubMed  CAS  Google Scholar 

  128. Wiedersberg S, Guy RH. Transdermal drug delivery: 30+ years of war and still fighting! J Control Release. 2014;190:150–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This publication and the work involved were funded by Bayer AG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Dallmann.

Ethics declarations

Funding

No funding was received in the preparation of this manuscript.

Conflict of interest

André Dallmann is a PhD student at the University of Münster and is employed on a grant from Bayer AG. Ibrahim Ince, Katrin Coboeken, and Thomas Eissing were employed by Bayer AG during preparation of this article and are potential stock holders of Bayer AG. Georg Hempel has receives a research grant from Bayer AG since 2008.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 524 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dallmann, A., Ince, I., Coboeken, K. et al. A Physiologically Based Pharmacokinetic Model for Pregnant Women to Predict the Pharmacokinetics of Drugs Metabolized Via Several Enzymatic Pathways. Clin Pharmacokinet 57, 749–768 (2018). https://doi.org/10.1007/s40262-017-0594-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-017-0594-5

Navigation