Skip to main content
Erschienen in: Drug Safety 4/2014

Open Access 01.04.2014 | Review Article

Pharmacokinetic Drug Interaction Profiles of Proton Pump Inhibitors: An Update

verfasst von: Ralph-Steven Wedemeyer, Henning Blume

Erschienen in: Drug Safety | Ausgabe 4/2014

Abstract

Proton pump inhibitors (PPIs) are used extensively for the treatment of gastric acid-related disorders, often over the long term, which raises the potential for clinically significant drug interactions in patients receiving concomitant medications. These drug–drug interactions have been previously reviewed. However, the current knowledge is likely to have advanced, so a thorough review of the literature published since 2006 was conducted. This identified new studies of drug interactions that are modulated by gastric pH. These studies showed the effect of a PPI-induced increase in intragastric pH on mycophenolate mofetil pharmacokinetics, which were characterised by a decrease in the maximum exposure and availability of mycophenolic acid, at least at early time points. Post-2006 data were also available outlining the altered pharmacokinetics of protease inhibitors with concomitant PPI exposure. New data for the more recently marketed dexlansoprazole suggest it has no impact on the pharmacokinetics of diazepam, phenytoin, theophylline and warfarin. The CYP2C19-mediated interaction that seems to exist between clopidogrel and omeprazole or esomeprazole has been shown to be clinically important in research published since the 2006 review; this effect is not seen as a class effect of PPIs. Finally, data suggest that coadministration of PPIs with methotrexate may affect methotrexate pharmacokinetics, although the mechanism of interaction is not well understood. As was shown in the previous review, individual PPIs differ in their propensities to interact with other drugs and the extent to which their interaction profiles have been defined. The interaction profiles of omeprazole and pantoprazole sodium (pantoprazole-Na) have been studied most extensively. Several studies have shown that omeprazole carries a considerable potential for drug interactions because of its high affinity for CYP2C19 and moderate affinity for CYP3A4. In contrast, pantoprazole-Na appears to have lower potential for interactions with other medications. Lansoprazole and rabeprazole also seem to have a weaker potential for interactions than omeprazole, although their interaction profiles, along with those of esomeprazole and dexlansoprazole, have been less extensively investigated. Only a few drug interactions involving PPIs are of clinical significance. Nonetheless, the potential for drug interactions should be considered when choosing a PPI to manage gastric acid-related disorders. This is particularly relevant for elderly patients taking multiple medications, or for those receiving a concomitant medication with a narrow therapeutic index.

1 Introduction

Proton pump inhibitors (PPIs) achieve a greater degree and longer duration of gastric acid suppression, and better healing rates in various gastric acid-related disorders, than histamine H2 receptor antagonists [13]. They are thus considered essential in the management of gastro-oesophageal reflux disease, peptic ulcer disease (PUD) and Zollinger–Ellison syndrome. PPIs are also a key part of triple therapy (with two antibiotics, such as clarithromycin, amoxicillin or metronidazole) for the eradication of H. pylori in PUD [4], and may be used in the prophylaxis of stress- and NSAID-induced PUD [5, 6]. Many of these disorders generally require long-term treatment, which increases the potential for clinically significant drug interactions in patients (such as hospitalised patients and community-dwelling older people [7, 8]) receiving PPIs and other medications [9].
A previous review published in 2006 highlighted the similarities and differences among the PPIs in terms of the likelihood, relevance and mechanisms of drug–drug interactions [10]. In the review, the authors discussed how, by elevating pH, PPIs can modify the intragastric release of other drugs from their dosage forms, and also how PPIs influence drug absorption and metabolism by interacting with adenosine triphosphate-dependent P-glycoprotein or with the cytochrome P450 (CYP) enzyme system [10]. At the time of the review, the interaction profiles of omeprazole and pantoprazole sodium (pantoprazole-Na) had been studied most extensively. The authors concluded that omeprazole carried a considerable potential for drug interactions because of its high affinity for CYP2C19 and moderate affinity for CYP3A4, whereas pantoprazole-Na appeared to have a lower potential for interactions than omeprazole based on extensive evidence. Lansoprazole and rabeprazole also seemed to have a weaker potential for interactions than omeprazole, but this was based on limited evidence only. Much of the review remains relevant today; however, several PPI drug interaction papers have been published since 2006. Thus, here we present an update of the 2006 review, which, when read in conjunction with the original article, provides a comprehensive overview of drug interactions associated with the use of PPIs [10].
This review is based on literature published from 1 January 2007 to 31 December 2012 identified by searching (i) MEDLINE using Medical Subject Heading (MESH) terms for ‘drug-interactions’ and ‘proton pump inhibitors’; and (ii) EMBASE using (Omeprazole/drug interaction) OR (Esomeprazole/drug interaction) OR (Lansoprazole/drug interaction) OR (Pantoprazole/drug interaction) OR (Rabeprazole/drug interaction) OR (Proton-Pump-Inhibitor/drug interaction). Searches were limited to English language and excluded comments, editorials, letters, notes or conference papers or reviews. PUBMED and EMBASE results were combined and duplicates removed; the remaining results were divided into articles investigating PPI interactions with clopidogrel (where this term was used in the title, abstract or as CAS number for MEDLNE or as descriptor for EMBASE) and other drug interaction articles. Additional articles were also obtained from manual searches of the reference lists of relevant reviews and papers. In total, 132 articles for interactions with clopidogrel and 174 articles for interactions with other drugs were obtained. The two authors independently selected additional articles for inclusion based on appropriate study design for drug-interaction studies, and any discrepancies were discussed and agreed. Forty new references were identified and used in this updated review.

2 Mechanisms Involved in Proton Pump Inhibitor Drug Interactions

2.1 Modulation of Gastric pH

Group-specific interactions between PPIs and other drugs may result from a PPI-induced increase in gastric pH, which can decrease the soluble amount of other drug substances, alter drug release from products with pH-dependent dissolution properties, or indirectly impact bioavailability by changing the kinetics of pro-drugs. Examples of drug pharmacokinetics that are affected by gastric pH have been discussed extensively in the 2006 review [10]. These include the reduced bioavailability of oral ketoconazole when co-administered with omeprazole 60 mg [11], and the reduced mean area under the concentration-time curve at 24 hours (AUC24) and peak plasma concentration (C max) of oral itraconazole 200-mg capsules administered with concomitant omeprazole 40 mg [12].
Of importance since the publication of the 2006 review, new data are available for the interaction of PPIs and mycophenolate mofetil. Administration of PPIs increases intragastric pH, which slows down the hydrolysis of mycophenolate mofetil resulting in decreased maximum exposure and availability of mycophenolic acid, at least at early time points. Compared with mycophenolate mofetil alone, coadministration of mycophenolate mofetil with pantoprazole-Na resulted in persistently lower plasma concentrations of mycophenolic acid in heart transplant recipients [13] and a significant decrease in total and maximum exposure in patients with autoimmune disease. This correlated with a 42 % increase (p < 0.01) in the area of inosine monophosphate dehydrogenase activity [14]. However, coadministration of pantoprazole-Na and enteric-coated mycophenolate sodium did not result in any significant changes in pharmacokinetic parameters in heart or lung transplant recipients [15]. These findings from steady-state studies confirmed results from an earlier study in healthy individuals [16]. Being in steady state for pantoprazole-Na (40 mg/day) significantly lowered total and maximum exposure of mycophenolic acid after administration of mycophenolate mofetil, but had no relevant effect after administration of enteric-coated mycophenolate sodium. Other pharmacokinetic parameters were not affected [16], suggesting that interaction on the enzymatic level is unlikely.
Other interactions not discussed in the previous review include changes in the contact of the PPIs themselves to the gastric environment, which will change the exposure to the PPI. This predominantly results from the instability of PPIs at low pH and makes administration of PPIs by means of gastro-resistant formulations a necessity. Consistent with this, concomitant intake of the prokinetic mosapride led to increases of about 50 % in total and maximum exposure after administration of rabeprazole, which was explained by the increased transport time to the intestine [17]. These results substantiated earlier results for the combination of omeprazole and mosapride [18] and suggested that such an interaction would also benefit all other PPIs. However, this explanation does not address the fact that administration as a gastro-resistant formulation means no contact of PPI and gastric acid, suggesting that an undiscovered pharmacokinetic interaction with mosapride is also possible.
A group effect with clear clinical implications is assumed for several protease inhibitors that can have significantly altered bioavailability if coadministered with PPIs. For example, total and maximum exposure to single-dose atazanavir 400 mg was reduced by more than 90 % when administered with lansoprazole 60 mg [19]. The loss in solubility for atazanavir at increased pH values is considered responsible for this effect, as a CYP-mediated interaction is unlikely for this drug combination. For other combinations, the situation may be more complex. Exposure to nelfinavir, which is comparably pH-dependently soluble, was reduced at steady state after nelfinavir 1,250 mg twice daily for 4 days by about 35 % if coadministered with omeprazole 40 mg once daily for 4 days, but terminal elimination and clearance remained unaltered [20]. Nevertheless, nelfinavir is metabolised by CYP 2C19, whose inhibition by omeprazole probably counteracts the loss in exposure caused by solubility effects. This would also explain the decrease in the metabolic ratio of the main metabolite and nelfinavir.
In contrast, total and maximum exposure to single-dose raltegravir 400 mg are increased by a factor of 3 and 4, respectively, if administered with omeprazole 20 mg once daily for 4 days [21]. Enzyme-based interactions are unlikely given the metabolic pathway of raltegravir; however, raltegravir has greatly increased solubility at increased pH and is a substrate to P-glycoprotein, which is at least modestly inhibited by omeprazole, both effects probably being synergistic. As shown here, in addition to possible group effects of PPIs, individual interactions of each compound remain possible and should be considered.
The situation for protease inhibitors becomes even more complex with the common concomitant use of the booster ritonavir. Ritonavir itself has better solubility at a lower pH, boosts other protease inhibitors by inhibiting CYP3A4, is metabolised by CYP3A4 (similar to PPIs) and is a substrate and inhibitor of P-glycoprotein [2224].
Total and maximum exposure of the non-ionizable lopinavir and ritonavir at steady state were both increased by about 25 % when administered with omeprazole, without obvious changes in the elimination [22]. These findings were explained by an increase in exposure to ritonavir resulting from inhibition of P-glycoprotein by omeprazole and a subsequent stronger inhibitory effect on CYP3A4 by ritonavir. Separation of protease inhibitor and omeprazole administration by 2 hours in another study largely prevented this effect; the increase in total and maximum exposure to ritonavir after dose separation was lowered from 14 to 3 % and from 16 to 8 %, respectively [23]. In contrast, exposure to concomitantly administered saquinavir remained increased by 50–70 % and, thus, was obviously not triggered by the change for ritonavir (i.e., another more systemic effect should account for this effect). Consistent with this, in another study, the increase in exposure to ritonavir was negligible, but exposure to saquinavir was increased by about 80 %, with a concomitant increase of omeprazole dose [24].
The combined effect of several factors was demonstrated in a study with a single dose of indinavir 800 mg, in which exposure to indinavir was decreased by 35 and 45 % with constant treatment with omeprazole 20 and 40 mg but was increased by 55 % when a single dose of ritonavir 200 mg was added to high-dose omeprazole [25].

2.2 Interactions with the Adenosine Triphosphate-Dependent Efflux Transporter P-Glycoprotein

Since the publication of the previous review [10], there have been no new studies involving PPIs and the P-glycoprotein transporter system. In the previous review, omeprazole, lansoprazole and pantoprazole-Na, which are substrates for the P-glycoprotein transporter system, were all reported to inhibit P-glycoprotein-mediated efflux of digoxin in an in vitro Caco-2 cell model [26]. Data were not available in this study for esomeprazole and rabeprazole.

2.3 The Cytochrome P450 Enzyme System

Discussion of interactions with intestinal and liver CYPs was extensive in the 2006 review [10] and is not reiterated here, except to remind readers that PPIs are predominantly metabolised in the liver by CYP2C19 and CYP3A4 [27].
Of significance since the previous review, there have been extensive discussions in recent reviews and meta-analyses on the drug interactions between certain PPIs and clopidogrel [2834]. These interactions appear to be mediated by CYP2C19 and are of utmost clinical relevance. Although recent retrospective studies have suggested an attenuation of the beneficial effects of clopidogrel when administered concomitantly with PPIs in general, stratification of the analysis has indicated that such effects are not present in patients receiving pantoprazole-Na compared with those receiving omeprazole [35, 36]. Several studies demonstrated that being in steady state for omeprazole significantly increased total exposure to clopidogrel and decreased exposure to the active metabolite [37]. These effects continued to persist even after separating administrations of the drugs by 12 hours, or after administration of doubled doses of clopidogrel. However, differences became clearly smaller after substitution of omeprazole by pantoprazole-Na [37].
This is consistent with the finding that clopidogrel must be activated by CYP2C19, an enzyme inhibited by omeprazole but not pantoprazole-Na [38]. It is further confirmed by data showing that exposure to the active metabolite after administration of clopidogrel was significantly decreased, and inhibition of platelet function diminished, under coadministration of omeprazole or esomeprazole [39]. The relevance of CYP2C19 is further stressed by a study showing that only a small effect was observed from coadministration of lansoprazole with prasugrel, the latter being activated more dominantly by CYP isoenzymes other than CYP2C19 [40].
The situation for lansoprazole seems more complex; however, unlike for rabeprazole, at least some information, including pharmacokinetic data, is available. Coadministration of lansoprazole with clopidogrel had no effect on the formation of clopidogrel’s inactive carboxylic acid metabolite. Nonetheless, the pharmacodynamic effect was significantly lowered in good responders to clopidogrel, probably as a result of inhibition of clopidogrel activation via CYP2C19, which is without relevance for the formation of the carboxylic acid derivative via esterases [40]. However, evaluation of the total population in this study did not show more than a trend to a lowered efficacy of clopidogrel. This is consistent with findings reported from another study which found lansoprazole or dexlansoprazole exhibited no significant effect on the exposure to clopidogrel’s active metabolite or its pharmacodynamics [39].
In summary an interaction between clopidogrel and PPIs seems to exist for omeprazole and esomeprazole, whereas there are only limited data for rabeprazole. Dexlansoprazole, lansoprazole and pantoprazole-Na had less effect on the antiplatelet activity of clopidogrel than did omeprazole or esomeprazole, which is supported by the Plavix label [41].

3 Interaction Profiles of Proton Pump Inhibitors

The interaction profiles of omeprazole and pantoprazole-Na have been extensively studied, whereas those for esomeprazole, lansoprazole and rabeprazole are less well defined. The major findings of these studies are summarised in Table 1, which includes new data on drug interaction studies with bortezomib [42], ciprofloxacin extended release [43], citalopram [44], clarithromycin [45], clopidogrel [37, 39], etravirine [46], gemifloxacin [47] and ivabradine [48].
Table 1
Pharmacokinetic interaction profiles of proton pump inhibitors (PPIs)
Concomitant drug
Effect of PPI on concomitant drug
Esomeprazole
Lansoprazole
Omeprazole
Pantoprazole-Na
Rabeprazole
Antacid
Unknown
Conflicting results [108, 111]
None [64]
None [83]
None [123]
Phenazone (antipyrine)
Unknown
↑ Clearance [106]
↓ Clearance [125]
None [84]
Unknown
Bortezomib
Unknown
Unknown
None [42]
Unknown
Unknown
Caffeine
Unknown
None [126]
Conflicting results [126, 127]
None [85, 126]
Unknown
Carbamazepine
Unknown
Unknown
↓ Clearance [128]
None [86]
Unknown
Oral contraceptives
Unknown
Conflicting results [129]
Unknown [125]
None [98]
Unknown
Ciclosporin
Unknown
Unknown
Conflicting results [70, 71, 130]
None [88]
Unknown
Cinacalcet
Unknown
Unknown
Unknown
None [87]
Unknown
Ciprofloxacin ER
Unknown
Unknown
None [43]
Unknown
Unknown
Citalopram
Unknown
Unknown
↓ Clearancea [44]
Unknown
Unknown
Clarithromycin
Unknown
Unknown
None [45]
None [45]
Unknown
Clopidogrel
↓ Absorption [39]
None [39]
↓ Absorption [37]
None [37]
Unknown
Diazepam
↓ Clearance [8082, 131]
None [107]
↓ Clearance [53, 54]
None [82, 89]
Noneb [55]
Diclofenac
Unknown
Unknown
None [65]
None [90]
Unknown
Digoxin
Unknown
Unknown
↑ Absorption [132]
Nonec [91]
↑ Absorption [133]
Ethanol
Unknown
None [134]
None [134]
None [92]
Unknown
Etravirine
Unknown
Unknown
↓ Clearance [46]
Unknown
Unknown
Gemifloxacin
Unknown
Unknown
None [47]
Unknown
Unknown
Glibenclamide
Unknown
Unknown
Unknown
None [93]
Unknown
Ivabradine
Unknown
None [48]
None [48]
Unknown
Unknown
Levothyroxine
Unknown
Unknown
Unknown
None [94]
Unknown
Metoprolol
Unknown
Unknown
None [66]
None [95]
Unknown
Naproxen
Unknown
Unknown
None [65]
None [96]
Unknown
Nifedipine
Unknown
Unknown
↑ Absorption
↓ Clearance [67]
Noned [97]
Unknown
Phenprocoumon
Unknown
Unknown
↓ Clearance [63]
None [99]
Unknown
Phenytoin
↓ Clearance [80, 131]
None [110]
↓ Clearance [54, 58, 135]
None [100]
None [120]
Piroxicam
Unknown
Unknown
None [65]
None [101]
Unknown
Tacrolimus
Unknown
↓ Clearance [117]
Unknown
None [102]
None [117, 122, 136]
Theophylline
Unknown
Conflicting results [113, 114]
None [68, 113]
None [103, 113]
None [121]
Warfarin
↓ Clearancee [80, 131]
None [111]
↓ Clearancee [5961]
None [104]
None [121]
Table modified from Blume et al. [10]. Reprinted with permission (with additions for bortezomib [42], ciprofloxacin ER [43], citalopram [44], clarithromycin [45], clopidogrel [37, 39], etravirine [46], gemifloxacin [47] and ivabradine [48])
↓ decreases, ↑ increases, ER extended release
a(+)-(S) enantiomer only
bEffects were seen with the desmethyl metabolite of diazepam but were significant only in CYP2C19-deficient individuals
cβ-Acetyldigoxin
dOnly for nifedipine sustained-release
eOnly for R-warfarin; present in homozygous extensive metabolisers
Since 2006, a retrospective case-control study in patients with coronary artery disease indicated increased residual platelet aggregation and platelet activation during concomitant treatment with 75 mg/day non-enteric-coated acetylsalicylic acid and PPIs [49]. Coadministration of enteric-coated acetylsalicylic acid with pantoprazole-Na showed a decrease in platelet aggregation [50] and coadministration with lansoprazole showed no significant effect on platelet activity or in the levels of salicylates in the blood [51]. Thus, these prospective studies, which investigated the effects of the PPIs constituting concomitant treatment in about 70 % of patients in the case-control study, do not support the observed impairment of acetylsalicylic acid. Effects on platelet function with omeprazole and esomeprazole cannot be ruled out and monitoring of treatment efficacy might be recommended in cases of omeprazole or esomeprazole coadministration.
Case reports (from both the literature and the US Food and Drug Administration Adverse Events Reporting System) along with population pharmacokinetic studies suggest that coadministration of PPIs and methotrexate may elevate and prolong serum levels of methotrexate and/or its metabolite hydroxymethotrexate, although the mechanism for this interaction is not clearly understood (see Bezabeh et al. [52] for a comprehensive review).

3.1 Omeprazole

In the previous review [10], omeprazole was reported to interact with diazepam [5355], proguanil [56] and the antidepressant moclobemide (in extensive metabolisers) [57] via competitive inhibition of CYP2C19. Omeprazole-induced competitive inhibition of CYP2C19 also has the potential to alter the metabolism of phenytoin [54, 58] and warfarin [5963] (see the previous review for an extensive discussion) [10]. More recently, CYP2C19 inhibition by omeprazole was identified as the reason for a 50 % reduction in the oral clearance of (+)-(S) citalopram, with a corresponding increase of approximately 120 % in plasma concentrations in healthy volunteers [44]. Similarly, such inhibition was found most likely to increase the total exposure of etravirine by 41 % after a single dose of etravirine 100 mg and multiple-dose omeprazole, an effect that was not observed with multiple-dose ranitidine [46].
The effects of omeprazole on the pharmacokinetics of antacids, bortezomib, ciprofloxacin extended release, gemifloxacin, nifedipine, metoprolol, NSAIDs, iron and theophylline have also been investigated, with no clinically significant findings [42, 43, 47, 6469]. Systematic clinical trials have shown conflicting results for interactions between omeprazole and ciclosporin, with elevated ciclosporin concentrations occurring in heart transplant patients [70] but not in renal transplant patients [71] following coadministration of these agents.
Compounds with a high affinity for CYP3A4 (e.g., ketoconazole or fluconazole [72, 73], clarithromycin [74] and moclobemide [75]) may affect the bioavailability of omeprazole by increasing its serum concentrations, but this is only likely to be clinically relevant in those with CYP2C19 deficiency who metabolise omeprazole via the CYP3A4 metabolic pathway.
Omeprazole kinetics are also affected via the CYP2C19 pathway. Decreased plasma concentrations of omeprazole and omeprazole sulphone occurred after administration of ginkgo biloba [76] or St. John’s wort [77]. Metabolism of omeprazole was reduced following administration of fluvoxamine (extensive metabolisers only) [78], and the omeprazole AUC was increased following use of a combined oral contraceptive containing ethinyloestradiol [79] (see previous review for details [10]).
In summary, several omeprazole-related drug interactions have been reported, although not all these interactions are considered significant. The number of reported interactions might be explained by the fact that omeprazole has been available longer than other PPIs (since 1989).

3.2 Esomeprazole

There are no additional new data for CYP-mediated interactions with esomeprazole. The 2006 review concluded that the interaction potentials of esomeprazole and racemic omeprazole seem not to differ significantly [10]. The authors reported that there were no apparent interactions between esomeprazole and drugs that are primarily metabolised by CYP1A2, CYP2A6, CYP2C9, CYP2D6 or CYP2E1 [80]. Esomeprazole, however, does interact with compounds metabolised by CYP2C19 as shown in studies using phenytoin and R-warfarin, although interactions did not reach clinical significance [80]. In addition, multiple doses of esomeprazole increased diazepam concentrations and reduced diazepam elimination, but no similar changes were reported with pantoprazole-Na [81, 82]. These effects with esomeprazole were manifested clinically as disrupted motor coordination and vigilance [81, 82].

3.3 Pantoprazole

Since the last review, pantoprazole-Na has been shown to have no significant interactions with clopidogrel [37]. The authors of the previous review concluded that extensive studies in healthy volunteers and patients have shown that pantoprazole-Na has a low potential to interact with other medications [10]. There were no significant metabolic interactions when combining pantoprazole-Na with antacids [83], phenazone (antipyrine) [84], caffeine [85], carbamazepine [86], cinacalcet [87], clarithromycin [45], ciclosporin [88], clopidogrel [37], diazepam [89], diclofenac [90], β-acetyldigoxin [91], ethanol [92], glibenclamide [93], levothyroxine sodium [94], metoprolol [95], naproxen [96], sustained-release nifedipine [97], oral contraceptives [98], phenprocoumon [99], phenytoin [100], piroxicam [101], tacrolimus [102], theophylline [103] or warfarin [104]. There was a slight, but clinically insignificant, interaction between pantoprazole-Na 40 mg and cisapride 20 mg [105].
Pantoprazole-magnesium (pantoprazole-Mg) is an improved formulation of pantoprazole that has been developed since the 2006 review. Pantoprazole-Mg was achieved by synthesizing a magnesium salt of the active ingredient, rather than a sodium salt as in pantoprazole-Na. Since pantoprazole-Na and pantoprazole-Mg are different salts of the same molecule, their drug interaction profiles are expected to be similar.

3.4 Lansoprazole

There have been no new CYP-mediated drug interaction studies with lansoprazole since the 2006 review [10]. As outlined previously, there are no clinically significant interactions reported between lansoprazole and phenazone [106], diazepam [107], ivabradine [48], magaldrate [108], oral contraceptives [109], phenytoin [110], prednisolone [111], propranolol [111] or warfarin [112]. Increases in theophylline bioavailability following lansoprazole administration are not considered to be clinically significant [113, 114], and increased clearance of theophylline following lansoprazole use [115] was not seen consistently [113]. Lansoprazole decreased oral tacrolimus clearance, significantly increasing blood tacrolimus concentration [116], particularly in those with CYP2C19 mutant alleles [116, 117]. Finally, the CYP2C19 inhibitor fluvoxamine had a significant effect on lansoprazole metabolism (increased plasma concentrations) in extensive metabolisers for CYP2C19 but not in poor metabolisers [118].
More recently, dexlansoprazole, the active enantiomer of lansoprazole, has been introduced into therapy. This compound is marketed with an innovative Dual Delayed Release™ technology, which is designed to release the entire dose in two separate portions to allow prolongation of plasma concentration-time profiles after once-daily administration. Considering the mechanism of action of PPI with irreversible inhibition of the proton pump, clinical advantages of such a biopharmaceutical profile should be carefully evaluated in therapeutic practice. Interactions of dexlansoprazole dual delayed release product have been investigated with diazepam, phenytoin, theophylline and warfarin as probe drugs (for interactions, e.g. with CYP2C19, 2C9, 1A2 and 3A) and no impact on pharmacokinetics of the compounds has been found [119].
The interaction profiles of lansoprazole and dexlansoprazole have not been as thoroughly investigated as those of omeprazole or pantoprazole-Na. Nonetheless, neither compound appears to be associated with major clinically relevant drug interactions.

3.5 Rabeprazole

Information on drug interactions with rabeprazole has not changed since the 2006 review [10]. Drug interactions with rabeprazole are less well studied than those with omeprazole or pantoprazole-Na, as evidenced by the large number of unknown results in Table 1. Most studies report interactions attributed to the group effect of all PPIs on gastric pH (e.g. interactions with digoxin [120] or ketoconazole [121]). Significant CYP-mediated drug interactions with rabeprazole are generally not likely because rabeprazole has a low affinity for a range of CYP isoenzymes [27]. Further studies will prove useful to confirm this. In the 2006 review, rabeprazole was not found to be involved in metabolic drug interactions with theophylline [121], warfarin [121], phenytoin [120], tacrolimus [122] or antacids [123]. Its effect on the pharmacokinetics of the desmethyl metabolite of diazepam was significant only in poor metabolisers of S-mephenytoin 4′-hydroxylation (i.e., those deficient in CYP2C19) [55].
The CYP2C19 inhibitor fluvoxamine had a significant effect on rabeprazole metabolism in extensive metabolisers of CYP2C19, with increased AUC(0,∞) and elimination half-life of rabeprazole and rabeprazole thioether in homozygous and heterozygous extensive metabolisers [124]. In contrast, there were no differences in any pharmacokinetic parameters in poor metabolisers (*2/*2).

4 Conclusions

A thorough review of the literature since 2006 has yielded additional PPI drug interactions modulated by gastric pH, such as those reported with mycophenolate mofetil [13, 14, 16], the instability of PPIs themselves at low pH [17], and the altered pharmacokinetics of several protease inhibitors (including atazanavir [19], nelfinavir [20], raltegravir [21], ritonavir [2224], and indinavir [25]). There are, however, a few new CYP-mediated drug interaction studies, with the most notable being the new data on dexlansoprazole and data for interactions between some PPIs and clopidogrel. Of clinical importance in recent years, CYP2C19-mediated interaction seems to exist between clopidogrel and omeprazole or esomeprazole, an effect not seen in PPIs as a class [3537, 39]. In addition, the effects of omeprazole and esomeprazole on platelet aggregation when coadministered with acetylsalicylic acid cannot be ruled out without additional research. Finally, coadministration of PPIs with methotrexate may affect methotrexate pharmacokinetics, although the mechanism of interaction is not well understood [52].
Overall, the conclusions from the 2006 review still remain relevant. Lansoprazole, pantoprazole-Na and rabeprazole appear to be associated with lower incidences of drug interactions than omeprazole and esomeprazole, resulting either from their lower affinity for specific CYP isoenzymes or the involvement of additional elimination processes. However, only the interaction profile of pantoprazole-Na has been well characterised.
With little difference among the PPIs in terms of clinical efficacy at equivalent doses, differences in drug interaction propensities become important factors in prescribing decisions, particularly in patients who are taking multiple concomitant medications (such as the elderly) or those receiving drugs with a narrow therapeutic window. A PPI with a well proven low risk of drug interactions would be the favourable choice in these patients.

Acknowledgements

Henning Blume and Ralph-Steven Wedemeyer declared no conflict of interest relevant to this manuscript.
HB and R-SW were responsible for writing and reviewing all drafts of the manuscript and approving the final draft.
Editorial support was provided by Susan Cheer, Freelance Writing Works, Queenstown, New Zealand, who received funding from Takeda Pharmaceuticals International GmbH. No other funding was provided for this manuscript.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Dent – Das Online-Abo der Zahnmedizin

Online-Abonnement

Mit e.Dent erhalten Sie Zugang zu allen zahnmedizinischen Fortbildungen und unseren zahnmedizinischen und ausgesuchten medizinischen Zeitschriften.

Literatur
1.
Zurück zum Zitat Chiba N, De Gara CJ, Wilkinson JM, et al. Speed of healing and symptom relief in grade II to IV gastroesophageal reflux disease: a meta-analysis. Gastroenterology. 1997;112(6):1798–810.PubMed Chiba N, De Gara CJ, Wilkinson JM, et al. Speed of healing and symptom relief in grade II to IV gastroesophageal reflux disease: a meta-analysis. Gastroenterology. 1997;112(6):1798–810.PubMed
2.
Zurück zum Zitat Dammann HG. Pantoprazole: a pharmacological and clinical profile. Today’s Ther Trends. 1997;15:109–36. Dammann HG. Pantoprazole: a pharmacological and clinical profile. Today’s Ther Trends. 1997;15:109–36.
3.
Zurück zum Zitat Cheer SM, Prakash A, Faulds D, et al. Pantoprazole: an update of its pharmacological properties and therapeutic use in the management of acid-related disorders. Drugs. 2003;63(1):101–33.PubMed Cheer SM, Prakash A, Faulds D, et al. Pantoprazole: an update of its pharmacological properties and therapeutic use in the management of acid-related disorders. Drugs. 2003;63(1):101–33.PubMed
4.
Zurück zum Zitat Welage LS, Berardi RR. Evaluation of omeprazole, lansoprazole, pantoprazole, and rabeprazole in the treatment of acid-related diseases. J Am Pharm Assoc (Wash). 2000;40(1):52–62 quiz 121–3. Welage LS, Berardi RR. Evaluation of omeprazole, lansoprazole, pantoprazole, and rabeprazole in the treatment of acid-related diseases. J Am Pharm Assoc (Wash). 2000;40(1):52–62 quiz 121–3.
5.
Zurück zum Zitat Lanza FL, Members of the Ad Hoc Committee on Practice Parameters of the American College of Gastroenterology. A guideline for the treatment and prevention of NSAID-induced ulcers. Am J Gastroenterol. 1998;93(11):2037–46.PubMed Lanza FL, Members of the Ad Hoc Committee on Practice Parameters of the American College of Gastroenterology. A guideline for the treatment and prevention of NSAID-induced ulcers. Am J Gastroenterol. 1998;93(11):2037–46.PubMed
6.
Zurück zum Zitat Singh G, Triadafilopoulos G. Appropriate choice of proton pump inhibitor therapy in the prevention and management of NSAID-related gastrointestinal damage. Int J Clin Pract. 2005;59(10):1210–7.PubMed Singh G, Triadafilopoulos G. Appropriate choice of proton pump inhibitor therapy in the prevention and management of NSAID-related gastrointestinal damage. Int J Clin Pract. 2005;59(10):1210–7.PubMed
7.
Zurück zum Zitat Hanlon JT, Schmader KE, Koronkowski MJ, et al. Adverse drug events in high risk older outpatients. J Am Geriatr Soc. 1997;45(8):945–8.PubMed Hanlon JT, Schmader KE, Koronkowski MJ, et al. Adverse drug events in high risk older outpatients. J Am Geriatr Soc. 1997;45(8):945–8.PubMed
8.
Zurück zum Zitat Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA. 1998;279(15):1200–5.PubMed Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA. 1998;279(15):1200–5.PubMed
9.
Zurück zum Zitat Ramirez FC. Diagnosis and treatment of gastroesophageal reflux disease in the elderly. Clevel Clin J Med. 2000;67(10):755–66. Ramirez FC. Diagnosis and treatment of gastroesophageal reflux disease in the elderly. Clevel Clin J Med. 2000;67(10):755–66.
10.
Zurück zum Zitat Blume H, Donath F, Warnke A, et al. Pharmacokinetic drug interaction profiles of proton pump inhibitors. Drug Saf. 2006;29(9):769–84.PubMed Blume H, Donath F, Warnke A, et al. Pharmacokinetic drug interaction profiles of proton pump inhibitors. Drug Saf. 2006;29(9):769–84.PubMed
11.
Zurück zum Zitat Chin TW, Loeb M, Fong IW. Effects of an acidic beverage (Coca-Cola) on absorption of ketoconazole. Antimicrob Agents Chemother. 1995;39(8):1671–5.PubMedCentralPubMed Chin TW, Loeb M, Fong IW. Effects of an acidic beverage (Coca-Cola) on absorption of ketoconazole. Antimicrob Agents Chemother. 1995;39(8):1671–5.PubMedCentralPubMed
12.
Zurück zum Zitat Jaruratanasirikul S, Sriwiriyajan S. Effect of omeprazole on the pharmacokinetics of itraconazole. Eur J Clin Pharmacol. 1998;54(2):159–61.PubMed Jaruratanasirikul S, Sriwiriyajan S. Effect of omeprazole on the pharmacokinetics of itraconazole. Eur J Clin Pharmacol. 1998;54(2):159–61.PubMed
13.
Zurück zum Zitat Kofler S, Deutsch MA, Bigdeli AK, et al. Proton pump inhibitor co-medication reduces mycophenolate acid drug exposure in heart transplant recipients. J Heart Lung Transpl. 2009;28(6):605–11. Kofler S, Deutsch MA, Bigdeli AK, et al. Proton pump inhibitor co-medication reduces mycophenolate acid drug exposure in heart transplant recipients. J Heart Lung Transpl. 2009;28(6):605–11.
14.
Zurück zum Zitat Schaier M, Scholl C, Scharpf D, et al. Proton pump inhibitors interfere with the immunosuppressive potency of mycophenolate mofetil. Rheumatology (Oxford). 2010;49(11):2061–7. Schaier M, Scholl C, Scharpf D, et al. Proton pump inhibitors interfere with the immunosuppressive potency of mycophenolate mofetil. Rheumatology (Oxford). 2010;49(11):2061–7.
15.
Zurück zum Zitat Kofler S, Wolf C, Shvets N, et al. The proton pump inhibitor pantoprazole and its interaction with enteric-coated mycophenolate sodium in transplant recipients. J Heart Lung Transpl. 2011;30(5):565–71. Kofler S, Wolf C, Shvets N, et al. The proton pump inhibitor pantoprazole and its interaction with enteric-coated mycophenolate sodium in transplant recipients. J Heart Lung Transpl. 2011;30(5):565–71.
16.
Zurück zum Zitat Rupprecht K, Schmidt C, Raspe A, et al. Bioavailability of mycophenolate mofetil and enteric-coated mycophenolate sodium is differentially affected by pantoprazole in healthy volunteers. J Clin Pharmacol. 2009;49(10):1196–201.PubMed Rupprecht K, Schmidt C, Raspe A, et al. Bioavailability of mycophenolate mofetil and enteric-coated mycophenolate sodium is differentially affected by pantoprazole in healthy volunteers. J Clin Pharmacol. 2009;49(10):1196–201.PubMed
17.
Zurück zum Zitat Arai K, Takeuchi Y, Watanabe H, et al. Prokinetics influence the pharmacokinetics of rabeprazole. Digestion. 2008;78:7–71. Arai K, Takeuchi Y, Watanabe H, et al. Prokinetics influence the pharmacokinetics of rabeprazole. Digestion. 2008;78:7–71.
18.
Zurück zum Zitat Takeuchi Y, Watanabe H, Imawari M. Mosapride citrate, a serotonin HT 4 selective agonist, beneficially affects pharmacokinetics of proton pump inhibitor. Gastroenterology. 2005;128:A531. Takeuchi Y, Watanabe H, Imawari M. Mosapride citrate, a serotonin HT 4 selective agonist, beneficially affects pharmacokinetics of proton pump inhibitor. Gastroenterology. 2005;128:A531.
19.
Zurück zum Zitat Tomilo DL, Smith PF, Ogundele AB, et al. Inhibition of atazanavir oral absorption by lansoprazole gastric acid suppression in healthy volunteers. Pharmacotherapy. 2006;26(3):341–6.PubMed Tomilo DL, Smith PF, Ogundele AB, et al. Inhibition of atazanavir oral absorption by lansoprazole gastric acid suppression in healthy volunteers. Pharmacotherapy. 2006;26(3):341–6.PubMed
20.
Zurück zum Zitat Fang AF, Damle BD, LaBadie RR, et al. Significant decrease in nelfinavir systemic exposure after omeprazole coadministration in healthy subjects. Pharmacotherapy. 2008;28(1):42–50.PubMed Fang AF, Damle BD, LaBadie RR, et al. Significant decrease in nelfinavir systemic exposure after omeprazole coadministration in healthy subjects. Pharmacotherapy. 2008;28(1):42–50.PubMed
21.
Zurück zum Zitat Iwamoto M, Wenning LA, Nguyen BY, et al. Effects of omeprazole on plasma levels of raltegravir. Clin Infect Dis. 2009;48(4):489–92.PubMed Iwamoto M, Wenning LA, Nguyen BY, et al. Effects of omeprazole on plasma levels of raltegravir. Clin Infect Dis. 2009;48(4):489–92.PubMed
22.
Zurück zum Zitat Overton ET, Tschampa JM, Klebert M, et al. The effect of acid reduction with a proton pump inhibitor on the pharmacokinetics of lopinavir or ritonavir in HIV-infected patients on lopinavir/ritonavir-based therapy. J Clin Pharmacol. 2010;50(9):1050–5.PubMed Overton ET, Tschampa JM, Klebert M, et al. The effect of acid reduction with a proton pump inhibitor on the pharmacokinetics of lopinavir or ritonavir in HIV-infected patients on lopinavir/ritonavir-based therapy. J Clin Pharmacol. 2010;50(9):1050–5.PubMed
23.
Zurück zum Zitat Singh K, Dickinson L, Chaikan A, et al. Pharmacokinetics and safety of saquinavir/ritonavir and omeprazole in HIV-infected subjects. Clin Pharmacol Ther. 2008;83(6):867–72.PubMed Singh K, Dickinson L, Chaikan A, et al. Pharmacokinetics and safety of saquinavir/ritonavir and omeprazole in HIV-infected subjects. Clin Pharmacol Ther. 2008;83(6):867–72.PubMed
24.
Zurück zum Zitat Winston A, Back D, Fletcher C, et al. Effect of omeprazole on the pharmacokinetics of saquinavir-500 mg formulation with ritonavir in healthy male and female volunteers. AIDS. 2006;20(10):1401–6.PubMed Winston A, Back D, Fletcher C, et al. Effect of omeprazole on the pharmacokinetics of saquinavir-500 mg formulation with ritonavir in healthy male and female volunteers. AIDS. 2006;20(10):1401–6.PubMed
25.
Zurück zum Zitat Tappouni HL, Rublein JC, Donovan BJ, et al. Effect of omeprazole on the plasma concentrations of indinavir when administered alone and in combination with ritonavir. Am J Health Syst Pharm. 2008;65(5):422–8.PubMedCentralPubMed Tappouni HL, Rublein JC, Donovan BJ, et al. Effect of omeprazole on the plasma concentrations of indinavir when administered alone and in combination with ritonavir. Am J Health Syst Pharm. 2008;65(5):422–8.PubMedCentralPubMed
26.
Zurück zum Zitat Pauli-Magnus C, Rekersbrink S, Klotz U, et al. Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein. Naunyn Schmiedebergs Arch Pharmacol. 2001;364(6):551–7.PubMed Pauli-Magnus C, Rekersbrink S, Klotz U, et al. Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein. Naunyn Schmiedebergs Arch Pharmacol. 2001;364(6):551–7.PubMed
27.
Zurück zum Zitat Gerson LB, Triadafilopoulos G. Proton pump inhibitors and their drug interactions: an evidence-based approach. Eur J Gastroenterol Hepatol. 2001;13(5):611–6.PubMed Gerson LB, Triadafilopoulos G. Proton pump inhibitors and their drug interactions: an evidence-based approach. Eur J Gastroenterol Hepatol. 2001;13(5):611–6.PubMed
28.
Zurück zum Zitat Laine L. Proton pump inhibitor co-therapy with clopidogrel: is there GI benefit or cardiovascular harm? Gastroenterology. 2011;140(3):769–72.PubMed Laine L. Proton pump inhibitor co-therapy with clopidogrel: is there GI benefit or cardiovascular harm? Gastroenterology. 2011;140(3):769–72.PubMed
29.
Zurück zum Zitat Kwok CS, Loke YK. Meta-analysis: the effects of proton pump inhibitors on cardiovascular events and mortality in patients receiving clopidogrel. Aliment Pharmacol Ther. 2010;31(8):810–23.PubMed Kwok CS, Loke YK. Meta-analysis: the effects of proton pump inhibitors on cardiovascular events and mortality in patients receiving clopidogrel. Aliment Pharmacol Ther. 2010;31(8):810–23.PubMed
30.
Zurück zum Zitat Lima JP, Brophy JM. The potential interaction between clopidogrel and proton pump inhibitors: a systematic review. BMC Med. 2010;8:81.PubMedCentralPubMed Lima JP, Brophy JM. The potential interaction between clopidogrel and proton pump inhibitors: a systematic review. BMC Med. 2010;8:81.PubMedCentralPubMed
31.
Zurück zum Zitat Bates ER, Lau WC, Angiolillo DJ. Clopidogrel-drug interactions. J Am Coll Cardiol. 2011;57(11):1251–63.PubMed Bates ER, Lau WC, Angiolillo DJ. Clopidogrel-drug interactions. J Am Coll Cardiol. 2011;57(11):1251–63.PubMed
32.
Zurück zum Zitat Ogawa R, Echizen H. Drug–drug interaction profiles of proton pump inhibitors. Clin Pharmacokinet. 2010;49(8):509–33.PubMed Ogawa R, Echizen H. Drug–drug interaction profiles of proton pump inhibitors. Clin Pharmacokinet. 2010;49(8):509–33.PubMed
33.
Zurück zum Zitat Chen J, Yuan YC, Leontiadis GI, et al. Recent safety concerns with proton pump inhibitors. J Clin Gastroenterol. 2012;46:93–114.PubMed Chen J, Yuan YC, Leontiadis GI, et al. Recent safety concerns with proton pump inhibitors. J Clin Gastroenterol. 2012;46:93–114.PubMed
34.
Zurück zum Zitat Kwok CS, Loke YK. Effects of proton pump inhibitors on platelet function in patients receiving clopidogrel: a systematic review. Drug Saf. 2012;35(2):127–39.PubMed Kwok CS, Loke YK. Effects of proton pump inhibitors on platelet function in patients receiving clopidogrel: a systematic review. Drug Saf. 2012;35(2):127–39.PubMed
35.
Zurück zum Zitat Ho PM, Maddox TM, Wang L, et al. Risk of adverse outcomes associated with concomitant use of clopidogrel and proton pump inhibitors following acute coronary syndrome. JAMA. 2009;301(9):937–44.PubMed Ho PM, Maddox TM, Wang L, et al. Risk of adverse outcomes associated with concomitant use of clopidogrel and proton pump inhibitors following acute coronary syndrome. JAMA. 2009;301(9):937–44.PubMed
36.
Zurück zum Zitat Juurlink DN, Gomes T, Ko DT, et al. A population-based study of the drug interaction between proton pump inhibitors and clopidogrel. CMAJ. 2009;180(7):713–8.PubMedCentralPubMed Juurlink DN, Gomes T, Ko DT, et al. A population-based study of the drug interaction between proton pump inhibitors and clopidogrel. CMAJ. 2009;180(7):713–8.PubMedCentralPubMed
37.
Zurück zum Zitat Angiolillo DJ, Gibson CM, Cheng S, et al. Differential effects of omeprazole and pantoprazole on the pharmacodynamics and pharmacokinetics of clopidogrel in healthy subjects: randomized, placebo-controlled, crossover comparison studies. Clin Pharmacol Ther. 2011;89(1):65–74.PubMed Angiolillo DJ, Gibson CM, Cheng S, et al. Differential effects of omeprazole and pantoprazole on the pharmacodynamics and pharmacokinetics of clopidogrel in healthy subjects: randomized, placebo-controlled, crossover comparison studies. Clin Pharmacol Ther. 2011;89(1):65–74.PubMed
38.
Zurück zum Zitat Li XQ, Andersson TB, Ahlstrom M, et al. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab Dispos. 2004;32(8):821–7.PubMed Li XQ, Andersson TB, Ahlstrom M, et al. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab Dispos. 2004;32(8):821–7.PubMed
39.
Zurück zum Zitat Frelinger AL, Lee RD, Mulford DJ, et al. A randomized, 2-period, crossover design study to assess the effects of dexlansoprazole, lansoprazole, esomeprazole, and omeprazole on the steady-state pharmacokinetics and pharmacodynamics of clopidogrel in healthy volunteers. J Am Coll Cardiol. 2012;59:1304–11.PubMed Frelinger AL, Lee RD, Mulford DJ, et al. A randomized, 2-period, crossover design study to assess the effects of dexlansoprazole, lansoprazole, esomeprazole, and omeprazole on the steady-state pharmacokinetics and pharmacodynamics of clopidogrel in healthy volunteers. J Am Coll Cardiol. 2012;59:1304–11.PubMed
40.
Zurück zum Zitat Small DS, Farid NA, Payne CD, et al. Effects of the proton pump inhibitor lansoprazole on the pharmacokinetics and pharmacodynamics of prasugrel and clopidogrel. J Clin Pharmacol. 2008;48(4):475–84.PubMed Small DS, Farid NA, Payne CD, et al. Effects of the proton pump inhibitor lansoprazole on the pharmacokinetics and pharmacodynamics of prasugrel and clopidogrel. J Clin Pharmacol. 2008;48(4):475–84.PubMed
42.
Zurück zum Zitat Quinn DI, Nemunaitis J, Fuloria J, et al. Effect of the cytochrome P450 2C19 inhibitor omeprazole on the pharmacokinetics and safety profile of bortezomib in patients with advanced solid tumours, non-Hodgkin’s lymphoma or multiple myeloma. Clin Pharmacokinet. 2009;48(3):199–209.PubMed Quinn DI, Nemunaitis J, Fuloria J, et al. Effect of the cytochrome P450 2C19 inhibitor omeprazole on the pharmacokinetics and safety profile of bortezomib in patients with advanced solid tumours, non-Hodgkin’s lymphoma or multiple myeloma. Clin Pharmacokinet. 2009;48(3):199–209.PubMed
43.
Zurück zum Zitat Washington C, Hou E, Hughes N, et al. Effect of omeprazole on bioavailability of an oral extended-release formulation of ciprofloxacin. Am J Health Syst Pharm. 2006;63(7):653–6.PubMed Washington C, Hou E, Hughes N, et al. Effect of omeprazole on bioavailability of an oral extended-release formulation of ciprofloxacin. Am J Health Syst Pharm. 2006;63(7):653–6.PubMed
44.
Zurück zum Zitat Rocha A, Coelho EB, Sampaio SA, et al. Omeprazole preferentially inhibits the metabolism of (+)-(S)-citalopram in healthy volunteers. Br J Clin Pharmacol. 2010;70(1):43–51.PubMedCentralPubMed Rocha A, Coelho EB, Sampaio SA, et al. Omeprazole preferentially inhibits the metabolism of (+)-(S)-citalopram in healthy volunteers. Br J Clin Pharmacol. 2010;70(1):43–51.PubMedCentralPubMed
45.
Zurück zum Zitat Calabresi L, Pazzucconi F, Ferrara S, et al. Pharmacokinetic interactions between omeprazole/pantoprazole and clarithromycin in health volunteers. Pharmacol Res. 2004;49(5):493–9.PubMed Calabresi L, Pazzucconi F, Ferrara S, et al. Pharmacokinetic interactions between omeprazole/pantoprazole and clarithromycin in health volunteers. Pharmacol Res. 2004;49(5):493–9.PubMed
46.
Zurück zum Zitat Scholler-Gyure M, Kakuda TN, De Smedt G, et al. A pharmacokinetic study of etravirine (TMC125) co-administered with ranitidine and omeprazole in HIV-negative volunteers. Br J Clin Pharmacol. 2008;66(4):508–16.PubMedCentralPubMed Scholler-Gyure M, Kakuda TN, De Smedt G, et al. A pharmacokinetic study of etravirine (TMC125) co-administered with ranitidine and omeprazole in HIV-negative volunteers. Br J Clin Pharmacol. 2008;66(4):508–16.PubMedCentralPubMed
47.
Zurück zum Zitat Allen A, Vousden M, Lewis A. Effect of omeprazole on the pharmacokinetics of oral gemifloxacin in healthy volunteers. Chemotherapy. 1999;45(6):496–503.PubMed Allen A, Vousden M, Lewis A. Effect of omeprazole on the pharmacokinetics of oral gemifloxacin in healthy volunteers. Chemotherapy. 1999;45(6):496–503.PubMed
48.
Zurück zum Zitat Portoles A, Calvo A, Terleira A, et al. Lack of pharmacokinetic interaction between omeprazole or lansoprazole and ivabradine in healthy volunteers: an open-label, randomized, crossover, pharmacokinetic interaction clinical trial. J Clin Pharmacol. 2006;46(10):1195–203.PubMed Portoles A, Calvo A, Terleira A, et al. Lack of pharmacokinetic interaction between omeprazole or lansoprazole and ivabradine in healthy volunteers: an open-label, randomized, crossover, pharmacokinetic interaction clinical trial. J Clin Pharmacol. 2006;46(10):1195–203.PubMed
49.
Zurück zum Zitat Wurtz M, Grove EL, Kristensen SD, et al. The antiplatelet effect of aspirin is reduced by proton pump inhibitors in patients with coronary artery disease. Heart. 2010;96(5):368–71.PubMed Wurtz M, Grove EL, Kristensen SD, et al. The antiplatelet effect of aspirin is reduced by proton pump inhibitors in patients with coronary artery disease. Heart. 2010;96(5):368–71.PubMed
50.
Zurück zum Zitat Kasprzak M, Kozinski M, Bielis L, et al. Pantoprazole may enhance antiplatelet effect of enteric-coated aspirin in patients with acute coronary syndrome. Cardiol J. 2009;16(6):535–44.PubMed Kasprzak M, Kozinski M, Bielis L, et al. Pantoprazole may enhance antiplatelet effect of enteric-coated aspirin in patients with acute coronary syndrome. Cardiol J. 2009;16(6):535–44.PubMed
51.
Zurück zum Zitat Adamopoulos AB, Sakizlis GN, Nasothimiou EG, et al. Do proton pump inhibitors attenuate the effect of aspirin on platelet aggregation? A randomized crossover study. J Cardiovasc Pharmacol. 2009;54(2):163–8.PubMed Adamopoulos AB, Sakizlis GN, Nasothimiou EG, et al. Do proton pump inhibitors attenuate the effect of aspirin on platelet aggregation? A randomized crossover study. J Cardiovasc Pharmacol. 2009;54(2):163–8.PubMed
52.
Zurück zum Zitat Bezabeh S, Mackey AC, Kluetz P, et al. Accumulating evidence for a drug-drug interaction between methotrexate and proton pump inhibitors. Oncologist. 2012;17(4):550–4.PubMedCentralPubMed Bezabeh S, Mackey AC, Kluetz P, et al. Accumulating evidence for a drug-drug interaction between methotrexate and proton pump inhibitors. Oncologist. 2012;17(4):550–4.PubMedCentralPubMed
53.
Zurück zum Zitat Andersson T, Cederberg C, Edvardsson G, et al. Effect of omeprazole treatment on diazepam plasma levels in slow versus normal rapid metabolizers of omeprazole. Clin Pharmacol Ther. 1990;47(1):79–85.PubMed Andersson T, Cederberg C, Edvardsson G, et al. Effect of omeprazole treatment on diazepam plasma levels in slow versus normal rapid metabolizers of omeprazole. Clin Pharmacol Ther. 1990;47(1):79–85.PubMed
54.
Zurück zum Zitat Gugler R, Jensen JC. Omeprazole inhibits oxidative drug metabolism. Studies with diazepam and phenytoin in vivo and 7-ethoxycoumarin in vitro. Gastroenterology. 1985;89(6):1235–41.PubMed Gugler R, Jensen JC. Omeprazole inhibits oxidative drug metabolism. Studies with diazepam and phenytoin in vivo and 7-ethoxycoumarin in vitro. Gastroenterology. 1985;89(6):1235–41.PubMed
55.
Zurück zum Zitat Ishizaki T, Chiba K, Manabe K, et al. Comparison of the interaction potential of a new proton pump inhibitor, E3810, versus omeprazole with diazepam in extensive and poor metabolizers of S-mephenytoin 4′-hydroxylation. Clin Pharmacol Ther. 1995;58(2):155–64.PubMed Ishizaki T, Chiba K, Manabe K, et al. Comparison of the interaction potential of a new proton pump inhibitor, E3810, versus omeprazole with diazepam in extensive and poor metabolizers of S-mephenytoin 4′-hydroxylation. Clin Pharmacol Ther. 1995;58(2):155–64.PubMed
56.
Zurück zum Zitat Funck-Brentano C, Becquemont L, Lenevu A, et al. Inhibition by omeprazole of proguanil metabolism: mechanism of the interaction in vitro and prediction of in vivo results from the in vitro experiments. J Pharmacol Exp Ther. 1997;280(2):730–8.PubMed Funck-Brentano C, Becquemont L, Lenevu A, et al. Inhibition by omeprazole of proguanil metabolism: mechanism of the interaction in vitro and prediction of in vivo results from the in vitro experiments. J Pharmacol Exp Ther. 1997;280(2):730–8.PubMed
57.
Zurück zum Zitat Yu KS, Yim DS, Cho JY, et al. Effect of omeprazole on the pharmacokinetics of moclobemide according to the genetic polymorphism of CYP2C19. Clin Pharmacol Ther. 2001;69(4):266–73.PubMed Yu KS, Yim DS, Cho JY, et al. Effect of omeprazole on the pharmacokinetics of moclobemide according to the genetic polymorphism of CYP2C19. Clin Pharmacol Ther. 2001;69(4):266–73.PubMed
58.
Zurück zum Zitat Prichard PJ, Walt RP, Kitchingman GK, et al. Oral phenytoin pharmacokinetics during omeprazole therapy. Br J Clin Pharmacol. 1987;24(4):543–5.PubMedCentralPubMed Prichard PJ, Walt RP, Kitchingman GK, et al. Oral phenytoin pharmacokinetics during omeprazole therapy. Br J Clin Pharmacol. 1987;24(4):543–5.PubMedCentralPubMed
59.
Zurück zum Zitat Sutfin T, Balmer K, Bostrom H, et al. Stereoselective interaction of omeprazole with warfarin in healthy men. Ther Drug Monit. 1989;11(2):176–84.PubMed Sutfin T, Balmer K, Bostrom H, et al. Stereoselective interaction of omeprazole with warfarin in healthy men. Ther Drug Monit. 1989;11(2):176–84.PubMed
60.
Zurück zum Zitat Unge P, Svedberg LE, Nordgren A, et al. A study of the interaction of omeprazole and warfarin in anticoagulated patients. Br J Clin Pharmacol. 1992;34(6):509–12.PubMedCentralPubMed Unge P, Svedberg LE, Nordgren A, et al. A study of the interaction of omeprazole and warfarin in anticoagulated patients. Br J Clin Pharmacol. 1992;34(6):509–12.PubMedCentralPubMed
61.
Zurück zum Zitat Uno T, Sugimoto K, Sugawara K, et al. The role of cytochrome P2C19 in R-warfarin pharmacokinetics and its interaction with omeprazole. Ther Drug Monit. 2008;30(3):276–81.PubMed Uno T, Sugimoto K, Sugawara K, et al. The role of cytochrome P2C19 in R-warfarin pharmacokinetics and its interaction with omeprazole. Ther Drug Monit. 2008;30(3):276–81.PubMed
62.
Zurück zum Zitat Grass U. Drug interactions with proton pump inhibitors: cases reported internationally from medical practice [in German]. Der Kassenarzt. 2000;43:32–9. Grass U. Drug interactions with proton pump inhibitors: cases reported internationally from medical practice [in German]. Der Kassenarzt. 2000;43:32–9.
63.
64.
Zurück zum Zitat Iwao K, Saitoh H, Takeda K, et al. Decreased plasma levels of omeprazole after coadministration with magnesium-aluminium hydroxide dry suspension granules. Yakugaku Zasshi. 1999;119(3):221–8.PubMed Iwao K, Saitoh H, Takeda K, et al. Decreased plasma levels of omeprazole after coadministration with magnesium-aluminium hydroxide dry suspension granules. Yakugaku Zasshi. 1999;119(3):221–8.PubMed
65.
Zurück zum Zitat Andersson T, Bredberg E, Lagerstrom PO, et al. Lack of drug-drug interaction between three different non-steroidal anti-inflammatory drugs and omeprazole. Eur J Clin Pharmacol. 1998;54(5):399–404.PubMed Andersson T, Bredberg E, Lagerstrom PO, et al. Lack of drug-drug interaction between three different non-steroidal anti-inflammatory drugs and omeprazole. Eur J Clin Pharmacol. 1998;54(5):399–404.PubMed
66.
Zurück zum Zitat Andersson T, Lundborg P, Regardh CG. Lack of effect of omeprazole treatment on steady-state plasma levels of metoprolol. Eur J Clin Pharmacol. 1991;40(1):61–5.PubMed Andersson T, Lundborg P, Regardh CG. Lack of effect of omeprazole treatment on steady-state plasma levels of metoprolol. Eur J Clin Pharmacol. 1991;40(1):61–5.PubMed
67.
Zurück zum Zitat Soons PA, van den Berg G, Danhof M, et al. Influence of single- and multiple-dose omeprazole treatment on nifedipine pharmacokinetics and effects in healthy subjects. Eur J Clin Pharmacol. 1992;42(3):319–24.PubMed Soons PA, van den Berg G, Danhof M, et al. Influence of single- and multiple-dose omeprazole treatment on nifedipine pharmacokinetics and effects in healthy subjects. Eur J Clin Pharmacol. 1992;42(3):319–24.PubMed
68.
Zurück zum Zitat Taburet AM, Geneve J, Bocquentin M, et al. Theophylline steady state pharmacokinetics is not altered by omeprazole. Eur J Clin Pharmacol. 1992;42(3):343–5.PubMed Taburet AM, Geneve J, Bocquentin M, et al. Theophylline steady state pharmacokinetics is not altered by omeprazole. Eur J Clin Pharmacol. 1992;42(3):343–5.PubMed
69.
Zurück zum Zitat Koop H, Bachem MG. Serum iron, ferritin, and vitamin B12 during prolonged omeprazole therapy. J Clin Gastroenterol. 1992;14(4):288–92.PubMed Koop H, Bachem MG. Serum iron, ferritin, and vitamin B12 during prolonged omeprazole therapy. J Clin Gastroenterol. 1992;14(4):288–92.PubMed
70.
Zurück zum Zitat Reichenspurner H, Meiser BM, Muschiol F, et al. The influence of gastrointestinal agents on resorption and metabolism of cyclosporine after heart transplantation: experimental and clinical results. J Heart Lung Transpl. 1993;12(6 Pt 1):987–92. Reichenspurner H, Meiser BM, Muschiol F, et al. The influence of gastrointestinal agents on resorption and metabolism of cyclosporine after heart transplantation: experimental and clinical results. J Heart Lung Transpl. 1993;12(6 Pt 1):987–92.
71.
Zurück zum Zitat Blohme I, Idstrom JP, Andersson T. A study of the interaction between omeprazole and cyclosporine in renal transplant patients. Br J Clin Pharmacol. 1993;35(2):156–60.PubMedCentralPubMed Blohme I, Idstrom JP, Andersson T. A study of the interaction between omeprazole and cyclosporine in renal transplant patients. Br J Clin Pharmacol. 1993;35(2):156–60.PubMedCentralPubMed
72.
Zurück zum Zitat Bottiger Y, Tybring G, Gotharson E, et al. Inhibition of the sulfoxidation of omeprazole by ketoconazole in poor and extensive metabolizers of S-mephenytoin. Clin Pharmacol Ther. 1997;62(4):384–91.PubMed Bottiger Y, Tybring G, Gotharson E, et al. Inhibition of the sulfoxidation of omeprazole by ketoconazole in poor and extensive metabolizers of S-mephenytoin. Clin Pharmacol Ther. 1997;62(4):384–91.PubMed
73.
Zurück zum Zitat Kang BC, Yang CQ, Cho HK, et al. Influence of fluconazole on the pharmacokinetics of omeprazole in healthy volunteers. Biopharm Drug Dispos. 2002;23(2):77–81.PubMed Kang BC, Yang CQ, Cho HK, et al. Influence of fluconazole on the pharmacokinetics of omeprazole in healthy volunteers. Biopharm Drug Dispos. 2002;23(2):77–81.PubMed
74.
Zurück zum Zitat Furuta T, Ohashi K, Kobayashi K, et al. Effects of clarithromycin on the metabolism of omeprazole in relation to CYP2C19 genotype status in humans. Clin Pharmacol Ther. 1999;66(3):265–74.PubMed Furuta T, Ohashi K, Kobayashi K, et al. Effects of clarithromycin on the metabolism of omeprazole in relation to CYP2C19 genotype status in humans. Clin Pharmacol Ther. 1999;66(3):265–74.PubMed
75.
Zurück zum Zitat Cho JY, Yu KS, Jang IJ, et al. Omeprazole hydroxylation is inhibited by a single dose of moclobemide in homozygotic EM genotype for CYP2C19. Br J Clin Pharmacol. 2002;53(4):393–7.PubMedCentralPubMed Cho JY, Yu KS, Jang IJ, et al. Omeprazole hydroxylation is inhibited by a single dose of moclobemide in homozygotic EM genotype for CYP2C19. Br J Clin Pharmacol. 2002;53(4):393–7.PubMedCentralPubMed
76.
Zurück zum Zitat Yin OQ, Tomlinson B, Waye MM, et al. Pharmacogenetics and herb–drug interactions: experience with Ginkgo biloba and omeprazole. Pharmacogenetics. 2004;14(12):841–50.PubMed Yin OQ, Tomlinson B, Waye MM, et al. Pharmacogenetics and herb–drug interactions: experience with Ginkgo biloba and omeprazole. Pharmacogenetics. 2004;14(12):841–50.PubMed
77.
Zurück zum Zitat Wang LS, Zhou G, Zhu B, et al. St John’s wort induces both cytochrome P450 3A4-catalyzed sulfoxidation and 2C19-dependent hydroxylation of omeprazole. Clin Pharmacol Ther. 2004;75(3):191–7.PubMed Wang LS, Zhou G, Zhu B, et al. St John’s wort induces both cytochrome P450 3A4-catalyzed sulfoxidation and 2C19-dependent hydroxylation of omeprazole. Clin Pharmacol Ther. 2004;75(3):191–7.PubMed
78.
Zurück zum Zitat Yasui-Furukori N, Takahata T, Nakagami T, et al. Different inhibitory effect of fluvoxamine on omeprazole metabolism between CYP2C19 genotypes. Br J Clin Pharmacol. 2004;57(4):487–94.PubMedCentralPubMed Yasui-Furukori N, Takahata T, Nakagami T, et al. Different inhibitory effect of fluvoxamine on omeprazole metabolism between CYP2C19 genotypes. Br J Clin Pharmacol. 2004;57(4):487–94.PubMedCentralPubMed
79.
Zurück zum Zitat Palovaara S, Tybring G, Laine K. The effect of ethinyloestradiol and levonorgestrel on the CYP2C19-mediated metabolism of omeprazole in healthy female subjects. Br J Clin Pharmacol. 2003;56(2):232–7.PubMedCentralPubMed Palovaara S, Tybring G, Laine K. The effect of ethinyloestradiol and levonorgestrel on the CYP2C19-mediated metabolism of omeprazole in healthy female subjects. Br J Clin Pharmacol. 2003;56(2):232–7.PubMedCentralPubMed
80.
Zurück zum Zitat Andersson T, Hassan-Alin M, Hasselgren G, et al. Drug interaction studies with esomeprazole, the (S)-isomer of omeprazole. Clin Pharmacokinet. 2001;40(7):523–37.PubMed Andersson T, Hassan-Alin M, Hasselgren G, et al. Drug interaction studies with esomeprazole, the (S)-isomer of omeprazole. Clin Pharmacokinet. 2001;40(7):523–37.PubMed
81.
Zurück zum Zitat Drewelow B, Schaffler K, Reitmeir P. Superior interaction profile of pantoprazole vs esomeprazole after single dose diazepam regarding pharmacodynamic (PD) and kinetic (PK) parameters. Can J Gastroenterol. 2006;20(Suppl. A):144. Drewelow B, Schaffler K, Reitmeir P. Superior interaction profile of pantoprazole vs esomeprazole after single dose diazepam regarding pharmacodynamic (PD) and kinetic (PK) parameters. Can J Gastroenterol. 2006;20(Suppl. A):144.
82.
Zurück zum Zitat Drewelow B, Schaffler K, Reitmeir P, et al. Effects of multiple-dose esomeprazole and pantoprazole on diazepam pharmacokinetic profile and pharmacodynamic effects on cognitive and psychomotor function in healthy volunteers. Arzneimittelforschung. 2010;60(8):483–91.PubMed Drewelow B, Schaffler K, Reitmeir P, et al. Effects of multiple-dose esomeprazole and pantoprazole on diazepam pharmacokinetic profile and pharmacodynamic effects on cognitive and psychomotor function in healthy volunteers. Arzneimittelforschung. 2010;60(8):483–91.PubMed
83.
Zurück zum Zitat Hartmann M, Bliesath H, Huber R, et al. Simultaneous intake of antacids has no influence on the pharmacokinetics of the gastric H+/K+-ATPase inhibitor pantoprazole. Gut. 1994;35(Suppl. 4):A76. Hartmann M, Bliesath H, Huber R, et al. Simultaneous intake of antacids has no influence on the pharmacokinetics of the gastric H+/K+-ATPase inhibitor pantoprazole. Gut. 1994;35(Suppl. 4):A76.
84.
Zurück zum Zitat De Mey C, Meineke I, Steinijans VW, et al. Pantoprazole lacks interaction with antipyrine in man, either by inhibition or induction. Int J Clin Pharmacol Ther. 1994;32(2):98–106.PubMed De Mey C, Meineke I, Steinijans VW, et al. Pantoprazole lacks interaction with antipyrine in man, either by inhibition or induction. Int J Clin Pharmacol Ther. 1994;32(2):98–106.PubMed
85.
Zurück zum Zitat Hartmann M, Zech K, Bliesath H, et al. Pantoprazole lacks induction of CYP1A2 activity in man. Int J Clin Pharmacol Ther. 1999;37(4):159–64.PubMed Hartmann M, Zech K, Bliesath H, et al. Pantoprazole lacks induction of CYP1A2 activity in man. Int J Clin Pharmacol Ther. 1999;37(4):159–64.PubMed
86.
Zurück zum Zitat Huber R, Bliesath H, Hartmann M, et al. Pantoprazole does not interact with the pharmacokinetics of carbamazepine. Int J Clin Pharmacol Ther. 1998;36(10):521–4.PubMed Huber R, Bliesath H, Hartmann M, et al. Pantoprazole does not interact with the pharmacokinetics of carbamazepine. Int J Clin Pharmacol Ther. 1998;36(10):521–4.PubMed
87.
Zurück zum Zitat Padhi D, Harris R, Salfi M, et al. Cinacalcet HCl absorption in study subjects is not affected by coadministration of medications commonly prescribed to chronic kidney disease (CKD) patients (pantoprazole, sevelamer HCl, and calcium carbonate). J Am Soc Nephrol. 2003;14:SA-PO744. Padhi D, Harris R, Salfi M, et al. Cinacalcet HCl absorption in study subjects is not affected by coadministration of medications commonly prescribed to chronic kidney disease (CKD) patients (pantoprazole, sevelamer HCl, and calcium carbonate). J Am Soc Nephrol. 2003;14:SA-PO744.
88.
Zurück zum Zitat Lorf T, Ramadori G, Ringe B, et al. Pantoprazole does not affect cyclosporin A blood concentration in kidney-transplant patients. Eur J Clin Pharmacol. 2000;55(10):733–5.PubMed Lorf T, Ramadori G, Ringe B, et al. Pantoprazole does not affect cyclosporin A blood concentration in kidney-transplant patients. Eur J Clin Pharmacol. 2000;55(10):733–5.PubMed
89.
Zurück zum Zitat Gugler R, Hartmann M, Rudi J, et al. Lack of pharmacokinetic interaction of pantoprazole with diazepam in man. Br J Clin Pharmacol. 1996;42(2):249–52.PubMedCentralPubMed Gugler R, Hartmann M, Rudi J, et al. Lack of pharmacokinetic interaction of pantoprazole with diazepam in man. Br J Clin Pharmacol. 1996;42(2):249–52.PubMedCentralPubMed
90.
Zurück zum Zitat Bliesath H, Huber R, Steinijans VW, et al. Lack of pharmacokinetic interaction between pantoprazole and diclofenac. Int J Clin Pharmacol Ther. 1996;34(4):152–6.PubMed Bliesath H, Huber R, Steinijans VW, et al. Lack of pharmacokinetic interaction between pantoprazole and diclofenac. Int J Clin Pharmacol Ther. 1996;34(4):152–6.PubMed
91.
Zurück zum Zitat Hartmann M, Huber R, Bliesath H, et al. Lack of interaction between pantoprazole and digoxin at therapeutic doses in man. Int J Clin Pharmacol Ther. 1996;34(1 Suppl.):S67–71.PubMed Hartmann M, Huber R, Bliesath H, et al. Lack of interaction between pantoprazole and digoxin at therapeutic doses in man. Int J Clin Pharmacol Ther. 1996;34(1 Suppl.):S67–71.PubMed
92.
Zurück zum Zitat Heinze H, Fischer R, Pfutzer R, et al. Lack of interaction between pantoprazole and ethanol. Clin Drug Invest. 2001;2001(21):345–51. Heinze H, Fischer R, Pfutzer R, et al. Lack of interaction between pantoprazole and ethanol. Clin Drug Invest. 2001;2001(21):345–51.
93.
Zurück zum Zitat Walter-Sack IE, Bliesath H, Stotzer F, et al. Lack of pharmacokinetic and pharmacodynamic interaction between pantoprazole and glibenclamide in humans. Clin Drug Invest. 1998;15:253–60. Walter-Sack IE, Bliesath H, Stotzer F, et al. Lack of pharmacokinetic and pharmacodynamic interaction between pantoprazole and glibenclamide in humans. Clin Drug Invest. 1998;15:253–60.
94.
Zurück zum Zitat Dietrich JW, Gieselbrecht K, Holl RW, et al. Absorption kinetics of levothyroxine is not altered by proton-pump inhibitor therapy. Horm Metab Res. 2006;38(1):57–9.PubMed Dietrich JW, Gieselbrecht K, Holl RW, et al. Absorption kinetics of levothyroxine is not altered by proton-pump inhibitor therapy. Horm Metab Res. 2006;38(1):57–9.PubMed
95.
Zurück zum Zitat Koch HJ, Hartmann M, Bliesath H, et al. Pantoprazole has no influence on steady state pharmacokinetics and pharmacodynamics of metoprolol in healthy volunteers. Int J Clin Pharmacol Ther. 1996;34(10):420–3.PubMed Koch HJ, Hartmann M, Bliesath H, et al. Pantoprazole has no influence on steady state pharmacokinetics and pharmacodynamics of metoprolol in healthy volunteers. Int J Clin Pharmacol Ther. 1996;34(10):420–3.PubMed
96.
Zurück zum Zitat Hartmann M, Schulz HU, Krupp S, et al. Pantoprazole lacks interaction with the NSAID naproxen in man. Gut. 2000;47:A85. Hartmann M, Schulz HU, Krupp S, et al. Pantoprazole lacks interaction with the NSAID naproxen in man. Gut. 2000;47:A85.
97.
Zurück zum Zitat Bliesath H, Huber R, Steinijans VW, et al. Pantoprazole does not interact with nifedipine in man under steady-state conditions. Int J Clin Pharmacol Ther. 1996;34(2):51–5.PubMed Bliesath H, Huber R, Steinijans VW, et al. Pantoprazole does not interact with nifedipine in man under steady-state conditions. Int J Clin Pharmacol Ther. 1996;34(2):51–5.PubMed
98.
Zurück zum Zitat Middle MV, Muller FO, Schall R, et al. Effect of pantoprazole on ovulation suppression by a low-dose hormonal contraceptive. Clin Drug Invest. 1995;9:54–6. Middle MV, Muller FO, Schall R, et al. Effect of pantoprazole on ovulation suppression by a low-dose hormonal contraceptive. Clin Drug Invest. 1995;9:54–6.
99.
Zurück zum Zitat Ehrlich A, Fuder H, Hartmann M, et al. Lack of pharmacodynamic and pharmacokinetic interaction between pantoprazole and phenprocoumon in man. Eur J Clin Pharmacol. 1996;51(3–4):277–81.PubMed Ehrlich A, Fuder H, Hartmann M, et al. Lack of pharmacodynamic and pharmacokinetic interaction between pantoprazole and phenprocoumon in man. Eur J Clin Pharmacol. 1996;51(3–4):277–81.PubMed
100.
Zurück zum Zitat Middle MV, Muller FO, Schall R, et al. No influence of pantoprazole on the pharmacokinetics of phenytoin. Int J Clin Pharmacol Ther. 1995;33(5):304–7.PubMed Middle MV, Muller FO, Schall R, et al. No influence of pantoprazole on the pharmacokinetics of phenytoin. Int J Clin Pharmacol Ther. 1995;33(5):304–7.PubMed
101.
Zurück zum Zitat Bliesath H, Hartmann H, Maier J, et al. Lack of interaction between pantoprazole and piroxicam in man. Gut. 2000;47:A85. Bliesath H, Hartmann H, Maier J, et al. Lack of interaction between pantoprazole and piroxicam in man. Gut. 2000;47:A85.
102.
Zurück zum Zitat Lorf T, Ramadori G, Ringe B, et al. The effect of pantoprazole on tacrolimus and cyclosporin A blood concentration in transplant recipients. Eur J Clin Pharmacol. 2000;56(5):439–40.PubMed Lorf T, Ramadori G, Ringe B, et al. The effect of pantoprazole on tacrolimus and cyclosporin A blood concentration in transplant recipients. Eur J Clin Pharmacol. 2000;56(5):439–40.PubMed
103.
Zurück zum Zitat Schulz HU, Hartmann M, Steinijans VW, et al. Lack of influence of pantoprazole on the disposition kinetics of theophylline in man. Int J Clin Pharmacol Ther Toxicol. 1991;29(9):369–75.PubMed Schulz HU, Hartmann M, Steinijans VW, et al. Lack of influence of pantoprazole on the disposition kinetics of theophylline in man. Int J Clin Pharmacol Ther Toxicol. 1991;29(9):369–75.PubMed
104.
Zurück zum Zitat Duursema L, Muller FO, Schall R, et al. Lack of effect of pantoprazole on the pharmacodynamics and pharmacokinetics of warfarin. Br J Clin Pharmacol. 1995;39(6):700–3.PubMedCentralPubMed Duursema L, Muller FO, Schall R, et al. Lack of effect of pantoprazole on the pharmacodynamics and pharmacokinetics of warfarin. Br J Clin Pharmacol. 1995;39(6):700–3.PubMedCentralPubMed
105.
Zurück zum Zitat Ferron GM, Paul JC, Fruncillo RJ, et al. Lack of pharmacokinetic interaction between oral pantoprazole and cisapride in healthy adults. J Clin Pharmacol. 1999;39(9):945–50.PubMed Ferron GM, Paul JC, Fruncillo RJ, et al. Lack of pharmacokinetic interaction between oral pantoprazole and cisapride in healthy adults. J Clin Pharmacol. 1999;39(9):945–50.PubMed
106.
Zurück zum Zitat St Peter JV, Awni WM, Granneman GR, et al. The effects of lansoprazole on the disposition of antipyrine and indocyanine green in normal human subjects. Am J Ther. 1995;2(8):561–8.PubMed St Peter JV, Awni WM, Granneman GR, et al. The effects of lansoprazole on the disposition of antipyrine and indocyanine green in normal human subjects. Am J Ther. 1995;2(8):561–8.PubMed
107.
Zurück zum Zitat Lefebvre RA, Flouvat B, Karolac-Tamisier S, et al. Influence of lansoprazole treatment on diazepam plasma concentrations. Clin Pharmacol Ther. 1992;52(5):458–63.PubMed Lefebvre RA, Flouvat B, Karolac-Tamisier S, et al. Influence of lansoprazole treatment on diazepam plasma concentrations. Clin Pharmacol Ther. 1992;52(5):458–63.PubMed
108.
Zurück zum Zitat Gerloff J, Barth H, Migot A, et al. Does the proton pump inhibitor lansoprazole interact with antacids. Arch Pharmacol. 1993;347:A124. Gerloff J, Barth H, Migot A, et al. Does the proton pump inhibitor lansoprazole interact with antacids. Arch Pharmacol. 1993;347:A124.
109.
Zurück zum Zitat Fuchs W, Sennewald R, Klotz U. Lansoprazole does not affect the bioavailability of oral contraceptives. Br J Clin Pharmacol. 1994;38(4):376–80.PubMedCentralPubMed Fuchs W, Sennewald R, Klotz U. Lansoprazole does not affect the bioavailability of oral contraceptives. Br J Clin Pharmacol. 1994;38(4):376–80.PubMedCentralPubMed
110.
Zurück zum Zitat Karol MD, Locke CS, Cavanaugh JH. Lack of pharmacokinetic interaction between lansoprazole and intravenously administered phenytoin. J Clin Pharmacol. 1999;39(12):1283–9.PubMed Karol MD, Locke CS, Cavanaugh JH. Lack of pharmacokinetic interaction between lansoprazole and intravenously administered phenytoin. J Clin Pharmacol. 1999;39(12):1283–9.PubMed
111.
Zurück zum Zitat Gremse DA. Lansoprazole: pharmacokinetics, pharmacodynamics and clinical uses. Expert Opin Pharmacother. 2001;2(10):1663–70.PubMed Gremse DA. Lansoprazole: pharmacokinetics, pharmacodynamics and clinical uses. Expert Opin Pharmacother. 2001;2(10):1663–70.PubMed
112.
Zurück zum Zitat Landes BD, Petite JP, Flouvat B. Clinical pharmacokinetics of lansoprazole. Clin Pharmacokinet. 1995;28(6):458–70.PubMed Landes BD, Petite JP, Flouvat B. Clinical pharmacokinetics of lansoprazole. Clin Pharmacokinet. 1995;28(6):458–70.PubMed
113.
Zurück zum Zitat Dilger K, Zheng Z, Klotz U. Lack of drug interaction between omeprazole, lansoprazole, pantoprazole and theophylline. Br J Clin Pharmacol. 1999;48(3):438–44.PubMedCentralPubMed Dilger K, Zheng Z, Klotz U. Lack of drug interaction between omeprazole, lansoprazole, pantoprazole and theophylline. Br J Clin Pharmacol. 1999;48(3):438–44.PubMedCentralPubMed
114.
Zurück zum Zitat Granneman GR, Karol MD, Locke CS, et al. Pharmacokinetic interaction between lansoprazole and theophylline. Ther Drug Monit. 1995;17(5):460–4.PubMed Granneman GR, Karol MD, Locke CS, et al. Pharmacokinetic interaction between lansoprazole and theophylline. Ther Drug Monit. 1995;17(5):460–4.PubMed
115.
Zurück zum Zitat Kokufu T, Ihara N, Sugioka N, et al. Effects of lansoprazole on pharmacokinetics and metabolism of theophylline. Eur J Clin Pharmacol. 1995;48(5):391–5.PubMed Kokufu T, Ihara N, Sugioka N, et al. Effects of lansoprazole on pharmacokinetics and metabolism of theophylline. Eur J Clin Pharmacol. 1995;48(5):391–5.PubMed
116.
Zurück zum Zitat Takahashi K, Motohashi H, Yonezawa A, et al. Lansoprazole-tacrolimus interaction in Japanese transplant recipient with CYP2C19 polymorphism. Ann Pharmacother. 2004;38(5):791–4.PubMed Takahashi K, Motohashi H, Yonezawa A, et al. Lansoprazole-tacrolimus interaction in Japanese transplant recipient with CYP2C19 polymorphism. Ann Pharmacother. 2004;38(5):791–4.PubMed
117.
Zurück zum Zitat Itagaki F, Homma M, Yuzawa K, et al. Effect of lansoprazole and rabeprazole on tacrolimus pharmacokinetics in healthy volunteers with CYP2C19 mutations. J Pharm Pharmacol. 2004;56(8):1055–9.PubMed Itagaki F, Homma M, Yuzawa K, et al. Effect of lansoprazole and rabeprazole on tacrolimus pharmacokinetics in healthy volunteers with CYP2C19 mutations. J Pharm Pharmacol. 2004;56(8):1055–9.PubMed
118.
Zurück zum Zitat Yasui-Furukori N, Saito M, Uno T, et al. Effects of fluvoxamine on lansoprazole pharmacokinetics in relation to CYP2C19 genotypes. J Clin Pharmacol. 2004;44(11):1223–9.PubMed Yasui-Furukori N, Saito M, Uno T, et al. Effects of fluvoxamine on lansoprazole pharmacokinetics in relation to CYP2C19 genotypes. J Clin Pharmacol. 2004;44(11):1223–9.PubMed
119.
Zurück zum Zitat Vakily M, Lee RD, Wu J, et al. Drug interaction studies with dexlansoprazole modified release (TAK-390MR), a proton pump inhibitor with a dual delayed-release formulation: results of four randomized, double-blind, crossover, placebo-controlled, single-centre studies. Clin Drug Investig. 2009;29(1):35–50.PubMed Vakily M, Lee RD, Wu J, et al. Drug interaction studies with dexlansoprazole modified release (TAK-390MR), a proton pump inhibitor with a dual delayed-release formulation: results of four randomized, double-blind, crossover, placebo-controlled, single-centre studies. Clin Drug Investig. 2009;29(1):35–50.PubMed
120.
Zurück zum Zitat Humphries TJ. A review of the drug–drug interaction potential of rabeprazole sodium based on CYP-450 interference or absorption effects. Digestion. 1998;59(Suppl. 3):76. Humphries TJ. A review of the drug–drug interaction potential of rabeprazole sodium based on CYP-450 interference or absorption effects. Digestion. 1998;59(Suppl. 3):76.
121.
Zurück zum Zitat Humphries TJ, Nardi RV, Spera AC, et al. Coadministration of rabeprazole sodium (E3810) does not affect the pharmacokinetics of anhydrous theophylline or warfarin. Gastroenterology. 1996;110:A138. Humphries TJ, Nardi RV, Spera AC, et al. Coadministration of rabeprazole sodium (E3810) does not affect the pharmacokinetics of anhydrous theophylline or warfarin. Gastroenterology. 1996;110:A138.
122.
Zurück zum Zitat Itagaki F, Homma M, Yuzawa K, et al. Drug interaction of tacrolimus and proton pump inhibitors in renal transplant recipients with CYP2C19 gene mutation. Transpl Proc. 2002;34(7):2777–8. Itagaki F, Homma M, Yuzawa K, et al. Drug interaction of tacrolimus and proton pump inhibitors in renal transplant recipients with CYP2C19 gene mutation. Transpl Proc. 2002;34(7):2777–8.
123.
Zurück zum Zitat Yasuda S, Higashi S, Murakami M, et al. Antacids have no influence on the pharmacokinetics of rabeprazole, a new proton pump inhibitor, in healthy volunteers. Int J Clin Pharmacol Ther. 1999;37(5):249–53.PubMed Yasuda S, Higashi S, Murakami M, et al. Antacids have no influence on the pharmacokinetics of rabeprazole, a new proton pump inhibitor, in healthy volunteers. Int J Clin Pharmacol Ther. 1999;37(5):249–53.PubMed
124.
Zurück zum Zitat Uno T, Shimizu M, Yasui-Furukori N, et al. Different effects of fluvoxamine on rabeprazole pharmacokinetics in relation to CYP2C19 genotype status. Br J Clin Pharmacol. 2006;61(3):309–14.PubMedCentralPubMed Uno T, Shimizu M, Yasui-Furukori N, et al. Different effects of fluvoxamine on rabeprazole pharmacokinetics in relation to CYP2C19 genotype status. Br J Clin Pharmacol. 2006;61(3):309–14.PubMedCentralPubMed
125.
Zurück zum Zitat Humphries TJ, Merritt GJ. Review article: drug interactions with agents used to treat acid-related diseases. Aliment Pharmacol Ther. 1999;13(Suppl. 3):18–26.PubMed Humphries TJ, Merritt GJ. Review article: drug interactions with agents used to treat acid-related diseases. Aliment Pharmacol Ther. 1999;13(Suppl. 3):18–26.PubMed
126.
Zurück zum Zitat Andersson T, Holmberg J, Rohss K, et al. Pharmacokinetics and effect on caffeine metabolism of the proton pump inhibitors, omeprazole, lansoprazole, and pantoprazole. Br J Clin Pharmacol. 1998;45(4):369–75.PubMedCentralPubMed Andersson T, Holmberg J, Rohss K, et al. Pharmacokinetics and effect on caffeine metabolism of the proton pump inhibitors, omeprazole, lansoprazole, and pantoprazole. Br J Clin Pharmacol. 1998;45(4):369–75.PubMedCentralPubMed
127.
Zurück zum Zitat Rost KL, Roots I. Accelerated caffeine metabolism after omeprazole treatment is indicated by urinary metabolite ratios: coincidence with plasma clearance and breath test. Clin Pharmacol Ther. 1994;55(4):402–11.PubMed Rost KL, Roots I. Accelerated caffeine metabolism after omeprazole treatment is indicated by urinary metabolite ratios: coincidence with plasma clearance and breath test. Clin Pharmacol Ther. 1994;55(4):402–11.PubMed
128.
Zurück zum Zitat Naidu MUR, Shobha JC, Dixit VK, et al. Effect of multiple dose omeprazole on the pharmacokinetics of carbamazepine. Drug Invest. 1994;7:8–12. Naidu MUR, Shobha JC, Dixit VK, et al. Effect of multiple dose omeprazole on the pharmacokinetics of carbamazepine. Drug Invest. 1994;7:8–12.
129.
Zurück zum Zitat Colin-Jones DG. Safety of lansoprazole. Aliment Pharmacol Ther. 1993;7(Suppl. 1):56–60 discussion 1–6.PubMed Colin-Jones DG. Safety of lansoprazole. Aliment Pharmacol Ther. 1993;7(Suppl. 1):56–60 discussion 1–6.PubMed
130.
Zurück zum Zitat Schouler L, Dumas F, Couzigou P, et al. Omeprazole-cyclosporin interaction. Am J Gastroenterol. 1991;86(8):1097.PubMed Schouler L, Dumas F, Couzigou P, et al. Omeprazole-cyclosporin interaction. Am J Gastroenterol. 1991;86(8):1097.PubMed
131.
Zurück zum Zitat Andersson T, Hassan-Alin M, Hasselgren G, et al. Pharmacokinetic studies with esomeprazole, the (S)-isomer of omeprazole. Clin Pharmacokinet. 2001;40(6):411–26.PubMed Andersson T, Hassan-Alin M, Hasselgren G, et al. Pharmacokinetic studies with esomeprazole, the (S)-isomer of omeprazole. Clin Pharmacokinet. 2001;40(6):411–26.PubMed
132.
Zurück zum Zitat Oosterhuis B, Jonkman JH, Andersson T, et al. Minor effect of multiple dose omeprazole on the pharmacokinetics of digoxin after a single oral dose. Br J Clin Pharmacol. 1991;32(5):569–72.PubMedCentralPubMed Oosterhuis B, Jonkman JH, Andersson T, et al. Minor effect of multiple dose omeprazole on the pharmacokinetics of digoxin after a single oral dose. Br J Clin Pharmacol. 1991;32(5):569–72.PubMedCentralPubMed
133.
Zurück zum Zitat Fuhr U, Jetter A. Rabeprazole: pharmacokinetics and pharmacokinetic drug interactions. Pharmazie. 2002;57(9):595–601.PubMed Fuhr U, Jetter A. Rabeprazole: pharmacokinetics and pharmacokinetic drug interactions. Pharmazie. 2002;57(9):595–601.PubMed
134.
Zurück zum Zitat Battison L, Tulissi P, Moretti M, et al. Lansoprazole and ethanol metabolism: comparison with omeprazole and cimetidine. Pharmacol Toxicol. 1997;81:247–52. Battison L, Tulissi P, Moretti M, et al. Lansoprazole and ethanol metabolism: comparison with omeprazole and cimetidine. Pharmacol Toxicol. 1997;81:247–52.
135.
Zurück zum Zitat Andersson T, Lagerstrom PO, Unge P. A study of the interaction between omeprazole and phenytoin in epileptic patients. Ther Drug Monit. 1990;12(4):329–33.PubMed Andersson T, Lagerstrom PO, Unge P. A study of the interaction between omeprazole and phenytoin in epileptic patients. Ther Drug Monit. 1990;12(4):329–33.PubMed
136.
Zurück zum Zitat Hosohata K, Masuda S, Yonezawa A, et al. Absence of influence of concomitant administration of rabeprazole on the pharmacokinetics of tacrolimus in adult living-donor liver transplant patients: a case-control study. Drug Metab Pharmacokinet. 2009;24(5):458–63.PubMed Hosohata K, Masuda S, Yonezawa A, et al. Absence of influence of concomitant administration of rabeprazole on the pharmacokinetics of tacrolimus in adult living-donor liver transplant patients: a case-control study. Drug Metab Pharmacokinet. 2009;24(5):458–63.PubMed
Metadaten
Titel
Pharmacokinetic Drug Interaction Profiles of Proton Pump Inhibitors: An Update
verfasst von
Ralph-Steven Wedemeyer
Henning Blume
Publikationsdatum
01.04.2014
Verlag
Springer International Publishing
Erschienen in
Drug Safety / Ausgabe 4/2014
Print ISSN: 0114-5916
Elektronische ISSN: 1179-1942
DOI
https://doi.org/10.1007/s40264-014-0144-0

Weitere Artikel der Ausgabe 4/2014

Drug Safety 4/2014 Zur Ausgabe