Skip to main content
Erschienen in: Drugs 6/2018

01.04.2018 | Review Article

Individualising Therapy to Minimize Bacterial Multidrug Resistance

verfasst von: A. J. Heffernan, F. B. Sime, J. Lipman, J. A. Roberts

Erschienen in: Drugs | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

The scourge of antibiotic resistance threatens modern healthcare delivery. A contributing factor to this significant issue may be antibiotic dosing, whereby standard antibiotic regimens are unable to suppress the emergence of antibiotic resistance. This article aims to review the role of pharmacokinetic and pharmacodynamic (PK/PD) measures for optimising antibiotic therapy to minimise resistance emergence. It also seeks to describe the utility of combination antibiotic therapy for suppression of resistance and summarise the role of biomarkers in individualising antibiotic therapy. Scientific journals indexed in PubMed and Web of Science were searched to identify relevant articles and summarise existing evidence. Studies suggest that optimising antibiotic dosing to attain defined PK/PD ratios may limit the emergence of resistance. A maximum aminoglycoside concentration to minimum inhibitory concentration (MIC) ratio of > 20, a fluoroquinolone area under the concentration–time curve to MIC ratio of > 285 and a β-lactam trough concentration of > 6 × MIC are likely required for resistance suppression. In vitro studies demonstrate a clear advantage for some antibiotic combinations. However, clinical evidence is limited, suggesting that the use of combination regimens should be assessed on an individual patient basis. Biomarkers, such as procalcitonin, may help to individualise and reduce the duration of antibiotic treatment, which may minimise antibiotic resistance emergence during therapy. Future studies should translate laboratory-based studies into clinical trials and validate the appropriate clinical PK/PD predictors required for resistance suppression in vivo. Other adjunct strategies, such as biomarker-guided therapy or the use of antibiotic combinations require further investigation.
Literatur
1.
Zurück zum Zitat Satlin MJ, Cohen N, Ma KC, Gedrimaite Z, Soave R, Askin G, et al. Bacteremia due to carbapenem-resistant Enterobacteriaceae in neutropenic patients with hematologic malignancies. J Infect. 2016;73:336–45.PubMedPubMedCentralCrossRef Satlin MJ, Cohen N, Ma KC, Gedrimaite Z, Soave R, Askin G, et al. Bacteremia due to carbapenem-resistant Enterobacteriaceae in neutropenic patients with hematologic malignancies. J Infect. 2016;73:336–45.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Ben-David D, Kordevani R, Keller N, Tal I, Marzel A, Gal-Mor O, et al. Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clin Microbiol Infect. 2012;18:54–60.PubMedCrossRef Ben-David D, Kordevani R, Keller N, Tal I, Marzel A, Gal-Mor O, et al. Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clin Microbiol Infect. 2012;18:54–60.PubMedCrossRef
3.
Zurück zum Zitat Looke DFM, Gottlieb T, Jones CA, Paterson DL. Gram-negative resistance: can we combat the coming of a new “Red Plague”? MJA. 2013;198:243–4.PubMed Looke DFM, Gottlieb T, Jones CA, Paterson DL. Gram-negative resistance: can we combat the coming of a new “Red Plague”? MJA. 2013;198:243–4.PubMed
4.
Zurück zum Zitat Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis. 2011;11:355–62.PubMedCrossRef Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis. 2011;11:355–62.PubMedCrossRef
5.
Zurück zum Zitat Deak D, Outterson K, Powers JH, Kesselheim AS. Progress in the fight against multidrug-resistant bacteria? A review of US Food and Drug Administration-Approved Antibiotics, 2010–2015. Ann Intern Med. 2016;165:363–72.PubMedCrossRef Deak D, Outterson K, Powers JH, Kesselheim AS. Progress in the fight against multidrug-resistant bacteria? A review of US Food and Drug Administration-Approved Antibiotics, 2010–2015. Ann Intern Med. 2016;165:363–72.PubMedCrossRef
6.
Zurück zum Zitat Combes A, Luyt CE, Fagon JY, Wolff M, Trouillet JL, Chastre J, et al. Early predictors for infection recurrence and death in patients with ventilator-associated pneumonia. Crit Care Med. 2007;35:146–54.PubMedCrossRef Combes A, Luyt CE, Fagon JY, Wolff M, Trouillet JL, Chastre J, et al. Early predictors for infection recurrence and death in patients with ventilator-associated pneumonia. Crit Care Med. 2007;35:146–54.PubMedCrossRef
7.
Zurück zum Zitat Fernandez-Cuenca F, Gomez-Sanchez M, Rodriguez-Bano J, Martinez-Martinez L, Vila J, Bou G, et al. Epidemiological and clinical features associated with colonisation/infection by Acinetobacter baumannii with phenotypic heterogeneous resistance to carbapenems. Int J Antimicrob Agents. 2012;40:235–8.PubMedCrossRef Fernandez-Cuenca F, Gomez-Sanchez M, Rodriguez-Bano J, Martinez-Martinez L, Vila J, Bou G, et al. Epidemiological and clinical features associated with colonisation/infection by Acinetobacter baumannii with phenotypic heterogeneous resistance to carbapenems. Int J Antimicrob Agents. 2012;40:235–8.PubMedCrossRef
8.
Zurück zum Zitat Abdul-Aziz MH, Lipman J, Mouton JW, Hope WW, Roberts JA. Applying pharmacokinetic/pharmacodynamic principles in critically ill patients: optimizing efficacy and reducing resistance development. Semin Respir Crit Care Med. 2015;36:136–53.PubMedCrossRef Abdul-Aziz MH, Lipman J, Mouton JW, Hope WW, Roberts JA. Applying pharmacokinetic/pharmacodynamic principles in critically ill patients: optimizing efficacy and reducing resistance development. Semin Respir Crit Care Med. 2015;36:136–53.PubMedCrossRef
9.
Zurück zum Zitat Sager R, Kutz A, Mueller B, Schuetz P. Procalcitonin-guided diagnosis and antibiotic stewardship revisited. BMC Med. 2017;15:11.CrossRef Sager R, Kutz A, Mueller B, Schuetz P. Procalcitonin-guided diagnosis and antibiotic stewardship revisited. BMC Med. 2017;15:11.CrossRef
10.
Zurück zum Zitat Bouadma L, Luyt C-E, Tubach F, Cracco C, Alvarez A, Schwebel C, et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet. 2010;375:463–74.PubMedCrossRef Bouadma L, Luyt C-E, Tubach F, Cracco C, Alvarez A, Schwebel C, et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet. 2010;375:463–74.PubMedCrossRef
11.
Zurück zum Zitat Tsai D, Lipman J, Roberts JA. Pharmacokinetic/pharmacodynamic considerations for the optimization of antimicrobial delivery in the critically ill. Curr Opin Crit Care. 2015;21:412–20.PubMedCrossRef Tsai D, Lipman J, Roberts JA. Pharmacokinetic/pharmacodynamic considerations for the optimization of antimicrobial delivery in the critically ill. Curr Opin Crit Care. 2015;21:412–20.PubMedCrossRef
12.
Zurück zum Zitat Scaglione F, Esposito S, Leone S, Lucini V, Pannacci M, Ma L, et al. Feedback dose alteration significantly affects probability of pathogen eradication in nosocomial pneumonia. Eur Resp J. 2009;34:394–400.CrossRef Scaglione F, Esposito S, Leone S, Lucini V, Pannacci M, Ma L, et al. Feedback dose alteration significantly affects probability of pathogen eradication in nosocomial pneumonia. Eur Resp J. 2009;34:394–400.CrossRef
13.
Zurück zum Zitat Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14:498–509.PubMedPubMedCentralCrossRef Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14:498–509.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med. 2009;37:840–51.PubMedCrossRef Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med. 2009;37:840–51.PubMedCrossRef
15.
Zurück zum Zitat Lodise TP Jr, Lomaestro B, Drusano GL. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis. 2007;44:357–63.PubMedCrossRef Lodise TP Jr, Lomaestro B, Drusano GL. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis. 2007;44:357–63.PubMedCrossRef
16.
Zurück zum Zitat Roberts JA, Abdul-Aziz MH, Davis JS, Dulhunty JM, Cotta MO, Myburgh J, et al. Continuous versus intermittent beta-lactam infusion in severe sepsis. A meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med. 2016;194:681–91.PubMedCrossRef Roberts JA, Abdul-Aziz MH, Davis JS, Dulhunty JM, Cotta MO, Myburgh J, et al. Continuous versus intermittent beta-lactam infusion in severe sepsis. A meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med. 2016;194:681–91.PubMedCrossRef
17.
Zurück zum Zitat Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26:1–10.PubMedCrossRef Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26:1–10.PubMedCrossRef
18.
Zurück zum Zitat Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987;155:93–9.PubMedCrossRef Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987;155:93–9.PubMedCrossRef
19.
Zurück zum Zitat Pajot O, Burdet C, Couffignal C, Massias L, Armand-Lefevre L, Foucrier A, et al. Impact of imipenem and amikacin pharmacokinetic/pharmacodynamic parameters on microbiological outcome of Gram-negative bacilli ventilator-associated pneumonia. J Antimicrob Chemother. 2015;70:1487–94.PubMedCrossRef Pajot O, Burdet C, Couffignal C, Massias L, Armand-Lefevre L, Foucrier A, et al. Impact of imipenem and amikacin pharmacokinetic/pharmacodynamic parameters on microbiological outcome of Gram-negative bacilli ventilator-associated pneumonia. J Antimicrob Chemother. 2015;70:1487–94.PubMedCrossRef
20.
Zurück zum Zitat Tam VH, Ledesma KR, Vo G, Kabbara S, Lim TP, Nikolaou M. Pharmacodynamic modeling of aminoglycosides against Pseudomonas aeruginosa and Acinetobacter baumannii: identifying dosing regimens to suppress resistance development. Antimicrob Agents Chemother. 2008;52:3987–93.PubMedPubMedCentralCrossRef Tam VH, Ledesma KR, Vo G, Kabbara S, Lim TP, Nikolaou M. Pharmacodynamic modeling of aminoglycosides against Pseudomonas aeruginosa and Acinetobacter baumannii: identifying dosing regimens to suppress resistance development. Antimicrob Agents Chemother. 2008;52:3987–93.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Zelenitsky SA, Harding GK, Sun S, Ubhi K, Ariano RE. Treatment and outcome of Pseudomonas aeruginosa bacteraemia: an antibiotic pharmacodynamic analysis. J Antimicrob Chemother. 2003;52:668–74.PubMedCrossRef Zelenitsky SA, Harding GK, Sun S, Ubhi K, Ariano RE. Treatment and outcome of Pseudomonas aeruginosa bacteraemia: an antibiotic pharmacodynamic analysis. J Antimicrob Chemother. 2003;52:668–74.PubMedCrossRef
22.
Zurück zum Zitat Smith PF, Ballow CH, Booker BM, Forrest A, Schentag JJ. Pharmacokinetics and pharmacodynamics of aztreonam and tobramycin in hospitalized patients. Clin Ther. 2001;23:1231–44.PubMedCrossRef Smith PF, Ballow CH, Booker BM, Forrest A, Schentag JJ. Pharmacokinetics and pharmacodynamics of aztreonam and tobramycin in hospitalized patients. Clin Ther. 2001;23:1231–44.PubMedCrossRef
23.
Zurück zum Zitat Sinnollareddy MG, Roberts MS, Lipman J, Roberts JA. β-Lactam pharmacokinetics and pharmacodynamics in critically ill patients and strategies for dose optimization: a structured review. Clin Exp Pharmacol Physiol. 2012;39:489–96.PubMedCrossRef Sinnollareddy MG, Roberts MS, Lipman J, Roberts JA. β-Lactam pharmacokinetics and pharmacodynamics in critically ill patients and strategies for dose optimization: a structured review. Clin Exp Pharmacol Physiol. 2012;39:489–96.PubMedCrossRef
24.
Zurück zum Zitat Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin North Am. 2003;17:479–501.PubMedCrossRef Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin North Am. 2003;17:479–501.PubMedCrossRef
25.
Zurück zum Zitat Felton TW, Goodwin J, O’Connor L, Sharp A, Gregson L, Livermore J, et al. Impact of bolus dosing versus continuous infusion of piperacillin and tazobactam on the development of antimicrobial resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57:5811–9.PubMedPubMedCentralCrossRef Felton TW, Goodwin J, O’Connor L, Sharp A, Gregson L, Livermore J, et al. Impact of bolus dosing versus continuous infusion of piperacillin and tazobactam on the development of antimicrobial resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57:5811–9.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Cafini F, Aguilar L, Sevillano D, Gimenez MJ, Alou L, Fenoll A, et al. Decrease in bacterial load versus resistance selection of pneumococcal subpopulations by beta-lactam physiological concentrations over time: an in vitro pharmacodynamic simulation. Microb Drug Resist. 2008;14:13–21.PubMedCrossRef Cafini F, Aguilar L, Sevillano D, Gimenez MJ, Alou L, Fenoll A, et al. Decrease in bacterial load versus resistance selection of pneumococcal subpopulations by beta-lactam physiological concentrations over time: an in vitro pharmacodynamic simulation. Microb Drug Resist. 2008;14:13–21.PubMedCrossRef
27.
Zurück zum Zitat Tam VH, Chang KT, Zhou J, Ledesma KR, Phe K, Gao S, et al. Determining beta-lactam exposure threshold to suppress resistance development in Gram-negative bacteria. J Antimicrob Chemother. 2017;72:1421–8.PubMedCrossRef Tam VH, Chang KT, Zhou J, Ledesma KR, Phe K, Gao S, et al. Determining beta-lactam exposure threshold to suppress resistance development in Gram-negative bacteria. J Antimicrob Chemother. 2017;72:1421–8.PubMedCrossRef
28.
Zurück zum Zitat Tam VH, Schilling AN, Neshat S, Poole K, Melnick DA, Coyle EA. Optimization of meropenem minimum concentration/MIC ratio to suppress in vitro resistance of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49:4920–7.PubMedPubMedCentralCrossRef Tam VH, Schilling AN, Neshat S, Poole K, Melnick DA, Coyle EA. Optimization of meropenem minimum concentration/MIC ratio to suppress in vitro resistance of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49:4920–7.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Li X, Wang L, Zhang XJ, Yang Y, Gong WT, Xu B, et al. Evaluation of meropenem regimens suppressing emergence of resistance in Acinetobacter baumannii with human simulated exposure in an in vitro intravenous-infusion hollow-fiber infection model. Antimicrob Agents Chemother. 2014;58:6773–81.PubMedPubMedCentralCrossRef Li X, Wang L, Zhang XJ, Yang Y, Gong WT, Xu B, et al. Evaluation of meropenem regimens suppressing emergence of resistance in Acinetobacter baumannii with human simulated exposure in an in vitro intravenous-infusion hollow-fiber infection model. Antimicrob Agents Chemother. 2014;58:6773–81.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Zelenitsky SA, Ariano RE. Support for higher ciprofloxacin AUC(24)/MIC targets in treating Enterobacteriaceae bloodstream infection. J Antimicrob Chemother. 2010;65:1725–32.PubMedCrossRef Zelenitsky SA, Ariano RE. Support for higher ciprofloxacin AUC(24)/MIC targets in treating Enterobacteriaceae bloodstream infection. J Antimicrob Chemother. 2010;65:1725–32.PubMedCrossRef
31.
Zurück zum Zitat Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother. 1993;37:1073–81.PubMedPubMedCentralCrossRef Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother. 1993;37:1073–81.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Madaras-Kelly KJ, Ostergaard BE, Hovde LB, Rotschafer JC. Twenty-four-hour area under the concentration-time curve MIC ratio as a generic predictor of fluoroquinolone antimicrobial effect by using three strains of Pseudomonas aeruginosa and an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 1996;40:627–32.PubMedPubMedCentralCrossRef Madaras-Kelly KJ, Ostergaard BE, Hovde LB, Rotschafer JC. Twenty-four-hour area under the concentration-time curve MIC ratio as a generic predictor of fluoroquinolone antimicrobial effect by using three strains of Pseudomonas aeruginosa and an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 1996;40:627–32.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Ambrose PG, Grasela DM, Grasela TH, Passarell J, Mayer HB, Pierce PF. Pharmacodynamics of fluoroquinolones against Streptococcus pneumoniae in patients with community-acquired respiratory tract infections. Antimicrob Agents Chemother. 2001;45:2793–7.PubMedPubMedCentralCrossRef Ambrose PG, Grasela DM, Grasela TH, Passarell J, Mayer HB, Pierce PF. Pharmacodynamics of fluoroquinolones against Streptococcus pneumoniae in patients with community-acquired respiratory tract infections. Antimicrob Agents Chemother. 2001;45:2793–7.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Tam VH, Louie A, Deziel MR, Liu WG, Drusano GL. The relationship between quinolone exposures and resistance amplification is characterized by an inverted U: a new paradigm for optimizing pharmacodynamics to counterselect resistance. Antimicrob Agents Chemother. 2007;51:744–7.PubMedCrossRef Tam VH, Louie A, Deziel MR, Liu WG, Drusano GL. The relationship between quinolone exposures and resistance amplification is characterized by an inverted U: a new paradigm for optimizing pharmacodynamics to counterselect resistance. Antimicrob Agents Chemother. 2007;51:744–7.PubMedCrossRef
35.
Zurück zum Zitat Firsov AA, Vostrov SN, Lubenko IY, Drlica K, Portnoy YA, Zinner SH. In vitro pharmacodynamic evaluation of the mutant selection window hypothesis using four fluoroquinolones against Staphylococcus aureus. Antimicrob Agents Chemother. 2003;47:1604–13.PubMedPubMedCentralCrossRef Firsov AA, Vostrov SN, Lubenko IY, Drlica K, Portnoy YA, Zinner SH. In vitro pharmacodynamic evaluation of the mutant selection window hypothesis using four fluoroquinolones against Staphylococcus aureus. Antimicrob Agents Chemother. 2003;47:1604–13.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Olofsson SK, Marcusson LL, Lindgren PK, Hughes D, Cars O. Selection of ciprofloxacin resistance in Escherichia coli in an in vitro kinetic model: relation between drug exposure and mutant prevention concentration. J Antimicrob Chemother. 2006;57:1116–21.PubMedCrossRef Olofsson SK, Marcusson LL, Lindgren PK, Hughes D, Cars O. Selection of ciprofloxacin resistance in Escherichia coli in an in vitro kinetic model: relation between drug exposure and mutant prevention concentration. J Antimicrob Chemother. 2006;57:1116–21.PubMedCrossRef
37.
Zurück zum Zitat Holmes NE, Turnidge JD, Munckhof WJ, Robinson JO, Korman TM, O’Sullivan MV, et al. Vancomycin AUC/MIC ratio and 30-day mortality in patients with Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2013;57:1654–63.PubMedPubMedCentralCrossRef Holmes NE, Turnidge JD, Munckhof WJ, Robinson JO, Korman TM, O’Sullivan MV, et al. Vancomycin AUC/MIC ratio and 30-day mortality in patients with Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2013;57:1654–63.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Firsov AA, Smirnova MV, Lubenko IY, Vostrov SN, Portnoy YA, Zinner SH. Testing the mutant selection window hypothesis with Staphylococcus aureus exposed to daptomycin and vancomycin in an in vitro dynamic model. J Antimicrob Chemother. 2006;58:1185–92.PubMedCrossRef Firsov AA, Smirnova MV, Lubenko IY, Vostrov SN, Portnoy YA, Zinner SH. Testing the mutant selection window hypothesis with Staphylococcus aureus exposed to daptomycin and vancomycin in an in vitro dynamic model. J Antimicrob Chemother. 2006;58:1185–92.PubMedCrossRef
39.
Zurück zum Zitat Lenhard JR, Brown T, Rybak MJ, Meaney CJ, Norgard NB, Bulman ZP, et al. Sequential evolution of vancomycin-intermediate resistance alters virulence in Staphylococcus aureus: pharmacokinetic/pharmacodynamic targets for vancomycin exposure. Antimicrob Agents Chemother. 2016;60:1584–91.PubMedCentralCrossRef Lenhard JR, Brown T, Rybak MJ, Meaney CJ, Norgard NB, Bulman ZP, et al. Sequential evolution of vancomycin-intermediate resistance alters virulence in Staphylococcus aureus: pharmacokinetic/pharmacodynamic targets for vancomycin exposure. Antimicrob Agents Chemother. 2016;60:1584–91.PubMedCentralCrossRef
40.
Zurück zum Zitat Rayner CR, Forrest A, Meagher AK, Birmingham MC, Schentag JJ. Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet. 2003;42:1411–23.PubMedCrossRef Rayner CR, Forrest A, Meagher AK, Birmingham MC, Schentag JJ. Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet. 2003;42:1411–23.PubMedCrossRef
41.
Zurück zum Zitat Dong HY, Wang X, Dong YL, Lei JE, Li H, You HS, et al. Clinical pharmacokinetic/pharmacodynamic profile of linezolid in severely ill intensive care unit patients. Int J Antimicrob Agents. 2011;38:296–300.PubMedCrossRef Dong HY, Wang X, Dong YL, Lei JE, Li H, You HS, et al. Clinical pharmacokinetic/pharmacodynamic profile of linezolid in severely ill intensive care unit patients. Int J Antimicrob Agents. 2011;38:296–300.PubMedCrossRef
42.
Zurück zum Zitat Tsuji BT, Bulitta JB, Brown T, Forrest A, Kelchlin PA, Holden PN, et al. Pharmacodynamics of early, high-dose linezolid against vancomycin-resistant enterococci with elevated MICs and pre-existing genetic mutations. J Antimicrob Chemother. 2012;67:2182–90.PubMedCrossRef Tsuji BT, Bulitta JB, Brown T, Forrest A, Kelchlin PA, Holden PN, et al. Pharmacodynamics of early, high-dose linezolid against vancomycin-resistant enterococci with elevated MICs and pre-existing genetic mutations. J Antimicrob Chemother. 2012;67:2182–90.PubMedCrossRef
43.
Zurück zum Zitat Tsuji BT, Brown T, Parasrampuria R, Brazeau DA, Forrest A, Kelchlin PA, et al. Front-loaded linezolid regimens result in increased killing and suppression of the accessory gene regulator system of Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56:3712–9.PubMedPubMedCentralCrossRef Tsuji BT, Brown T, Parasrampuria R, Brazeau DA, Forrest A, Kelchlin PA, et al. Front-loaded linezolid regimens result in increased killing and suppression of the accessory gene regulator system of Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56:3712–9.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Dudhani RV, Turnidge JD, Nation RL, Li J. fAUC/MIC is the most predictive pharmacokinetic/pharmacodynamic index of colistin against Acinetobacter baumannii in murine thigh and lung infection models. J Antimicrob Chemother. 2010;65:1984–90.PubMedPubMedCentralCrossRef Dudhani RV, Turnidge JD, Nation RL, Li J. fAUC/MIC is the most predictive pharmacokinetic/pharmacodynamic index of colistin against Acinetobacter baumannii in murine thigh and lung infection models. J Antimicrob Chemother. 2010;65:1984–90.PubMedPubMedCentralCrossRef
46.
47.
Zurück zum Zitat Docobo-Perez F, Drusano GL, Johnson A, Goodwin J, Whalley S, Ramos-Martin V, et al. Pharmacodynamics of fosfomycin: insights into clinical use for antimicrobial resistance. Antimicrob Agents Chemother. 2015;59:5602–10.PubMedPubMedCentralCrossRef Docobo-Perez F, Drusano GL, Johnson A, Goodwin J, Whalley S, Ramos-Martin V, et al. Pharmacodynamics of fosfomycin: insights into clinical use for antimicrobial resistance. Antimicrob Agents Chemother. 2015;59:5602–10.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Gugel J, dos Santos Pereira A, Pignatari ACC, Gales AC. β-Lactam MICs correlate poorly with mutant prevention concentrations for clinical isolates of Acinetobacter spp. and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50:2276–7.PubMedPubMedCentralCrossRef Gugel J, dos Santos Pereira A, Pignatari ACC, Gales AC. β-Lactam MICs correlate poorly with mutant prevention concentrations for clinical isolates of Acinetobacter spp. and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50:2276–7.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Hansen GT, Zhao XL, Drlica K, Blondeau JM. Mutant prevention concentration for ciprofloxacin and levofloxacin with Pseudomonas aeruginosa. Int J Antimicrob Agents. 2006;27:120–4.PubMedCrossRef Hansen GT, Zhao XL, Drlica K, Blondeau JM. Mutant prevention concentration for ciprofloxacin and levofloxacin with Pseudomonas aeruginosa. Int J Antimicrob Agents. 2006;27:120–4.PubMedCrossRef
50.
Zurück zum Zitat Jumbe N. Application of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial populations during therapy. J Clin Invest. 2003;112:275–85.PubMedPubMedCentralCrossRef Jumbe N. Application of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial populations during therapy. J Clin Invest. 2003;112:275–85.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Credito K, Kosowska-Shick K, Appelbaum PC. Mutant prevention concentrations of four carbapenems against gram-negative rods. Antimicrob Agents Chemother. 2010;54:2692–5.PubMedPubMedCentralCrossRef Credito K, Kosowska-Shick K, Appelbaum PC. Mutant prevention concentrations of four carbapenems against gram-negative rods. Antimicrob Agents Chemother. 2010;54:2692–5.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Diez-Aguilar M, Morosini MI, Tedim AP, Rodriguez I, Aktas Z, Canton R. Antimicrobial activity of fosfomycin–tobramycin combination against Pseudomonas aeruginosa isolates assessed by time-kill assays and mutant prevention concentrations. Antimicrob Agents Chemother. 2015;59:6039–45.PubMedPubMedCentralCrossRef Diez-Aguilar M, Morosini MI, Tedim AP, Rodriguez I, Aktas Z, Canton R. Antimicrobial activity of fosfomycin–tobramycin combination against Pseudomonas aeruginosa isolates assessed by time-kill assays and mutant prevention concentrations. Antimicrob Agents Chemother. 2015;59:6039–45.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Blondeau JM, Shebelski SD, Hesje CK. Killing of Streptococcus pneumoniae by azithromycin, clarithromycin, erythromycin, telithromycin and gemifloxacin using drug minimum inhibitory concentrations and mutant prevention concentrations. Int J Antimicrob Agents. 2015;45:594–9.PubMedCrossRef Blondeau JM, Shebelski SD, Hesje CK. Killing of Streptococcus pneumoniae by azithromycin, clarithromycin, erythromycin, telithromycin and gemifloxacin using drug minimum inhibitory concentrations and mutant prevention concentrations. Int J Antimicrob Agents. 2015;45:594–9.PubMedCrossRef
54.
Zurück zum Zitat Drusano GL, Liu W, Fikes S, Cirz R, Robbins N, Kurhanewicz S, et al. Interaction of drug- and granulocyte-mediated killing of Pseudomonas aeruginosa in a murine pneumonia model. J Infect Dis. 2014;210:1319–24.PubMedPubMedCentralCrossRef Drusano GL, Liu W, Fikes S, Cirz R, Robbins N, Kurhanewicz S, et al. Interaction of drug- and granulocyte-mediated killing of Pseudomonas aeruginosa in a murine pneumonia model. J Infect Dis. 2014;210:1319–24.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Hesje CK, Tillotson GS, Blondeau JM. MICs, MPCs and PK/PDs: a match (sometimes) made in hosts. Expert Rev Respir Med. 2007;1:7–16.PubMedCrossRef Hesje CK, Tillotson GS, Blondeau JM. MICs, MPCs and PK/PDs: a match (sometimes) made in hosts. Expert Rev Respir Med. 2007;1:7–16.PubMedCrossRef
56.
Zurück zum Zitat Drlica K, Zhao X. Mutant selection window hypothesis updated. Clin Infect Dis. 2007;44:681–8.PubMedCrossRef Drlica K, Zhao X. Mutant selection window hypothesis updated. Clin Infect Dis. 2007;44:681–8.PubMedCrossRef
57.
Zurück zum Zitat Dahdouh E, Shoucair SH, Salem SE, Daoud Z. Mutant prevention concentrations of imipenem and meropenem against Pseudomonas aeruginosa and Acinetobacter baumannii. Sci World J. 2014;2014:979648.CrossRef Dahdouh E, Shoucair SH, Salem SE, Daoud Z. Mutant prevention concentrations of imipenem and meropenem against Pseudomonas aeruginosa and Acinetobacter baumannii. Sci World J. 2014;2014:979648.CrossRef
58.
Zurück zum Zitat Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3:163–75.PubMedCrossRef Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3:163–75.PubMedCrossRef
59.
Zurück zum Zitat Bruins MJ, Bloembergen P, Ruijs G, Wolfhagen M. Identification and susceptibility testing of Enterobacteriaceae and Pseudomonas aeruginosa by direct inoculation from positive BACTEC blood culture bottles into Vitek 2. J Clin Microbiol. 2004;42:7–11.PubMedPubMedCentralCrossRef Bruins MJ, Bloembergen P, Ruijs G, Wolfhagen M. Identification and susceptibility testing of Enterobacteriaceae and Pseudomonas aeruginosa by direct inoculation from positive BACTEC blood culture bottles into Vitek 2. J Clin Microbiol. 2004;42:7–11.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Liu LG, Zhu YL, Hu LF, Cheng J, Ye Y, Li JB. Comparative study of the mutant prevention concentrations of vancomycin alone and in combination with levofloxacin, rifampicin and fosfomycin against methicillin-resistant Staphylococcus epidermidis. J Antibiot. 2013;66:709–12.CrossRef Liu LG, Zhu YL, Hu LF, Cheng J, Ye Y, Li JB. Comparative study of the mutant prevention concentrations of vancomycin alone and in combination with levofloxacin, rifampicin and fosfomycin against methicillin-resistant Staphylococcus epidermidis. J Antibiot. 2013;66:709–12.CrossRef
61.
Zurück zum Zitat Allen GP, Kaatz GW, Rybak MJ. Activities of mutant prevention concentration-targeted moxifloxacin and levofloxacin against Streptococcus pneumoniae in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2003;47:2606–14.PubMedPubMedCentralCrossRef Allen GP, Kaatz GW, Rybak MJ. Activities of mutant prevention concentration-targeted moxifloxacin and levofloxacin against Streptococcus pneumoniae in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2003;47:2606–14.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Olofsson SK, Marcusson LL, Stromback A, Hughes D, Cars O. Dose-related selection of fluoroquinolone-resistant Escherichia coli. J Antimicrob Chemother. 2007;60:795–801.PubMedCrossRef Olofsson SK, Marcusson LL, Stromback A, Hughes D, Cars O. Dose-related selection of fluoroquinolone-resistant Escherichia coli. J Antimicrob Chemother. 2007;60:795–801.PubMedCrossRef
63.
Zurück zum Zitat Breakpoint tables for interpretation of MICs and zone diameters: The European Committee on Antimicrobial Susceptibility Testing; 2017. http://eucast.org. Accessed 24 Jan 2017. Breakpoint tables for interpretation of MICs and zone diameters: The European Committee on Antimicrobial Susceptibility Testing; 2017. http://​eucast.​org. Accessed 24 Jan 2017.
64.
Zurück zum Zitat Burdet C, Pajot O, Couffignal C, Armand-Lefevre L, Foucrier A, Laouenan C, et al. Population pharmacokinetics of single-dose amikacin in critically ill patients with suspected ventilator-associated pneumonia. Eur J Clin Pharmacol. 2015;71:75–83.PubMedCrossRef Burdet C, Pajot O, Couffignal C, Armand-Lefevre L, Foucrier A, Laouenan C, et al. Population pharmacokinetics of single-dose amikacin in critically ill patients with suspected ventilator-associated pneumonia. Eur J Clin Pharmacol. 2015;71:75–83.PubMedCrossRef
65.
Zurück zum Zitat Frippiat F, Musuamba FT, Seidel L, Albert A, Denooz R, Charlier C, et al. Modelled target attainment after meropenem infusion in patients with severe nosocomial pneumonia: the PROMESSE study. J Antimicrob Chemother. 2015;70:207–16.PubMedCrossRef Frippiat F, Musuamba FT, Seidel L, Albert A, Denooz R, Charlier C, et al. Modelled target attainment after meropenem infusion in patients with severe nosocomial pneumonia: the PROMESSE study. J Antimicrob Chemother. 2015;70:207–16.PubMedCrossRef
66.
Zurück zum Zitat Haeseker M, Stolk L, Nieman F, Hoebe C, Neef C, Bruggeman C, et al. The ciprofloxacin target AUC:MIC ratio is not reached in hospitalized patients with the recommended dosing regimens. Br J Clin Pharmacol. 2013;75:180–5.PubMedCrossRef Haeseker M, Stolk L, Nieman F, Hoebe C, Neef C, Bruggeman C, et al. The ciprofloxacin target AUC:MIC ratio is not reached in hospitalized patients with the recommended dosing regimens. Br J Clin Pharmacol. 2013;75:180–5.PubMedCrossRef
69.
Zurück zum Zitat Tankovic J, Perichon B, Duval J, Courvalin P. Contribution of mutations in gyrA and parC genes to fluoroquinolone resistance of mutants of Streptococcus pneumoniae obtained in vivo and in vitro. Antimicrob Agents Chemother. 1996;40:2505–10.PubMedPubMedCentralCrossRef Tankovic J, Perichon B, Duval J, Courvalin P. Contribution of mutations in gyrA and parC genes to fluoroquinolone resistance of mutants of Streptococcus pneumoniae obtained in vivo and in vitro. Antimicrob Agents Chemother. 1996;40:2505–10.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Ince D, Aras R, Hooper DC. Mechanisms and frequency of resistance to gatifloxacin in comparison with ciprofloxacin in Staphylococcus aureus. Drugs. 1999;58:134–5.CrossRef Ince D, Aras R, Hooper DC. Mechanisms and frequency of resistance to gatifloxacin in comparison with ciprofloxacin in Staphylococcus aureus. Drugs. 1999;58:134–5.CrossRef
71.
Zurück zum Zitat Ince D, Aras R, Hooper DC. Mechanisms and frequency of resistance to moxifloxacin in comparison with ciprofloxacin in Staphylococcus aureus. Drugs. 1999;58:132–3.CrossRef Ince D, Aras R, Hooper DC. Mechanisms and frequency of resistance to moxifloxacin in comparison with ciprofloxacin in Staphylococcus aureus. Drugs. 1999;58:132–3.CrossRef
72.
Zurück zum Zitat Riesenfeld C, Everett M, Piddock LJV, Hall BG. Adaptive mutations produce resistance to ciprofloxacin. Antimicrob Agents Chemother. 1997;41:2059–60.PubMedPubMedCentralCrossRef Riesenfeld C, Everett M, Piddock LJV, Hall BG. Adaptive mutations produce resistance to ciprofloxacin. Antimicrob Agents Chemother. 1997;41:2059–60.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Morero NR, Monti MR, Argarana CE. Effect of ciprofloxacin concentration on the frequency and nature of resistant mutants selected from Pseudomonas aeruginosa mutS and mutT hypermutators. Antimicrob Agents Chemother. 2011;55:3668–76.PubMedPubMedCentralCrossRef Morero NR, Monti MR, Argarana CE. Effect of ciprofloxacin concentration on the frequency and nature of resistant mutants selected from Pseudomonas aeruginosa mutS and mutT hypermutators. Antimicrob Agents Chemother. 2011;55:3668–76.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Drago L, De Vecchi E, Nicola L, Tocalli L, Gismondo MR. In vitro selection of resistance in Pseudomonas aeruginosa and Acinetobacter spp. by levofloxacin and ciprofloxacin alone and in combination with beta-lactams and amikacin. J Antimicrob Chemother. 2005;56:353–9.PubMedCrossRef Drago L, De Vecchi E, Nicola L, Tocalli L, Gismondo MR. In vitro selection of resistance in Pseudomonas aeruginosa and Acinetobacter spp. by levofloxacin and ciprofloxacin alone and in combination with beta-lactams and amikacin. J Antimicrob Chemother. 2005;56:353–9.PubMedCrossRef
75.
Zurück zum Zitat Schedletzky H, Wiedemann B, Heisig P. The effect of moxifloxacin on its target topoisomerases from Escherichia coli and Staphylococcus aureus. J Antimicrob Chemother. 1999;43:31–7.PubMedCrossRef Schedletzky H, Wiedemann B, Heisig P. The effect of moxifloxacin on its target topoisomerases from Escherichia coli and Staphylococcus aureus. J Antimicrob Chemother. 1999;43:31–7.PubMedCrossRef
76.
Zurück zum Zitat Baldesi O, Michel F, Guervilly C, Embriaco N, Granfond A, La Scola B, et al. Bacterial ventilator-associated pneumonia: bronchoalveolar lavage results are not influenced by dilution. Intensive Care Med. 2009;35:1210–5.PubMedCrossRef Baldesi O, Michel F, Guervilly C, Embriaco N, Granfond A, La Scola B, et al. Bacterial ventilator-associated pneumonia: bronchoalveolar lavage results are not influenced by dilution. Intensive Care Med. 2009;35:1210–5.PubMedCrossRef
77.
Zurück zum Zitat Jager NGL, van Hest RM, Lipman J, Taccone FS, Roberts JA. Therapeutic drug monitoring of anti-infective agents in critically ill patients. Expert Rev Clin Pharmacol. 2016;9:961–79.PubMedCrossRef Jager NGL, van Hest RM, Lipman J, Taccone FS, Roberts JA. Therapeutic drug monitoring of anti-infective agents in critically ill patients. Expert Rev Clin Pharmacol. 2016;9:961–79.PubMedCrossRef
78.
Zurück zum Zitat Felton TW, Hope WW, Roberts JA. How severe is antibiotic pharmacokinetic variability in critically ill patients and what can be done about it? Diagn Microbiol Infect Dis. 2014;79:441–7.PubMedCrossRef Felton TW, Hope WW, Roberts JA. How severe is antibiotic pharmacokinetic variability in critically ill patients and what can be done about it? Diagn Microbiol Infect Dis. 2014;79:441–7.PubMedCrossRef
79.
Zurück zum Zitat Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58:1072–83.PubMedCrossRef Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58:1072–83.PubMedCrossRef
80.
Zurück zum Zitat Roberts JA, Ulldemolins M, Roberts MS, McWhinney B, Ungerer J, Paterson DL, et al. Therapeutic drug monitoring of beta-lactams in critically ill patients: proof of concept. Int J Antimicrob Agents. 2010;36:332–9.PubMedCrossRef Roberts JA, Ulldemolins M, Roberts MS, McWhinney B, Ungerer J, Paterson DL, et al. Therapeutic drug monitoring of beta-lactams in critically ill patients: proof of concept. Int J Antimicrob Agents. 2010;36:332–9.PubMedCrossRef
81.
Zurück zum Zitat Duszynska W, Taccone FS, Hurkacz M, Kowalska-Krochmal B, Wiela-Hojenska A, Kubler A. Therapeutic drug monitoring of amikacin in septic patients. Crit Care. 2013;17:10.CrossRef Duszynska W, Taccone FS, Hurkacz M, Kowalska-Krochmal B, Wiela-Hojenska A, Kubler A. Therapeutic drug monitoring of amikacin in septic patients. Crit Care. 2013;17:10.CrossRef
82.
Zurück zum Zitat Pea F, Furlanut M, Negri C, Pavan F, Crapis M, Cristini F, et al. Prospectively validated dosing nomograms for maximizing the pharmacodynamics of vancomycin administered by continuous infusion in critically ill patients. Antimicrob Agents Chemother. 2009;53:1863–7.PubMedPubMedCentralCrossRef Pea F, Furlanut M, Negri C, Pavan F, Crapis M, Cristini F, et al. Prospectively validated dosing nomograms for maximizing the pharmacodynamics of vancomycin administered by continuous infusion in critically ill patients. Antimicrob Agents Chemother. 2009;53:1863–7.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Abdul-Aziz MH, Sulaiman H, Mat-Nor MB, Rai V, Wong KK, Hasan MS, et al. Beta-lactam infusion in severe sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med. 2016;42:1535–45.PubMedCrossRef Abdul-Aziz MH, Sulaiman H, Mat-Nor MB, Rai V, Wong KK, Hasan MS, et al. Beta-lactam infusion in severe sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med. 2016;42:1535–45.PubMedCrossRef
87.
Zurück zum Zitat Drusano GL, Bonomo RA, Bahniuk N, Bulitta JB, VanScoy B, DeFiglio H, et al. Resistance emergence mechanism and mechanism of resistance suppression by tobramycin for cefepime for Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2012;56:231–42.PubMedPubMedCentralCrossRef Drusano GL, Bonomo RA, Bahniuk N, Bulitta JB, VanScoy B, DeFiglio H, et al. Resistance emergence mechanism and mechanism of resistance suppression by tobramycin for cefepime for Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2012;56:231–42.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Kashuba ADM, Nafziger AN, Drusano GL, Bertino JS. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by Gram-negative bacteria. Antimicrob Agents Chemother. 1999;43:623–9.PubMedPubMedCentralCrossRef Kashuba ADM, Nafziger AN, Drusano GL, Bertino JS. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by Gram-negative bacteria. Antimicrob Agents Chemother. 1999;43:623–9.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Layeux B, Taccone FS, Fagnoul D, Vincent JL, Jacobs F. Amikacin monotherapy for sepsis caused by pan resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010;54:4939–41.PubMedPubMedCentralCrossRef Layeux B, Taccone FS, Fagnoul D, Vincent JL, Jacobs F. Amikacin monotherapy for sepsis caused by pan resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010;54:4939–41.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Roger C, Nucci B, Molinari N, Bastide S, Saissi G, Pradel G, et al. Standard dosing of amikacin and gentamicin in critically ill patients results in variable and subtherapeutic concentrations. Int J Antimicrob Agents. 2015;46:21–7.PubMedCrossRef Roger C, Nucci B, Molinari N, Bastide S, Saissi G, Pradel G, et al. Standard dosing of amikacin and gentamicin in critically ill patients results in variable and subtherapeutic concentrations. Int J Antimicrob Agents. 2015;46:21–7.PubMedCrossRef
92.
Zurück zum Zitat Roger C, Nucci B, Louart B, Friggeri A, Knani H, Evrard A, et al. Impact of 30 mg/kg amikacin and 8 mg/kg gentamicin on serum concentrations in critically ill patients with severe sepsis. J Antimicrob Chemother. 2016;71:208–12.PubMedCrossRef Roger C, Nucci B, Louart B, Friggeri A, Knani H, Evrard A, et al. Impact of 30 mg/kg amikacin and 8 mg/kg gentamicin on serum concentrations in critically ill patients with severe sepsis. J Antimicrob Chemother. 2016;71:208–12.PubMedCrossRef
94.
Zurück zum Zitat Sole-Lleonart C, Rouby JJ, Blot S, Poulakou G, Chastre J, Palmer LB, et al. Nebulization of antiinfective agents in invasively mechanically ventilated adults: a systematic review and meta-analysis. Anesthesiology. 2017;126:890–908.PubMedCrossRef Sole-Lleonart C, Rouby JJ, Blot S, Poulakou G, Chastre J, Palmer LB, et al. Nebulization of antiinfective agents in invasively mechanically ventilated adults: a systematic review and meta-analysis. Anesthesiology. 2017;126:890–908.PubMedCrossRef
95.
96.
Zurück zum Zitat Michalopoulos AS, Livaditis IG, Gougoutas V. The revival of fosfomycin. Int J Infect Dis. 2011;15:E732–9.PubMedCrossRef Michalopoulos AS, Livaditis IG, Gougoutas V. The revival of fosfomycin. Int J Infect Dis. 2011;15:E732–9.PubMedCrossRef
97.
Zurück zum Zitat VanScoy BD, McCauley J, Ellis-Grosse EJ, Okusanya OO, Bhavnani SM, Forrest A, et al. Exploration of the pharmacokinetic-pharmacodynamic relationships for fosfomycin efficacy using an in vitro infection model. Antimicrob Agents Chemother. 2015;59:7170–7.PubMedPubMedCentralCrossRef VanScoy BD, McCauley J, Ellis-Grosse EJ, Okusanya OO, Bhavnani SM, Forrest A, et al. Exploration of the pharmacokinetic-pharmacodynamic relationships for fosfomycin efficacy using an in vitro infection model. Antimicrob Agents Chemother. 2015;59:7170–7.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Mazzei T, Cassetta MI, Fallani S, Arrigucci S, Novelli A. Pharmacokinetic and pharmacodynamic aspects of antimicrobial agents for the treatment of uncomplicated urinary tract infections. Int J Antimicrob Agents. 2006;28:S35–41.PubMedCrossRef Mazzei T, Cassetta MI, Fallani S, Arrigucci S, Novelli A. Pharmacokinetic and pharmacodynamic aspects of antimicrobial agents for the treatment of uncomplicated urinary tract infections. Int J Antimicrob Agents. 2006;28:S35–41.PubMedCrossRef
99.
100.
Zurück zum Zitat Karageorgopoulos DE, Wang R, Yu XH, Falagas ME. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J Antimicrob Chemother. 2012;67:255-68.PubMedPubMedCentralCrossRef Karageorgopoulos DE, Wang R, Yu XH, Falagas ME. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J Antimicrob Chemother. 2012;67:255-68.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Parker SL, Frantzeskaki F, Wallis SC, Diakaki C, Giamarellou H, Koulenti D, et al. Population pharmacokinetics of fosfomycin in critically ill patients. Antimicrob Agents Chemother. 2015;59:6471–6.PubMedPubMedCentralCrossRef Parker SL, Frantzeskaki F, Wallis SC, Diakaki C, Giamarellou H, Koulenti D, et al. Population pharmacokinetics of fosfomycin in critically ill patients. Antimicrob Agents Chemother. 2015;59:6471–6.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Matzi V, Lindenmann J, Porubsky C, Kugler SA, Maier A, Dittrich P, et al. Extracellular concentrations of fosfomycin in lung tissue of septic patients. J Antimicrob Chemother. 2010;65:995–8.PubMedCrossRef Matzi V, Lindenmann J, Porubsky C, Kugler SA, Maier A, Dittrich P, et al. Extracellular concentrations of fosfomycin in lung tissue of septic patients. J Antimicrob Chemother. 2010;65:995–8.PubMedCrossRef
103.
Zurück zum Zitat Montgomery AB, Vallance S, Abuan T, Tservistas M, Davies A. A randomized double-blind placebo-controlled dose-escalation phase 1 study of aerosolized amikacin and fosfomycin delivered via the PARI investigational eflow (R) inline nebulizer system in mechanically ventilated patients. J Aerosol Med Pulm Drug Deliv. 2014;27:441–8.PubMedPubMedCentralCrossRef Montgomery AB, Vallance S, Abuan T, Tservistas M, Davies A. A randomized double-blind placebo-controlled dose-escalation phase 1 study of aerosolized amikacin and fosfomycin delivered via the PARI investigational eflow (R) inline nebulizer system in mechanically ventilated patients. J Aerosol Med Pulm Drug Deliv. 2014;27:441–8.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T > MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 2008;31:345–51.PubMedCrossRef McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T > MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 2008;31:345–51.PubMedCrossRef
105.
Zurück zum Zitat Tam VH, McKinnon PS, Akins RL, Rybak MJ, Drusano GL. Pharmacodynamics of cefepime in patients with Gram-negative infections. J Antimicrob Chemother. 2002;50:425–8.PubMedCrossRef Tam VH, McKinnon PS, Akins RL, Rybak MJ, Drusano GL. Pharmacodynamics of cefepime in patients with Gram-negative infections. J Antimicrob Chemother. 2002;50:425–8.PubMedCrossRef
106.
Zurück zum Zitat Rhodes NJ, Kuti JL, Nicolau DP, Van Wart S, Nicasio AM, Liu JJ, et al. Defining Clinical Exposures of Cefepime for Gram-Negative Bloodstream Infections That Are Associated with Improved Survival. Antimicrob Agents Chemother. 2016;60:1401–10.PubMedCentralCrossRef Rhodes NJ, Kuti JL, Nicolau DP, Van Wart S, Nicasio AM, Liu JJ, et al. Defining Clinical Exposures of Cefepime for Gram-Negative Bloodstream Infections That Are Associated with Improved Survival. Antimicrob Agents Chemother. 2016;60:1401–10.PubMedCentralCrossRef
107.
Zurück zum Zitat Aitken SL, Altshuler J, Guervil DJ, Hirsch EB, Ostrosky-Zeichner LL, Ericsson CD, et al. Cefepime free minimum concentration to minimum inhibitory concentration (fC(min)/MIC) ratio predicts clinical failure in patients with Gram-negative bacterial pneumonia. Int J Antimicrob Agents. 2015;45:541–4.PubMedCrossRef Aitken SL, Altshuler J, Guervil DJ, Hirsch EB, Ostrosky-Zeichner LL, Ericsson CD, et al. Cefepime free minimum concentration to minimum inhibitory concentration (fC(min)/MIC) ratio predicts clinical failure in patients with Gram-negative bacterial pneumonia. Int J Antimicrob Agents. 2015;45:541–4.PubMedCrossRef
108.
Zurück zum Zitat Crandon JL, Luyt C-E, Aubry A, Chastre J, Nicolau DP. Pharmacodynamics of carbapenems for the treatment of Pseudomonas aeruginosa ventilator-associated pneumonia: associations with clinical outcome and recurrence. J Antimicrob Chemother. 2016;71:2534.PubMedCrossRef Crandon JL, Luyt C-E, Aubry A, Chastre J, Nicolau DP. Pharmacodynamics of carbapenems for the treatment of Pseudomonas aeruginosa ventilator-associated pneumonia: associations with clinical outcome and recurrence. J Antimicrob Chemother. 2016;71:2534.PubMedCrossRef
109.
Zurück zum Zitat Tam VH, Ledesma KR, Schilling AN, Lim T-P, Yuan Z, Ghose R, et al. In vivo dynamics of carbapenem-resistant Pseudomonas aeruginosa selection after suboptimal dosing. Diagn Microbiol Infect Dis. 2009;64:427–33.PubMedCrossRef Tam VH, Ledesma KR, Schilling AN, Lim T-P, Yuan Z, Ghose R, et al. In vivo dynamics of carbapenem-resistant Pseudomonas aeruginosa selection after suboptimal dosing. Diagn Microbiol Infect Dis. 2009;64:427–33.PubMedCrossRef
110.
Zurück zum Zitat Zinner SH, Gilbert D, Greer K, Portnoy YA, Firsov AA. Concentration–Resistance relationships with Pseudomonas aeruginosa exposed to doripenem and ciprofloxacin in an in vitro model. J Antimicrob Chemother. 2013;68:881–7.PubMedCrossRef Zinner SH, Gilbert D, Greer K, Portnoy YA, Firsov AA. Concentration–Resistance relationships with Pseudomonas aeruginosa exposed to doripenem and ciprofloxacin in an in vitro model. J Antimicrob Chemother. 2013;68:881–7.PubMedCrossRef
111.
Zurück zum Zitat VanScoy BD, Mendes RE, Castanheira M, McCauley J, Bhavnani SM, Jones RN, et al. Relationship between ceftolozane-tazobactam exposure and selection for Pseudomonas aeruginosa resistance in a hollow-fiber infection model. Antimicrob Agents Chemother. 2014;58:6024–31.PubMedPubMedCentralCrossRef VanScoy BD, Mendes RE, Castanheira M, McCauley J, Bhavnani SM, Jones RN, et al. Relationship between ceftolozane-tazobactam exposure and selection for Pseudomonas aeruginosa resistance in a hollow-fiber infection model. Antimicrob Agents Chemother. 2014;58:6024–31.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Vanscoy B, Mendes RE, Castanheira M, McCauley J, Bhavnani SM, Forrest A, et al. Relationship between ceftolozane-tazobactam exposure and drug resistance amplification in a hollow-fiber infection model. Antimicrob Agents Chemother. 2013;57:4134–8.PubMedPubMedCentralCrossRef Vanscoy B, Mendes RE, Castanheira M, McCauley J, Bhavnani SM, Forrest A, et al. Relationship between ceftolozane-tazobactam exposure and drug resistance amplification in a hollow-fiber infection model. Antimicrob Agents Chemother. 2013;57:4134–8.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Coleman K, Levasseur P, Girard AM, Borgonovi M, Miossec C, Merdjan H, et al. Activities of ceftazidime and avibactam against β-lactamase-producing enterobacteriaceae in a hollow-fiber pharmacodynamic model. Antimicrob Agents Chemother. 2014;58:3366–72.PubMedPubMedCentralCrossRef Coleman K, Levasseur P, Girard AM, Borgonovi M, Miossec C, Merdjan H, et al. Activities of ceftazidime and avibactam against β-lactamase-producing enterobacteriaceae in a hollow-fiber pharmacodynamic model. Antimicrob Agents Chemother. 2014;58:3366–72.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Crandon JL, Schuck VJ, Banevicius MA, Beaudoin ME, Nichols WW, Tanudra MA, et al. Comparative In vitro and in vivo efficacies of human simulated doses of ceftazidime and ceftazidime-avibactam against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2012;56:6137–46.PubMedPubMedCentralCrossRef Crandon JL, Schuck VJ, Banevicius MA, Beaudoin ME, Nichols WW, Tanudra MA, et al. Comparative In vitro and in vivo efficacies of human simulated doses of ceftazidime and ceftazidime-avibactam against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2012;56:6137–46.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Shields RK, Potoski BA, Haidar G, Hao B, Doi Y, Chen L, et al. Clinical outcomes, drug toxicity, and emergence of ceftazidime–avibactam resistance among patients treated for carbapenem-resistant enterobacteriaceae infections. Clin Infect Dis. 2016;63:1615–8.PubMedPubMedCentralCrossRef Shields RK, Potoski BA, Haidar G, Hao B, Doi Y, Chen L, et al. Clinical outcomes, drug toxicity, and emergence of ceftazidime–avibactam resistance among patients treated for carbapenem-resistant enterobacteriaceae infections. Clin Infect Dis. 2016;63:1615–8.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Boselli E, Breilh D, Rimmele T, Poupelin JC, Saux MC, Chassard D, et al. Plasma and lung concentrations of ceftazidime administered in continuous infusion to critically ill patients with severe nosocomial pneumonia. Intensive Care Med. 2004;30:989–91.PubMedCrossRef Boselli E, Breilh D, Rimmele T, Poupelin JC, Saux MC, Chassard D, et al. Plasma and lung concentrations of ceftazidime administered in continuous infusion to critically ill patients with severe nosocomial pneumonia. Intensive Care Med. 2004;30:989–91.PubMedCrossRef
117.
Zurück zum Zitat Roberts DM, Liu X, Roberts JA, Nair P, Cole L, Roberts MS, et al. A multicenter study on the effect of continuous hemodiafiltration intensity on antibiotic pharmacokinetics. Crit Care. 2015;19:84.PubMedPubMedCentralCrossRef Roberts DM, Liu X, Roberts JA, Nair P, Cole L, Roberts MS, et al. A multicenter study on the effect of continuous hemodiafiltration intensity on antibiotic pharmacokinetics. Crit Care. 2015;19:84.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Linder KE, Nicolau DP, Nailor MD. Predicting and preventing antimicrobial resistance utilizing pharmacodynamics: Part I gram positive bacteria. Exp Opin Drug Metab Toxicol. 2016;12:267–80.CrossRef Linder KE, Nicolau DP, Nailor MD. Predicting and preventing antimicrobial resistance utilizing pharmacodynamics: Part I gram positive bacteria. Exp Opin Drug Metab Toxicol. 2016;12:267–80.CrossRef
120.
Zurück zum Zitat McDonald C, Cotta MO, Little PJ, McWhinney B, Ungerer JPJ, Lipman J, et al. Is high-dose beta-lactam therapy associated with excessive drug toxicity in critically ill patients? Miner Anestesiol. 2016;82:957–65. McDonald C, Cotta MO, Little PJ, McWhinney B, Ungerer JPJ, Lipman J, et al. Is high-dose beta-lactam therapy associated with excessive drug toxicity in critically ill patients? Miner Anestesiol. 2016;82:957–65.
121.
123.
Zurück zum Zitat Cotta MO, Gowen B, Truloff N, Bursle E, McWhinney B, Ungerer JPJ, et al. Even high-dose extended infusions may not yield desired concentrations of beta-lactams: the value of therapeutic drug monitoring. Infect Dis. 2015;47:739–42.CrossRef Cotta MO, Gowen B, Truloff N, Bursle E, McWhinney B, Ungerer JPJ, et al. Even high-dose extended infusions may not yield desired concentrations of beta-lactams: the value of therapeutic drug monitoring. Infect Dis. 2015;47:739–42.CrossRef
124.
Zurück zum Zitat Boselli E, Breilh D, Rimmele T, Guillaume C, Xuereb F, Saux MC, et al. Alveolar concentrations of pipeyacillin/tazobactam administered in continuous infusion to patients with ventilatoy-associated pneumonia. Crit Care Med. 2008;36:1500–6.PubMedCrossRef Boselli E, Breilh D, Rimmele T, Guillaume C, Xuereb F, Saux MC, et al. Alveolar concentrations of pipeyacillin/tazobactam administered in continuous infusion to patients with ventilatoy-associated pneumonia. Crit Care Med. 2008;36:1500–6.PubMedCrossRef
125.
Zurück zum Zitat Rodvold KA, George JM, Yoo L. Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antibacterial agents. Clin Pharmacokinet. 2011;50:637–64.PubMedCrossRef Rodvold KA, George JM, Yoo L. Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antibacterial agents. Clin Pharmacokinet. 2011;50:637–64.PubMedCrossRef
126.
Zurück zum Zitat Boselli E, Breilh D, Duflo F, Saux MC, Debon R, Chassard D, et al. Steady-state plasma and intrapulmonary concentrations of cefepime administered in continuous infusion in critically ill patients with severe nosocomial pneumonia. Crit Care Med. 2003;31:2102–6.PubMedCrossRef Boselli E, Breilh D, Duflo F, Saux MC, Debon R, Chassard D, et al. Steady-state plasma and intrapulmonary concentrations of cefepime administered in continuous infusion in critically ill patients with severe nosocomial pneumonia. Crit Care Med. 2003;31:2102–6.PubMedCrossRef
127.
Zurück zum Zitat Plachouras D, Karvanen M, Friberg LE, Papadomichelakis E, Antoniadou A, Tsangaris I, et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by Gram-negative bacteria. Antimicrob Agents Chemother. 2009;53:3430–6.PubMedPubMedCentralCrossRef Plachouras D, Karvanen M, Friberg LE, Papadomichelakis E, Antoniadou A, Tsangaris I, et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by Gram-negative bacteria. Antimicrob Agents Chemother. 2009;53:3430–6.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother. 2011;55:3284–94.PubMedPubMedCentralCrossRef Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother. 2011;55:3284–94.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Bergen PJ, Li J, Nation RL, Turnidge JD, Coulthard K, Milne RW. Comparison of once-, twice- and thrice-daily dosing of colistin on antibacterial effect and emergence of resistance: studies with Pseudomonas aeruginosa in an in vitro pharmacodynamic model. J Antimicrob Chemother. 2008;61:636–42.PubMedCrossRef Bergen PJ, Li J, Nation RL, Turnidge JD, Coulthard K, Milne RW. Comparison of once-, twice- and thrice-daily dosing of colistin on antibacterial effect and emergence of resistance: studies with Pseudomonas aeruginosa in an in vitro pharmacodynamic model. J Antimicrob Chemother. 2008;61:636–42.PubMedCrossRef
130.
Zurück zum Zitat Dalfino L, Puntillo F, Mosca A, Monno R, Spada ML, Coppolecchia S, et al. High-dose, extended-interval colistin administration in critically ill patients: is this the right dosing strategy? a preliminary study. Clin Infect Dis. 2012;54:1720–6.PubMedPubMedCentralCrossRef Dalfino L, Puntillo F, Mosca A, Monno R, Spada ML, Coppolecchia S, et al. High-dose, extended-interval colistin administration in critically ill patients: is this the right dosing strategy? a preliminary study. Clin Infect Dis. 2012;54:1720–6.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Athanassa ZE, Markantonis SL, Fousteri MZF, Myrianthefs PM, Boutzouka EG, Tsakris A, et al. Pharmacokinetics of inhaled colistimethate sodium (CMS) in mechanically ventilated critically ill patients. Intensive Care Med. 2012;38:1779–86.PubMedCrossRef Athanassa ZE, Markantonis SL, Fousteri MZF, Myrianthefs PM, Boutzouka EG, Tsakris A, et al. Pharmacokinetics of inhaled colistimethate sodium (CMS) in mechanically ventilated critically ill patients. Intensive Care Med. 2012;38:1779–86.PubMedCrossRef
132.
Zurück zum Zitat Imberti R, Cusato M, Villani P, Carnevale L, Iotti GA, Langer M, et al. Steady-state pharmacokinetics and BAL concentration of colistin in critically ill patients after IV colistin methanesulfonate administration. Chest. 2010;138:1333–9.PubMedCrossRef Imberti R, Cusato M, Villani P, Carnevale L, Iotti GA, Langer M, et al. Steady-state pharmacokinetics and BAL concentration of colistin in critically ill patients after IV colistin methanesulfonate administration. Chest. 2010;138:1333–9.PubMedCrossRef
133.
Zurück zum Zitat Nordqvist H, Nilsson LE, Claesson C. Mutant prevention concentration of colistin alone and in combination with rifampicin for multidrug-resistant Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis. 2016;35:1845–50.CrossRef Nordqvist H, Nilsson LE, Claesson C. Mutant prevention concentration of colistin alone and in combination with rifampicin for multidrug-resistant Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis. 2016;35:1845–50.CrossRef
134.
Zurück zum Zitat Cheah SE, Li J, Tsuji BT, Forrest A, Bulitta JB, Nation RL. Colistin and polymyxin b dosage regimens against Acinetobacter baumannii: differences in activity and the emergence of resistance. Antimicrob Agents Chemother. 2016;60:3921–33.PubMedPubMedCentralCrossRef Cheah SE, Li J, Tsuji BT, Forrest A, Bulitta JB, Nation RL. Colistin and polymyxin b dosage regimens against Acinetobacter baumannii: differences in activity and the emergence of resistance. Antimicrob Agents Chemother. 2016;60:3921–33.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Tsuji BT, Landersdorfer CB, Lenhard JR, Cheah SE, Thamlikitkul V, Rao GG, et al. Paradoxical effect of polymyxin b: high drug exposure amplifies resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60:3913–20.PubMedPubMedCentralCrossRef Tsuji BT, Landersdorfer CB, Lenhard JR, Cheah SE, Thamlikitkul V, Rao GG, et al. Paradoxical effect of polymyxin b: high drug exposure amplifies resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60:3913–20.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Sauermann R, Rothenburger M, Graninger W, Joukhadar C. Daptomycin: a review 4 years after first approval. Pharmacology. 2008;81:79–91.PubMedCrossRef Sauermann R, Rothenburger M, Graninger W, Joukhadar C. Daptomycin: a review 4 years after first approval. Pharmacology. 2008;81:79–91.PubMedCrossRef
137.
Zurück zum Zitat Benvenuto M, Benziger DP, Yankelev S, Vigliani G. Pharmacokinetics and tolerability of daptomycin at doses up to 12 milligrams per kilogram of body weight once daily in healthy volunteers. Antimicrob Agents Chemother. 2006;50:3245–9.PubMedPubMedCentralCrossRef Benvenuto M, Benziger DP, Yankelev S, Vigliani G. Pharmacokinetics and tolerability of daptomycin at doses up to 12 milligrams per kilogram of body weight once daily in healthy volunteers. Antimicrob Agents Chemother. 2006;50:3245–9.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat D’Avolio A, Pensi D, Baietto L, Pacini G, Di Perri G, De Rosa FG. Daptomycin pharmacokinetics and pharmacodynamics in septic and critically ill patients. Drugs. 2016;76:1161–74.PubMedCrossRef D’Avolio A, Pensi D, Baietto L, Pacini G, Di Perri G, De Rosa FG. Daptomycin pharmacokinetics and pharmacodynamics in septic and critically ill patients. Drugs. 2016;76:1161–74.PubMedCrossRef
139.
Zurück zum Zitat Rose WE, Leonard SN, Rybak MJ. Evaluation of daptomycin pharmacodynamics and resistance at various dosage regimens against Staphylococcus aureus isolates with reduced susceptibilities to daptomycin in an in vitro pharmacodynamic model with simulated endocardial vegetations. Antimicrob Agents Chemother 2008;52:3061–7.PubMedPubMedCentralCrossRef Rose WE, Leonard SN, Rybak MJ. Evaluation of daptomycin pharmacodynamics and resistance at various dosage regimens against Staphylococcus aureus isolates with reduced susceptibilities to daptomycin in an in vitro pharmacodynamic model with simulated endocardial vegetations. Antimicrob Agents Chemother 2008;52:3061–7.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Sabol K, Patterson JE, Lewis Ii JS, Owens A, Cadena J, Jorgensen JH. Emergence of daptomycin resistance in Enterococcus faecium during daptomycin therapy. Antimicrob Agents Chemother. 2005;49:1664–5.PubMedPubMedCentralCrossRef Sabol K, Patterson JE, Lewis Ii JS, Owens A, Cadena J, Jorgensen JH. Emergence of daptomycin resistance in Enterococcus faecium during daptomycin therapy. Antimicrob Agents Chemother. 2005;49:1664–5.PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Falcone M, Russo A, Venditti M, Novelli A, Pai MP. Considerations for higher doses of daptomycin in critically ill patients with methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis. 2013;57:1568–76.PubMedCrossRef Falcone M, Russo A, Venditti M, Novelli A, Pai MP. Considerations for higher doses of daptomycin in critically ill patients with methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis. 2013;57:1568–76.PubMedCrossRef
142.
Zurück zum Zitat Drusano GL, Johnson DE, Rosen M, Standiford HC. Pharmacodynamics of a fluoroquinolone antimicrobial agent in a neutropenic rat model of Pseudomonas sepsis. Antimicrob Agents Chemother. 1993;37:483–90.PubMedPubMedCentralCrossRef Drusano GL, Johnson DE, Rosen M, Standiford HC. Pharmacodynamics of a fluoroquinolone antimicrobial agent in a neutropenic rat model of Pseudomonas sepsis. Antimicrob Agents Chemother. 1993;37:483–90.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Tam VH, Louie A, Deziel MR, Liu WG, Leary R, Drusano GL. Bacterial-population responses to drug-selective pressure: Examination of garenoxacin's effect on Pseudomonas aeruginosa. J Infect Dis. 2005;192:420–8.PubMedCrossRef Tam VH, Louie A, Deziel MR, Liu WG, Leary R, Drusano GL. Bacterial-population responses to drug-selective pressure: Examination of garenoxacin's effect on Pseudomonas aeruginosa. J Infect Dis. 2005;192:420–8.PubMedCrossRef
144.
Zurück zum Zitat van Zanten ARH, Polderman KH, van Geijlswijk IM, van der Meer GYG, Schouten MA, Girbes ARJ. Ciprofloxacin pharmacokinetics in critically ill patients: a prospective cohort study. J Crit Care. 2008;23:422–30.PubMedCrossRef van Zanten ARH, Polderman KH, van Geijlswijk IM, van der Meer GYG, Schouten MA, Girbes ARJ. Ciprofloxacin pharmacokinetics in critically ill patients: a prospective cohort study. J Crit Care. 2008;23:422–30.PubMedCrossRef
145.
Zurück zum Zitat Cazaubon Y, Bourguignon L, Goutelle S, Martin O, Maire P, Ducher M. Are ciprofloxacin dosage regimens adequate for antimicrobial efficacy and prevention of resistance? Pseudomonas aeruginosa bloodstream infection in elderly patients as a simulation case study. Fundam Clin Pharmacol. 2015;29:615–24.PubMedCrossRef Cazaubon Y, Bourguignon L, Goutelle S, Martin O, Maire P, Ducher M. Are ciprofloxacin dosage regimens adequate for antimicrobial efficacy and prevention of resistance? Pseudomonas aeruginosa bloodstream infection in elderly patients as a simulation case study. Fundam Clin Pharmacol. 2015;29:615–24.PubMedCrossRef
146.
Zurück zum Zitat Lipman J, Scribante J, Gous AGS, Hon H, Tshukutsoane S, The Baragwanath Ciprofloxacin Study G. Pharmacokinetic profiles of high-dose intravenous ciprofloxacin in severe sepsis. Antimicrob Agents Chemother. 1998;42:2235–9.PubMedPubMedCentralCrossRef Lipman J, Scribante J, Gous AGS, Hon H, Tshukutsoane S, The Baragwanath Ciprofloxacin Study G. Pharmacokinetic profiles of high-dose intravenous ciprofloxacin in severe sepsis. Antimicrob Agents Chemother. 1998;42:2235–9.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Zinner SH, Lubenko IY, Gilbert D, Simmons K, Zhao XL, Drlica K, et al. Emergence of resistant Streptococcus pneumoniae in an in vitro dynamic model that simulates moxifloxacin concentrations inside and outside the mutant selection window: related changes in susceptibility, resistance frequency and bacterial killing. J Antimicrob Chemother. 2003;52:616–22.PubMedCrossRef Zinner SH, Lubenko IY, Gilbert D, Simmons K, Zhao XL, Drlica K, et al. Emergence of resistant Streptococcus pneumoniae in an in vitro dynamic model that simulates moxifloxacin concentrations inside and outside the mutant selection window: related changes in susceptibility, resistance frequency and bacterial killing. J Antimicrob Chemother. 2003;52:616–22.PubMedCrossRef
148.
Zurück zum Zitat Pletz MW, Bloos F, Burkhardt O, Brunkhorst FM, Bode-Boger SM, Martens-Lobenhoffer J, et al. Pharmacokinetics of moxifloxacin in patients with severe sepsis or septic shock. Intensive Care Med. 2010;36:979–83.PubMedCrossRef Pletz MW, Bloos F, Burkhardt O, Brunkhorst FM, Bode-Boger SM, Martens-Lobenhoffer J, et al. Pharmacokinetics of moxifloxacin in patients with severe sepsis or septic shock. Intensive Care Med. 2010;36:979–83.PubMedCrossRef
149.
Zurück zum Zitat MacGowan AP, Rogers CA, Holt HA, Bowker KE. Activities of moxifloxacin against, and emergence of resistance in, Streptococcus pneumoniae and Pseudomonas aeruginosa in an in vitro pharmacokinetic model. Antimicrob Agents Chemother. 2003;47:1088–95.PubMedPubMedCentralCrossRef MacGowan AP, Rogers CA, Holt HA, Bowker KE. Activities of moxifloxacin against, and emergence of resistance in, Streptococcus pneumoniae and Pseudomonas aeruginosa in an in vitro pharmacokinetic model. Antimicrob Agents Chemother. 2003;47:1088–95.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Paterson DL. “Collateral damage” from cephalosporin or quinolone antibiotic therapy. Clin Infect Dis. 2004;38 Suppl 4:S341–5.PubMedCrossRef Paterson DL. “Collateral damage” from cephalosporin or quinolone antibiotic therapy. Clin Infect Dis. 2004;38 Suppl 4:S341–5.PubMedCrossRef
151.
Zurück zum Zitat de Lastours V, Chau F, Roy C, Larroque B, Fantin B. Emergence of quinolone resistance in the microbiota of hospitalized patients treated or not with a fluoroquinolone. J Antimicrob Chemother. 2014;69:3393–400.PubMedCrossRef de Lastours V, Chau F, Roy C, Larroque B, Fantin B. Emergence of quinolone resistance in the microbiota of hospitalized patients treated or not with a fluoroquinolone. J Antimicrob Chemother. 2014;69:3393–400.PubMedCrossRef
152.
Zurück zum Zitat Fantin B, Duval X, Massias L, Alavoine L, Chau F, Retout S, et al. Ciprofloxacin dosage and emergence of resistance in human commensal bacteria. J Infect Dis. 2009;200:390–8.PubMedCrossRef Fantin B, Duval X, Massias L, Alavoine L, Chau F, Retout S, et al. Ciprofloxacin dosage and emergence of resistance in human commensal bacteria. J Infect Dis. 2009;200:390–8.PubMedCrossRef
153.
Zurück zum Zitat Janoir C, Podglajen I, Kitzis MD, Poyart C, Gutmann L. In vitro exchange of fluoroquinolone resistance determinants between Streptococcus pneumoniae and Viridans streptococci and genomic organization of the parE-parC region in S-mitis. J Infect Dis. 1999;180:555–8.PubMedCrossRef Janoir C, Podglajen I, Kitzis MD, Poyart C, Gutmann L. In vitro exchange of fluoroquinolone resistance determinants between Streptococcus pneumoniae and Viridans streptococci and genomic organization of the parE-parC region in S-mitis. J Infect Dis. 1999;180:555–8.PubMedCrossRef
154.
Zurück zum Zitat Nicasio AM, Bulitta JB, Lodise TP, D’Hondt RE, Kulawy R, Louie A, et al. Evaluation of once-daily vancomycin against methicillin-resistant Staphylococcus aureus in a hollow-fiber infection model. Antimicrob Agents Chemother. 2012;56:682–6.PubMedPubMedCentralCrossRef Nicasio AM, Bulitta JB, Lodise TP, D’Hondt RE, Kulawy R, Louie A, et al. Evaluation of once-daily vancomycin against methicillin-resistant Staphylococcus aureus in a hollow-fiber infection model. Antimicrob Agents Chemother. 2012;56:682–6.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Lee DG, Murakami Y, Andes DR, Craig WA. Inoculum effects of ceftobiprole, daptomycin, linezolid, and vancomycin with Staphylococcus aureus and Streptococcus pneumoniae at inocula of 10(5) and 10(7) cfu injected into opposite thighs of neutropenic mice. Antimicrob Agents Chemother. 2013;57:1434–41.PubMedPubMedCentralCrossRef Lee DG, Murakami Y, Andes DR, Craig WA. Inoculum effects of ceftobiprole, daptomycin, linezolid, and vancomycin with Staphylococcus aureus and Streptococcus pneumoniae at inocula of 10(5) and 10(7) cfu injected into opposite thighs of neutropenic mice. Antimicrob Agents Chemother. 2013;57:1434–41.PubMedPubMedCentralCrossRef
156.
Zurück zum Zitat Charles PGP, Ward PB, Johnson PDR, Howden BP, Grayson ML. Clinical features associated with bacteremia due to heterogeneous vancomycin-intermediate Staphylococcus aureus. Clin Infect Dis. 2004;38:448–51.PubMedCrossRef Charles PGP, Ward PB, Johnson PDR, Howden BP, Grayson ML. Clinical features associated with bacteremia due to heterogeneous vancomycin-intermediate Staphylococcus aureus. Clin Infect Dis. 2004;38:448–51.PubMedCrossRef
157.
Zurück zum Zitat Sakoulas G, Gold HS, Cohen RA, Venkataraman L, Moellering RC, Eliopoulos GM. Effects of prolonged vancomycin administration on methicillin-resistant Staphylococcus aureus (MRSA) in a patient with recurrent bacteraemia. J Antimicrob Chemother. 2006;57:699–704.PubMedCrossRef Sakoulas G, Gold HS, Cohen RA, Venkataraman L, Moellering RC, Eliopoulos GM. Effects of prolonged vancomycin administration on methicillin-resistant Staphylococcus aureus (MRSA) in a patient with recurrent bacteraemia. J Antimicrob Chemother. 2006;57:699–704.PubMedCrossRef
158.
Zurück zum Zitat Rosini JM, Laughner J, Levine BJ, Papas MA, Reinhardt JF, Jasani NB. A randomized trial of loading vancomycin in the emergency department. Ann Pharmacother. 2015;49:6–13.PubMedCrossRef Rosini JM, Laughner J, Levine BJ, Papas MA, Reinhardt JF, Jasani NB. A randomized trial of loading vancomycin in the emergency department. Ann Pharmacother. 2015;49:6–13.PubMedCrossRef
159.
Zurück zum Zitat Zelenitsky S, Alkurdi N, Weber Z, Ariano R, Zhanel G. Preferential emergence of reduced vancomycin susceptibility in health care-associated methicillin-resistant Staphylococcus aureus isolates during continuous-infusion vancomycin therapy in an in vitro dynamic model. Antimicrob Agents Chemother. 2011;55:3627–30.PubMedPubMedCentralCrossRef Zelenitsky S, Alkurdi N, Weber Z, Ariano R, Zhanel G. Preferential emergence of reduced vancomycin susceptibility in health care-associated methicillin-resistant Staphylococcus aureus isolates during continuous-infusion vancomycin therapy in an in vitro dynamic model. Antimicrob Agents Chemother. 2011;55:3627–30.PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat Hanrahan T, Whitehouse T, Lipman J, Roberts JA. Vancomycin-associated nephrotoxicity: a meta-analysis of administration by continuous versus intermittent infusion. Int J Antimicrob Agents. 2015;46:249–53.PubMedCrossRef Hanrahan T, Whitehouse T, Lipman J, Roberts JA. Vancomycin-associated nephrotoxicity: a meta-analysis of administration by continuous versus intermittent infusion. Int J Antimicrob Agents. 2015;46:249–53.PubMedCrossRef
161.
Zurück zum Zitat Hagihara M, Wiskirchen DE, Kuti JL, Nicolau DP. In Vitro Pharmacodynamics of Vancomycin and Cefazolin Alone and in Combination against Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56:202–7.PubMedPubMedCentralCrossRef Hagihara M, Wiskirchen DE, Kuti JL, Nicolau DP. In Vitro Pharmacodynamics of Vancomycin and Cefazolin Alone and in Combination against Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56:202–7.PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat Dilworth TJ, Leonard SN, Vilay AM, Mercier RC. Vancomycin and piperacillin-tazobactam against methicillin-resistant Staphylococcus aureus and vancomycin-intermediate Staphylococcus aureus in an in vitro pharmacokinetic/pharmacodynamic model. Clin Ther 2014;36:1334–44.PubMedCrossRef Dilworth TJ, Leonard SN, Vilay AM, Mercier RC. Vancomycin and piperacillin-tazobactam against methicillin-resistant Staphylococcus aureus and vancomycin-intermediate Staphylococcus aureus in an in vitro pharmacokinetic/pharmacodynamic model. Clin Ther 2014;36:1334–44.PubMedCrossRef
163.
Zurück zum Zitat Climo MW, Patron RL, Archer GL. Combinations of vancomycin and beta-lactams are synergistic against staphylococci with reduced susceptibilities to vancomycin. Antimicrob Agents Chemother. 1999;43:1747–53.PubMedPubMedCentralCrossRef Climo MW, Patron RL, Archer GL. Combinations of vancomycin and beta-lactams are synergistic against staphylococci with reduced susceptibilities to vancomycin. Antimicrob Agents Chemother. 1999;43:1747–53.PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Davis JS, Sud A, O’Sullivan MVN, Robinson JO, Ferguson PE, Foo H, et al. Combination of vancomycin and beta-lactam therapy for methicillin-resistant Staphylococcus aureus bacteremia: a pilot multicenter randomized controlled trial. Clin Infect Dis. 2016;62:173–80.PubMedCrossRef Davis JS, Sud A, O’Sullivan MVN, Robinson JO, Ferguson PE, Foo H, et al. Combination of vancomycin and beta-lactam therapy for methicillin-resistant Staphylococcus aureus bacteremia: a pilot multicenter randomized controlled trial. Clin Infect Dis. 2016;62:173–80.PubMedCrossRef
165.
Zurück zum Zitat Boak LML, Rayner CR, Nation RL. Pharmacokinetic/Pharmacodynamic factors influencing emergence of resistance to linezolid in an in vitro model. Antimicrob Agents Chemother. 2007;51:1287–92.PubMedPubMedCentralCrossRef Boak LML, Rayner CR, Nation RL. Pharmacokinetic/Pharmacodynamic factors influencing emergence of resistance to linezolid in an in vitro model. Antimicrob Agents Chemother. 2007;51:1287–92.PubMedPubMedCentralCrossRef
166.
Zurück zum Zitat Garcia MS, De la Torre MA, Morales G, Pelaez B, Tolon MJ, Domingo S, et al. Clinical outbreak of linezolid-resistant Staphylococcus aureus in an intensive care unit. JAMA. 2010;303:2260–4.PubMedCrossRef Garcia MS, De la Torre MA, Morales G, Pelaez B, Tolon MJ, Domingo S, et al. Clinical outbreak of linezolid-resistant Staphylococcus aureus in an intensive care unit. JAMA. 2010;303:2260–4.PubMedCrossRef
167.
Zurück zum Zitat Roberts SM, Freeman AF, Harrington SM, Holland SM, Murray PR, Zelazny AM. Linezolid-resistant Staphylococcus aureus in two pediatric patients receiving low-dose linezolid therapy. Pediatr Infect Dis J. 2006;25:562–4.PubMedCrossRef Roberts SM, Freeman AF, Harrington SM, Holland SM, Murray PR, Zelazny AM. Linezolid-resistant Staphylococcus aureus in two pediatric patients receiving low-dose linezolid therapy. Pediatr Infect Dis J. 2006;25:562–4.PubMedCrossRef
168.
Zurück zum Zitat Zoller M, Maier B, Hornuss C, Neugebauer C, Dobbeler G, Nagel D, et al. Variability of linezolid concentrations after standard dosing in critically ill patients: a prospective observational study. Crit Care. 2014;18:11.CrossRef Zoller M, Maier B, Hornuss C, Neugebauer C, Dobbeler G, Nagel D, et al. Variability of linezolid concentrations after standard dosing in critically ill patients: a prospective observational study. Crit Care. 2014;18:11.CrossRef
169.
Zurück zum Zitat Cattaneo D, Orlando G, Cozzi V, Cordier L, Baldelli S, Merli S, et al. Linezolid plasma concentrations and occurrence of drug-related haematological toxicity in patients with gram-positive infections. Int J Antimicrob Agents. 2013;41:586–9.PubMedCrossRef Cattaneo D, Orlando G, Cozzi V, Cordier L, Baldelli S, Merli S, et al. Linezolid plasma concentrations and occurrence of drug-related haematological toxicity in patients with gram-positive infections. Int J Antimicrob Agents. 2013;41:586–9.PubMedCrossRef
170.
Zurück zum Zitat Pea F, Cojutti PG, Baraldo M. A 10-year experience of therapeutic drug monitoring (TDM) of linezolid in a hospital-wide population of patients receiving conventional dosing: is there enough evidence for suggesting TDM in the majority of patients? Basic Clin Pharmacol Toxicol. 2017;121:303–8.PubMedCrossRef Pea F, Cojutti PG, Baraldo M. A 10-year experience of therapeutic drug monitoring (TDM) of linezolid in a hospital-wide population of patients receiving conventional dosing: is there enough evidence for suggesting TDM in the majority of patients? Basic Clin Pharmacol Toxicol. 2017;121:303–8.PubMedCrossRef
171.
Zurück zum Zitat Day T, Read AF. Does high-dose antimicrobial chemotherapy prevent the evolution of resistance? PLoS Comput Biol. 2016;12:20.CrossRef Day T, Read AF. Does high-dose antimicrobial chemotherapy prevent the evolution of resistance? PLoS Comput Biol. 2016;12:20.CrossRef
173.
Zurück zum Zitat Yadav R, Landersdorfer CB, Nation RL, Boyce JD, Bulitta JB. Novel Approach To Optimize Synergistic Carbapenem-Aminoglycoside Combinations against Carbapenem-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2015;59:2286–98.PubMedPubMedCentralCrossRef Yadav R, Landersdorfer CB, Nation RL, Boyce JD, Bulitta JB. Novel Approach To Optimize Synergistic Carbapenem-Aminoglycoside Combinations against Carbapenem-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2015;59:2286–98.PubMedPubMedCentralCrossRef
174.
Zurück zum Zitat Drusano GL, Liu WG, Fregeau C, Kulawy R, Louie A. Differing effects of combination chemotherapy with meropenem and tobramycin on cell kill and suppression of resistance of wild-type Pseudomonas aeruginosa PAO1 and its isogenic MexAB efflux pump-overexpressed mutant. Antimicrob Agents Chemother. 2009;53:2266–73.PubMedPubMedCentralCrossRef Drusano GL, Liu WG, Fregeau C, Kulawy R, Louie A. Differing effects of combination chemotherapy with meropenem and tobramycin on cell kill and suppression of resistance of wild-type Pseudomonas aeruginosa PAO1 and its isogenic MexAB efflux pump-overexpressed mutant. Antimicrob Agents Chemother. 2009;53:2266–73.PubMedPubMedCentralCrossRef
175.
Zurück zum Zitat Sime FB, Johnson A, Whalley S, Santoyo-Castelazo A, Montgomery AB, Walters KA, et al. Pharmacodynamics of aerosolized fosfomycin and amikacin against resistant clinical isolates of Pseudomonas aeruginosa and Klebsiella pneumoniae in a hollow-fiber infection model: experimental basis for combination therapy. Antimicrob Agents Chemother. 2016. https://doi.org/10.1128/AAC.01763-16.PubMedPubMedCentralCrossRef Sime FB, Johnson A, Whalley S, Santoyo-Castelazo A, Montgomery AB, Walters KA, et al. Pharmacodynamics of aerosolized fosfomycin and amikacin against resistant clinical isolates of Pseudomonas aeruginosa and Klebsiella pneumoniae in a hollow-fiber infection model: experimental basis for combination therapy. Antimicrob Agents Chemother. 2016. https://​doi.​org/​10.​1128/​AAC.​01763-16.PubMedPubMedCentralCrossRef
176.
Zurück zum Zitat Burgess DS, Hastings RW. Activity of piperacillin/tazobactam in combination with amikacin, ciprofloxacin, and trovafloxacin against Pseudomonas aeruginosa by time-kill. Diagn Microbiol Infect Dis. 2000;38:37–41.PubMedCrossRef Burgess DS, Hastings RW. Activity of piperacillin/tazobactam in combination with amikacin, ciprofloxacin, and trovafloxacin against Pseudomonas aeruginosa by time-kill. Diagn Microbiol Infect Dis. 2000;38:37–41.PubMedCrossRef
177.
Zurück zum Zitat Chandrasekar PH, Crane LR, Bailey EJ. Comparison of the activity of antibiotic combinations in vitro with clinical outcome and resistance emergence in serious infection by Pseudomonas aeruginosa in non-neutropenic patients. J Antimicrob Chemother. 1987;19:321–9.PubMedCrossRef Chandrasekar PH, Crane LR, Bailey EJ. Comparison of the activity of antibiotic combinations in vitro with clinical outcome and resistance emergence in serious infection by Pseudomonas aeruginosa in non-neutropenic patients. J Antimicrob Chemother. 1987;19:321–9.PubMedCrossRef
178.
Zurück zum Zitat Bliziotis IA, Samonis G, Vardakas KZ, Chrysanthopoulou S, Falagas ME. Effect of aminoglycoside and beta-lactam combination therapy versus beta-lactam monotherapy on the emergence of antimicrobial resistance: a meta-analysis of randomized, controlled trials. Clin Infect Dis. 2005;41:149–58.PubMedCrossRef Bliziotis IA, Samonis G, Vardakas KZ, Chrysanthopoulou S, Falagas ME. Effect of aminoglycoside and beta-lactam combination therapy versus beta-lactam monotherapy on the emergence of antimicrobial resistance: a meta-analysis of randomized, controlled trials. Clin Infect Dis. 2005;41:149–58.PubMedCrossRef
181.
Zurück zum Zitat Dawis MA, Isenberg HD, France KA, Jenkins SG. In vitro activity of gatifloxacin alone and in combination with cefepime, meropenem, piperacillin and gentamicin against multidrug-resistant organisms. J Antimicrob Chemother. 2003;51:1203-–1.PubMedCrossRef Dawis MA, Isenberg HD, France KA, Jenkins SG. In vitro activity of gatifloxacin alone and in combination with cefepime, meropenem, piperacillin and gentamicin against multidrug-resistant organisms. J Antimicrob Chemother. 2003;51:1203-–1.PubMedCrossRef
182.
Zurück zum Zitat Burgess DS, Nathisuwan S. Cefepime, piperacillin/tazobactam, gentamicin, ciprofloxacin, and levofloxacin alone and in combination against Pseudomonas aeruginosa. Diagn Microbiol Infect Dis. 2002;44:35–41.PubMedCrossRef Burgess DS, Nathisuwan S. Cefepime, piperacillin/tazobactam, gentamicin, ciprofloxacin, and levofloxacin alone and in combination against Pseudomonas aeruginosa. Diagn Microbiol Infect Dis. 2002;44:35–41.PubMedCrossRef
183.
Zurück zum Zitat Kohanski MA, DePristo MA, Collins JJ. Sublethal Antibiotic Treatment Leads to Multidrug Resistance via Radical-Induced Mutagenesis. Molecular Cell. 2010;37:311–20.PubMedPubMedCentralCrossRef Kohanski MA, DePristo MA, Collins JJ. Sublethal Antibiotic Treatment Leads to Multidrug Resistance via Radical-Induced Mutagenesis. Molecular Cell. 2010;37:311–20.PubMedPubMedCentralCrossRef
184.
Zurück zum Zitat Wener KM, Schechner V, Gold HS, Wright SB, Carmeli Y. Treatment with fluoroquinolones or with beta-lactam-beta-lactamase inhibitor combinations is a risk factor for isolation of extended-spectrum-beta-lactamase-producing Klebsiella Species in hospitalized patients. Antimicrob Agents Chemother. 2010;54:2010–6.PubMedPubMedCentralCrossRef Wener KM, Schechner V, Gold HS, Wright SB, Carmeli Y. Treatment with fluoroquinolones or with beta-lactam-beta-lactamase inhibitor combinations is a risk factor for isolation of extended-spectrum-beta-lactamase-producing Klebsiella Species in hospitalized patients. Antimicrob Agents Chemother. 2010;54:2010–6.PubMedPubMedCentralCrossRef
185.
Zurück zum Zitat Cassier P, Lallechere S, Aho S, Astruc K, Neuwirth C, Piroth L, et al. Cephalosporin and fluoroquinolone combinations are highly associated with CTX-M beta-lactamase-producing Escherichia coli: a case–control study in a French teaching hospital. Clin Microbiol Infect. 2011;17:1746–51.PubMedCrossRef Cassier P, Lallechere S, Aho S, Astruc K, Neuwirth C, Piroth L, et al. Cephalosporin and fluoroquinolone combinations are highly associated with CTX-M beta-lactamase-producing Escherichia coli: a case–control study in a French teaching hospital. Clin Microbiol Infect. 2011;17:1746–51.PubMedCrossRef
186.
Zurück zum Zitat Goldstein RC, Husk G, Jodlowski T, Mildvan D, Perlman DC, Ruhe JJ. Fluoroquinolone- and ceftriaxone-based therapy of community-acquired pneumonia in hospitalized patients: The risk of subsequent isolation of multidrug-resistant organisms. Am J Infect Control. 2014;42:539–41.PubMedCrossRef Goldstein RC, Husk G, Jodlowski T, Mildvan D, Perlman DC, Ruhe JJ. Fluoroquinolone- and ceftriaxone-based therapy of community-acquired pneumonia in hospitalized patients: The risk of subsequent isolation of multidrug-resistant organisms. Am J Infect Control. 2014;42:539–41.PubMedCrossRef
187.
Zurück zum Zitat Li J, Rayner CR, Nation RL, Owen RJ, Spelman D, Tan KE, et al. Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2006;50:2946–50.PubMedPubMedCentralCrossRef Li J, Rayner CR, Nation RL, Owen RJ, Spelman D, Tan KE, et al. Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2006;50:2946–50.PubMedPubMedCentralCrossRef
188.
Zurück zum Zitat Lenhard JR, Gall JS, Bulitta JB, Thamlikitkul V, Landersdorfer CB, Forrest A, et al. Comparative pharmacodynamics of four different carbapenems in combination with polymyxin B against carbapenem-resistant Acinetobacter baumannii. Int J Antimicrob Agents. 2016;48:719–24.PubMedPubMedCentralCrossRef Lenhard JR, Gall JS, Bulitta JB, Thamlikitkul V, Landersdorfer CB, Forrest A, et al. Comparative pharmacodynamics of four different carbapenems in combination with polymyxin B against carbapenem-resistant Acinetobacter baumannii. Int J Antimicrob Agents. 2016;48:719–24.PubMedPubMedCentralCrossRef
189.
Zurück zum Zitat Bergen PJ, Forrest A, Bulitta JB, Tsuji BT, Sidjabat HE, Paterson DL, et al. Clinically Relevant Plasma Concentrations of Colistin in Combination with Imipenem Enhance Pharmacodynamic Activity against Multidrug-Resistant Pseudomonas aeruginosa at Multiple Inocula. Antimicrob Agents Chemother. 2011;55:5134–42.PubMedPubMedCentralCrossRef Bergen PJ, Forrest A, Bulitta JB, Tsuji BT, Sidjabat HE, Paterson DL, et al. Clinically Relevant Plasma Concentrations of Colistin in Combination with Imipenem Enhance Pharmacodynamic Activity against Multidrug-Resistant Pseudomonas aeruginosa at Multiple Inocula. Antimicrob Agents Chemother. 2011;55:5134–42.PubMedPubMedCentralCrossRef
190.
Zurück zum Zitat Ly NS, Bulman ZP, Bulitta JB, Baron C, Rao GG, Holden PN, et al. Optimization of Polymyxin B in Combination with Doripenem To Combat Mutator Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60:2870–80.PubMedPubMedCentralCrossRef Ly NS, Bulman ZP, Bulitta JB, Baron C, Rao GG, Holden PN, et al. Optimization of Polymyxin B in Combination with Doripenem To Combat Mutator Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60:2870–80.PubMedPubMedCentralCrossRef
191.
Zurück zum Zitat Rigatto MH, Vieira FJ, Antochevis LC, Behle TF, Lopes NT, Zavascki AP. Polymyxin B in Combination with Antimicrobials Lacking In Vitro Activity versus Polymyxin B in Monotherapy in Critically Ill Patients with Acinetobacter baumannii or Pseudomonas aeruginosa Infections. Antimicrob Agents Chemother. 2015;59:6575–80.PubMedPubMedCentralCrossRef Rigatto MH, Vieira FJ, Antochevis LC, Behle TF, Lopes NT, Zavascki AP. Polymyxin B in Combination with Antimicrobials Lacking In Vitro Activity versus Polymyxin B in Monotherapy in Critically Ill Patients with Acinetobacter baumannii or Pseudomonas aeruginosa Infections. Antimicrob Agents Chemother. 2015;59:6575–80.PubMedPubMedCentralCrossRef
192.
Zurück zum Zitat Cai XJ, Yang Z, Dai JQ, Chen K, Zhang LD, Ni WT, et al. Pharmacodynamics of tigecycline alone and in combination with colistin against clinical isolates of multidrug-resistant Acinetobacter baumannii in an in vitro pharmacodynamic model. Int J Antimicrob Agents. 2017;49:609–16.PubMedCrossRef Cai XJ, Yang Z, Dai JQ, Chen K, Zhang LD, Ni WT, et al. Pharmacodynamics of tigecycline alone and in combination with colistin against clinical isolates of multidrug-resistant Acinetobacter baumannii in an in vitro pharmacodynamic model. Int J Antimicrob Agents. 2017;49:609–16.PubMedCrossRef
194.
Zurück zum Zitat Walsh CC, Landersdorfer CB, McIntosh MP, Peleg AY, Hirsch EB, Kirkpatrick CM, et al. Clinically relevant concentrations of fosfomycin combined with polymyxin B, tobramycin or ciprofloxacin enhance bacterial killing of Pseudomonas aeruginosa, but do not suppress the emergence of fosfomycin resistance. J Antimicrob Chemother. 2016;71:2218–29.PubMedCrossRef Walsh CC, Landersdorfer CB, McIntosh MP, Peleg AY, Hirsch EB, Kirkpatrick CM, et al. Clinically relevant concentrations of fosfomycin combined with polymyxin B, tobramycin or ciprofloxacin enhance bacterial killing of Pseudomonas aeruginosa, but do not suppress the emergence of fosfomycin resistance. J Antimicrob Chemother. 2016;71:2218–29.PubMedCrossRef
195.
Zurück zum Zitat Rao GG, Ly NS, Bulitta JB, Soon RL, San Roman MD, Holden PN, et al. Polymyxin B in combination with doripenem against heteroresistant Acinetobacter baumannii: pharmacodynamics of new dosing strategies. J Antimicrob Chemother. 2016;71:3148-–56.PubMedPubMedCentralCrossRef Rao GG, Ly NS, Bulitta JB, Soon RL, San Roman MD, Holden PN, et al. Polymyxin B in combination with doripenem against heteroresistant Acinetobacter baumannii: pharmacodynamics of new dosing strategies. J Antimicrob Chemother. 2016;71:3148-–56.PubMedPubMedCentralCrossRef
196.
Zurück zum Zitat Rao GG, Ly NS, Diep J, Forrest A, Bulitta JB, Holden PN, et al. Combinatorial pharmacodynamics of polymyxin B and tigecycline against heteroresistant Acinetobacter baumannii. Int J Antimicrob Agents. 2016;48:331–6.PubMedPubMedCentralCrossRef Rao GG, Ly NS, Diep J, Forrest A, Bulitta JB, Holden PN, et al. Combinatorial pharmacodynamics of polymyxin B and tigecycline against heteroresistant Acinetobacter baumannii. Int J Antimicrob Agents. 2016;48:331–6.PubMedPubMedCentralCrossRef
197.
Zurück zum Zitat Entenza JM, Giddey M, Vouillamoz J, Moreillon P. In vitro prevention of the emergence of daptomycin resistance in Staphylococcus aureus and enterococci following combination with amoxicillin/clavulanic acid or ampicillin. Int J Antimicrob Agents. 2010;35:451–6.PubMedCrossRef Entenza JM, Giddey M, Vouillamoz J, Moreillon P. In vitro prevention of the emergence of daptomycin resistance in Staphylococcus aureus and enterococci following combination with amoxicillin/clavulanic acid or ampicillin. Int J Antimicrob Agents. 2010;35:451–6.PubMedCrossRef
198.
Zurück zum Zitat Schrag SJ, Pena C, Fernandez J, Sanchez J, Gomez V, Perez E, et al. Effect of short-course, high-dose amoxicillin therapy on resistant pneumococcal carriage: a randomized trial. JAMA. 2001;286:49–56.PubMedCrossRef Schrag SJ, Pena C, Fernandez J, Sanchez J, Gomez V, Perez E, et al. Effect of short-course, high-dose amoxicillin therapy on resistant pneumococcal carriage: a randomized trial. JAMA. 2001;286:49–56.PubMedCrossRef
199.
Zurück zum Zitat Guillemot D, Carbon C, Balkau B, Geslin P, Lecoeur H, Vauzelle-Kervroedan F, et al. Low dosage and long treatment duration of beta-lactam—risk factors for carriage of penicillin-resistant Streptococcus pneumoniae. JAMA. 1998;279:365–70.PubMedCrossRef Guillemot D, Carbon C, Balkau B, Geslin P, Lecoeur H, Vauzelle-Kervroedan F, et al. Low dosage and long treatment duration of beta-lactam—risk factors for carriage of penicillin-resistant Streptococcus pneumoniae. JAMA. 1998;279:365–70.PubMedCrossRef
200.
Zurück zum Zitat Ruhe JJ, Hasbun R. Streptococcus pneumoniae bacteremia: duration of previous antibiotic use and association with penicillin resistance. Clin Infect Dis. 2003;36:1132-–8.PubMedCrossRef Ruhe JJ, Hasbun R. Streptococcus pneumoniae bacteremia: duration of previous antibiotic use and association with penicillin resistance. Clin Infect Dis. 2003;36:1132-–8.PubMedCrossRef
201.
Zurück zum Zitat Hillier S, Roberts Z, Dunstan F, Butler C, Howard A, Palmer S. Prior antibiotics and risk of antibiotic-resistant community-acquired urinary tract infection: a case-control study. J Antimicrob Chemother. 2007;60:92–9.PubMedCrossRef Hillier S, Roberts Z, Dunstan F, Butler C, Howard A, Palmer S. Prior antibiotics and risk of antibiotic-resistant community-acquired urinary tract infection: a case-control study. J Antimicrob Chemother. 2007;60:92–9.PubMedCrossRef
202.
Zurück zum Zitat Chastre J, Wolff M, Fagon JY, Chevret S, Thomas F, Wermert D, et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA. 2003;290:2588–98.PubMedCrossRef Chastre J, Wolff M, Fagon JY, Chevret S, Thomas F, Wermert D, et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA. 2003;290:2588–98.PubMedCrossRef
204.
Zurück zum Zitat Sawyer RG, Claridge JA, Nathens AB, Rotstein OD, Duane TM, Evans HL, et al. Trial of Short-Course Antimicrobial Therapy for Intraabdominal Infection. N Engl J Med. 2015;372:1996–2005.PubMedPubMedCentralCrossRef Sawyer RG, Claridge JA, Nathens AB, Rotstein OD, Duane TM, Evans HL, et al. Trial of Short-Course Antimicrobial Therapy for Intraabdominal Infection. N Engl J Med. 2015;372:1996–2005.PubMedPubMedCentralCrossRef
205.
Zurück zum Zitat Lee DS, Ryu JA, Chung CR, Yang J, Jeon K, Suh GY, et al. Risk factors for acquisition of multidrug-resistant bacteria in patients with anastomotic leakage after colorectal cancer surgery. Int J Colorectal Dis. 2015;30:497–504.PubMedCrossRef Lee DS, Ryu JA, Chung CR, Yang J, Jeon K, Suh GY, et al. Risk factors for acquisition of multidrug-resistant bacteria in patients with anastomotic leakage after colorectal cancer surgery. Int J Colorectal Dis. 2015;30:497–504.PubMedCrossRef
207.
Zurück zum Zitat Sandquist M, Wong HR. Biomarkers of sepsis and their potential value in diagnosis, prognosis and treatment. Exp Rev Clin Immunol. 2014;10:1349–56.CrossRef Sandquist M, Wong HR. Biomarkers of sepsis and their potential value in diagnosis, prognosis and treatment. Exp Rev Clin Immunol. 2014;10:1349–56.CrossRef
208.
Zurück zum Zitat Dupuy A-M, Philippart F, Péan Y, Lasocki S, Charles P-E, Chalumeau M, et al. Role of biomarkers in the management of antibiotic therapy: an expert panel review: I – currently available biomarkers for clinical use in acute infections. Ann Intensive Care. 2013;3:1–8.CrossRef Dupuy A-M, Philippart F, Péan Y, Lasocki S, Charles P-E, Chalumeau M, et al. Role of biomarkers in the management of antibiotic therapy: an expert panel review: I – currently available biomarkers for clinical use in acute infections. Ann Intensive Care. 2013;3:1–8.CrossRef
209.
Zurück zum Zitat Wacker C, Prkno A, Brunkhorst FM, Schlattmann P. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis. 2013;13:426–35.PubMedCrossRef Wacker C, Prkno A, Brunkhorst FM, Schlattmann P. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis. 2013;13:426–35.PubMedCrossRef
210.
Zurück zum Zitat Uzzan B, Cohen R, Nicolas P, Cucherat M, Perret GY. Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Crit Care Med. 2006;34:1996–2003.PubMedCrossRef Uzzan B, Cohen R, Nicolas P, Cucherat M, Perret GY. Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Crit Care Med. 2006;34:1996–2003.PubMedCrossRef
211.
Zurück zum Zitat Tang BMP, Eslick GD, Craig JC, McLean AS. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. Lancet Infect Dis. 2007;7:210–7.PubMedCrossRef Tang BMP, Eslick GD, Craig JC, McLean AS. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. Lancet Infect Dis. 2007;7:210–7.PubMedCrossRef
212.
Zurück zum Zitat van der Does Y, Rood PPM, Haagsma JA, Patka P, van Gorp ECM, Limper M. Procalcitonin-guided therapy for the initiation of antibiotics in the ED: a systematic review. Am J Emerg Med. 2016;34:1286–93.PubMedCrossRef van der Does Y, Rood PPM, Haagsma JA, Patka P, van Gorp ECM, Limper M. Procalcitonin-guided therapy for the initiation of antibiotics in the ED: a systematic review. Am J Emerg Med. 2016;34:1286–93.PubMedCrossRef
214.
Zurück zum Zitat Goossens H, Ferech M, Stichele RV, Elseviers M, Grp EP. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet. 2005;365:579–87.PubMedCrossRef Goossens H, Ferech M, Stichele RV, Elseviers M, Grp EP. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet. 2005;365:579–87.PubMedCrossRef
215.
Zurück zum Zitat de Jong E, van Oers JA, Beishuizen A, Vos P, Vermeijden WJ, Haas LE, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis. 2016;16:819–27.PubMedCrossRef de Jong E, van Oers JA, Beishuizen A, Vos P, Vermeijden WJ, Haas LE, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis. 2016;16:819–27.PubMedCrossRef
216.
Zurück zum Zitat Kopterides P. Procalcitonin-guided algorithms of antibiotic therapy in the intensive care unit: a systematic review and meta-analysis of randomized controlled trials. Crit Care Med. 2010;38:2229–41.PubMedCrossRef Kopterides P. Procalcitonin-guided algorithms of antibiotic therapy in the intensive care unit: a systematic review and meta-analysis of randomized controlled trials. Crit Care Med. 2010;38:2229–41.PubMedCrossRef
218.
Zurück zum Zitat Schuetz P, Chiappa V, Briel M, Greenwald JL. Procalcitonin algorithms for antibiotic therapy decisions: a systematic review of randomized controlled trials and recommendations for clinical algorithms. Arch Intern Med. 2011;171:1322–31.PubMedCrossRef Schuetz P, Chiappa V, Briel M, Greenwald JL. Procalcitonin algorithms for antibiotic therapy decisions: a systematic review of randomized controlled trials and recommendations for clinical algorithms. Arch Intern Med. 2011;171:1322–31.PubMedCrossRef
219.
Zurück zum Zitat Schuetz P, Müller B, Christ-Crain M, Stolz D, Tamm M, Bouadma L, et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst Rev. 2012;10:CD007498. Schuetz P, Müller B, Christ-Crain M, Stolz D, Tamm M, Bouadma L, et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst Rev. 2012;10:CD007498.
221.
Zurück zum Zitat Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infec Dis. 2004;39:206–17.CrossRef Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infec Dis. 2004;39:206–17.CrossRef
222.
Zurück zum Zitat Lobo SM, Lobo FR, Bota DP, Lopes-Ferreira F, Soliman HM, Melot C, et al. C-reactive protein levels correlate with mortality and organ failure in critically ill patients. Chest. 2003;123:2043–9.PubMedCrossRef Lobo SM, Lobo FR, Bota DP, Lopes-Ferreira F, Soliman HM, Melot C, et al. C-reactive protein levels correlate with mortality and organ failure in critically ill patients. Chest. 2003;123:2043–9.PubMedCrossRef
223.
Zurück zum Zitat Oliveira CF, Botoni FA, Oliveira CR, Silva CB, Pereira HA, Serufo JC, et al. Procalcitonin versus C-reactive protein for guiding antibiotic therapy in sepsis: a randomized trial. Crit Care Med. 2013;41:2336–43.PubMedCrossRef Oliveira CF, Botoni FA, Oliveira CR, Silva CB, Pereira HA, Serufo JC, et al. Procalcitonin versus C-reactive protein for guiding antibiotic therapy in sepsis: a randomized trial. Crit Care Med. 2013;41:2336–43.PubMedCrossRef
Metadaten
Titel
Individualising Therapy to Minimize Bacterial Multidrug Resistance
verfasst von
A. J. Heffernan
F. B. Sime
J. Lipman
J. A. Roberts
Publikationsdatum
01.04.2018
Verlag
Springer International Publishing
Erschienen in
Drugs / Ausgabe 6/2018
Print ISSN: 0012-6667
Elektronische ISSN: 1179-1950
DOI
https://doi.org/10.1007/s40265-018-0891-9

Weitere Artikel der Ausgabe 6/2018

Drugs 6/2018 Zur Ausgabe