Skip to main content
Erschienen in: Sports Medicine 9/2014

01.09.2014 | Systematic Review

Application of ‘Live Low-Train High’ for Enhancing Normoxic Exercise Performance in Team Sport Athletes

verfasst von: Blake D. McLean, Christopher J. Gore, Justin Kemp

Erschienen in: Sports Medicine | Ausgabe 9/2014

Einloggen, um Zugang zu erhalten

Abstract

Background and Objective

Hypoxic training techniques are increasingly used by athletes in an attempt to improve performance in normoxic environments. The ‘live low-train high (LLTH)’ model of hypoxic training may be of particular interest to athletes because LLTH protocols generally involve shorter hypoxic exposures (approximately two to five sessions per week of <3 h) than other traditional hypoxic training techniques (e.g. live high-train high or live high-train low). However, the methods employed in LLTH studies to date vary greatly with respect to exposure times, training intensities, training modalities, degrees of hypoxia and performance outcomes assessed. Whilst recent reviews provide some insight into how LLTH may be applied to enhance performance, little attention has been given to how training intensity/modality may specifically influence subsequent performance in normoxia. Therefore, this systematic review aims to evaluate the normoxic performance outcomes of the available LLTH literature, with a particular focus on training intensity and modality.

Data Sources and Study Selection

A systematic search was conducted to capture all LLTH studies with a matched normoxic (control) training group and the assessment of performance under normoxic conditions. Studies were excluded if no training was completed during the hypoxic exposures, or if these exposures exceeded 3 h per day. Four electronic databases were searched (PubMed, SPORTDiscus™, EMBASE and Web of Science) during August 2013, and these searches were supplemented by additional manual searches until December 2013.

Results

After the electronic and manual searches, 40 papers were deemed to meet the inclusion criteria, representing 31 separate studies. Within these 31 studies, four types of LLTH were identified: (1) continuous low-intensity training in hypoxia (CHT, n = 16), (2) interval hypoxic training (IHT, n = 4), (3) repeated sprint training in hypoxia (RSH, n = 3) and (4) resistance training in hypoxia (RTH, n = 4). Four studies also used a combination of CHT and IHT. The majority of studies reported no difference in normoxic performance between the hypoxic and normoxic training groups (n = 19), while nine reported greater improvements in the hypoxic group and three reported poorer outcomes compared with the control group. Selection of training intensity (including matching relative or absolute intensity between normoxic and hypoxic groups) was identified as a key factor in mediating the subsequent normoxic performance outcomes. Five studies included some form of normoxic training for the hypoxic group and 14 studies assessed performance outcomes not specific to the training intensity/modality completed during the training intervention.

Conclusion

Four modes of LLTH are identified in the current literature (CHT, IHT, RSH and RTH), with training mode and intensity appearing to be key factors in mediating subsequent performance responses in normoxia. Improvements in normoxic performance appear most likely following high-intensity, short-term and intermittent training (e.g. IHT, RSH). LLTH programmes should carefully apply the principles of training and testing specificity and include some high-intensity training in normoxia. For RTH, it is unclear whether the associated adaptations are greater than those of traditional (maximal) resistance training programmes.
Literatur
1.
Zurück zum Zitat Billaut F, Gore CJ, Aughey R. Enhancing team-sport athlete performance: is altitude training relevant? Sports Med. 2012;42(9):751–67.PubMedCrossRef Billaut F, Gore CJ, Aughey R. Enhancing team-sport athlete performance: is altitude training relevant? Sports Med. 2012;42(9):751–67.PubMedCrossRef
2.
Zurück zum Zitat Wilber RL, Stray-Gundersen J, Levine BD. Effect of hypoxic “dose” on physiological responses and sea-level performance. Med Sci Sports Exerc. 2007;39(9):1590–9.PubMedCrossRef Wilber RL, Stray-Gundersen J, Levine BD. Effect of hypoxic “dose” on physiological responses and sea-level performance. Med Sci Sports Exerc. 2007;39(9):1590–9.PubMedCrossRef
3.
Zurück zum Zitat Gore C, Sharpe K, Garvican-Lewis L, et al. Altitude training and haemoglobin mass from the optimised carbon monoxide re-breathing method: a meta-analysis. Br J Sports Med. 2013;47(Suppl 1):i31–9.PubMedCentralPubMedCrossRef Gore C, Sharpe K, Garvican-Lewis L, et al. Altitude training and haemoglobin mass from the optimised carbon monoxide re-breathing method: a meta-analysis. Br J Sports Med. 2013;47(Suppl 1):i31–9.PubMedCentralPubMedCrossRef
4.
Zurück zum Zitat McLean BD, Buttifant D, Gore CJ, et al. Physiological and performance responses to a pre-season altitude training camp in elite team sport athletes. Int J Sports Physiol Perform. 2013;8(4):391–9.PubMed McLean BD, Buttifant D, Gore CJ, et al. Physiological and performance responses to a pre-season altitude training camp in elite team sport athletes. Int J Sports Physiol Perform. 2013;8(4):391–9.PubMed
5.
Zurück zum Zitat Buchheit M, Racinais S, Bilsborough JC, et al., editors. Live high-train low in the heat: an efficient new training model? 17th Annual Congress of the European College of Sport Sciences, Bruges; 2012. Buchheit M, Racinais S, Bilsborough JC, et al., editors. Live high-train low in the heat: an efficient new training model? 17th Annual Congress of the European College of Sport Sciences, Bruges; 2012.
7.
Zurück zum Zitat Millet GP, Roels B, Schmitt L, et al. Combining hypoxic methods for peak performance. Sports Med. 2010;40(1):1–25.PubMedCrossRef Millet GP, Roels B, Schmitt L, et al. Combining hypoxic methods for peak performance. Sports Med. 2010;40(1):1–25.PubMedCrossRef
8.
Zurück zum Zitat Bonetti DL, Hopkins WG. Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med. 2009;39(2):107–27.PubMedCrossRef Bonetti DL, Hopkins WG. Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med. 2009;39(2):107–27.PubMedCrossRef
9.
Zurück zum Zitat Zoll J, Ponsot E, Dufour S, et al. Exercise training in normobaric hypoxia in endurance runners: III. Muscular adjustments of selected gene transcripts. J Appl Physiol. 2006;100(4):1258–66.PubMedCrossRef Zoll J, Ponsot E, Dufour S, et al. Exercise training in normobaric hypoxia in endurance runners: III. Muscular adjustments of selected gene transcripts. J Appl Physiol. 2006;100(4):1258–66.PubMedCrossRef
10.
Zurück zum Zitat Vogt M, Puntschart A, Geiser J, et al. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol. 2001;91(1):173–82.PubMed Vogt M, Puntschart A, Geiser J, et al. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol. 2001;91(1):173–82.PubMed
11.
Zurück zum Zitat Hamlin M, Marshall H, Hellemans J, et al. Effect of intermittent hypoxic training on 20 km time trial and 30 s anaerobic performance. Scand J Med Sci Sports. 2010;20(4):651–61.PubMedCrossRef Hamlin M, Marshall H, Hellemans J, et al. Effect of intermittent hypoxic training on 20 km time trial and 30 s anaerobic performance. Scand J Med Sci Sports. 2010;20(4):651–61.PubMedCrossRef
12.
Zurück zum Zitat Faiss R, Léger B, Vesin J-M, et al. Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS ONE. 2013;8(2):e56522.PubMedCentralPubMedCrossRef Faiss R, Léger B, Vesin J-M, et al. Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS ONE. 2013;8(2):e56522.PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Nishimura A, Sugita M, Kato K, et al. Hypoxia increases muscle hypertrophy induced by resistance training. Int J Sports Physiol Perform. 2010;5(4):497–508.PubMed Nishimura A, Sugita M, Kato K, et al. Hypoxia increases muscle hypertrophy induced by resistance training. Int J Sports Physiol Perform. 2010;5(4):497–508.PubMed
14.
Zurück zum Zitat Manimmanakorn A, Hamlin MJ, Ross JJ, et al. Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes. J Sci Med Sport. 2013;16(4):337–42.PubMedCrossRef Manimmanakorn A, Hamlin MJ, Ross JJ, et al. Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes. J Sci Med Sport. 2013;16(4):337–42.PubMedCrossRef
15.
Zurück zum Zitat Manimmanakorn A, Manimmanakorn N, Taylor R, et al. Effects of resistance training combined with vascular occlusion or hypoxia on neuromuscular function in athletes. Eur J Appl Physiol. 2013;113(7):1767–74.PubMedCrossRef Manimmanakorn A, Manimmanakorn N, Taylor R, et al. Effects of resistance training combined with vascular occlusion or hypoxia on neuromuscular function in athletes. Eur J Appl Physiol. 2013;113(7):1767–74.PubMedCrossRef
16.
Zurück zum Zitat Faiss R, Girard O, Millet GP. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia. Br J Sports Med. 2013;47(Suppl 1):i45–50.PubMedCentralPubMedCrossRef Faiss R, Girard O, Millet GP. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia. Br J Sports Med. 2013;47(Suppl 1):i45–50.PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Millet GP, Faiss R. Hypoxic conditions and exercise-to-rest ratio are likely paramount. Sports Med. 2012;42(12):1081–3 (author reply 3–5). Millet GP, Faiss R. Hypoxic conditions and exercise-to-rest ratio are likely paramount. Sports Med. 2012;42(12):1081–3 (author reply 3–5).
18.
Zurück zum Zitat Millet GP, Faiss R, Brocherie F, et al. Hypoxic training and team sports: a challenge to traditional methods? Br J Sports Med. 2013;47(Suppl 1):i6–7.PubMedCentralPubMedCrossRef Millet GP, Faiss R, Brocherie F, et al. Hypoxic training and team sports: a challenge to traditional methods? Br J Sports Med. 2013;47(Suppl 1):i6–7.PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Schmutz S, Dapp C, Wittwer M, et al. A hypoxia complement differentiates the muscle response to endurance exercise. Exp Physiol. 2010;95(6):723–35.PubMedCrossRef Schmutz S, Dapp C, Wittwer M, et al. A hypoxia complement differentiates the muscle response to endurance exercise. Exp Physiol. 2010;95(6):723–35.PubMedCrossRef
20.
Zurück zum Zitat Lecoultre V, Boss A, Tappy L, et al. Training in hypoxia fails to further enhance endurance performance and lactate clearance in well-trained men and impairs glucose metabolism during prolonged exercise. Exp Physiol. 2010;95(2):315–30.PubMedCrossRef Lecoultre V, Boss A, Tappy L, et al. Training in hypoxia fails to further enhance endurance performance and lactate clearance in well-trained men and impairs glucose metabolism during prolonged exercise. Exp Physiol. 2010;95(2):315–30.PubMedCrossRef
21.
Zurück zum Zitat Truijens MJ, Toussaint HM, Dow J, et al. Effect of high-intensity hypoxic training on sea-level swimming performances. J Appl Physiol. 2003;94(2):733–43.PubMed Truijens MJ, Toussaint HM, Dow J, et al. Effect of high-intensity hypoxic training on sea-level swimming performances. J Appl Physiol. 2003;94(2):733–43.PubMed
22.
Zurück zum Zitat Roels B, Bentley DJ, Coste O, et al. Effects of intermittent hypoxic training on cycling performance in well-trained athletes. Eur J Appl Physiol. 2007;101(3):359–68.PubMedCrossRef Roels B, Bentley DJ, Coste O, et al. Effects of intermittent hypoxic training on cycling performance in well-trained athletes. Eur J Appl Physiol. 2007;101(3):359–68.PubMedCrossRef
23.
Zurück zum Zitat Roels B, Thomas C, Bentley DJ, et al. Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers. J Appl Physiol. 2007;102(1):79–86.PubMedCrossRef Roels B, Thomas C, Bentley DJ, et al. Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers. J Appl Physiol. 2007;102(1):79–86.PubMedCrossRef
24.
Zurück zum Zitat Ponsot E, Dufour SP, Zoll J, et al. Exercise training in normobaric hypoxia in endurance runners: II. Improvement of mitochondrial properties in skeletal muscle. J Appl Physiol. 2006;100(4):1249–57.PubMedCrossRef Ponsot E, Dufour SP, Zoll J, et al. Exercise training in normobaric hypoxia in endurance runners: II. Improvement of mitochondrial properties in skeletal muscle. J Appl Physiol. 2006;100(4):1249–57.PubMedCrossRef
25.
Zurück zum Zitat Roels B, Millet GP, Marcoux CJ, et al. Effects of hypoxic interval training on cycling performance. Med Sci Sports Exerc. 2005;37(1):138–46.PubMedCrossRef Roels B, Millet GP, Marcoux CJ, et al. Effects of hypoxic interval training on cycling performance. Med Sci Sports Exerc. 2005;37(1):138–46.PubMedCrossRef
26.
Zurück zum Zitat Messonnier L, Geyssant A, Hintzy F, et al. Effects of training in normoxia and normobaric hypoxia on time to exhaustion at the maximum rate of oxygen uptake. Eur J Appl Physiol. 2004;92(4–5):470–6.PubMed Messonnier L, Geyssant A, Hintzy F, et al. Effects of training in normoxia and normobaric hypoxia on time to exhaustion at the maximum rate of oxygen uptake. Eur J Appl Physiol. 2004;92(4–5):470–6.PubMed
27.
Zurück zum Zitat Friedmann B, Kinscherf R, Borisch S, et al. Effects of low-resistance/high-repetition strength training in hypoxia on muscle structure and gene expression. Pflugers Arch. 2003;446(6):742–51.PubMedCrossRef Friedmann B, Kinscherf R, Borisch S, et al. Effects of low-resistance/high-repetition strength training in hypoxia on muscle structure and gene expression. Pflugers Arch. 2003;446(6):742–51.PubMedCrossRef
28.
Zurück zum Zitat Ventura N, Hoppeler H, Seiler R, et al. The response of trained athletes to six weeks of endurance training in hypoxia or normoxia. Int J Sports Med. 2003;24(3):166–72.PubMedCrossRef Ventura N, Hoppeler H, Seiler R, et al. The response of trained athletes to six weeks of endurance training in hypoxia or normoxia. Int J Sports Med. 2003;24(3):166–72.PubMedCrossRef
29.
Zurück zum Zitat Geiser J, Vogt M, Billeter R, et al. Training high-living low: changes of aerobic performance and muscle structure with training at simulated altitude. Int J Sports Med. 2001;22(8):579–85.PubMedCrossRef Geiser J, Vogt M, Billeter R, et al. Training high-living low: changes of aerobic performance and muscle structure with training at simulated altitude. Int J Sports Med. 2001;22(8):579–85.PubMedCrossRef
30.
Zurück zum Zitat Bailey DM, Davies B, Young IS. Intermittent hypoxic training: implications for lipid peroxidation induced by acute normoxic exercise in active men. Clin Sci. 2001;101(5):465–75.PubMedCrossRef Bailey DM, Davies B, Young IS. Intermittent hypoxic training: implications for lipid peroxidation induced by acute normoxic exercise in active men. Clin Sci. 2001;101(5):465–75.PubMedCrossRef
31.
Zurück zum Zitat Messonnier L, Freund H, Feasson L, et al. Blood lactate exchange and removal abilities after relative high-intensity exercise: effects of training in normoxia and hypoxia. Eur J Appl Physiol. 2001;84(5):403–12.PubMedCrossRef Messonnier L, Freund H, Feasson L, et al. Blood lactate exchange and removal abilities after relative high-intensity exercise: effects of training in normoxia and hypoxia. Eur J Appl Physiol. 2001;84(5):403–12.PubMedCrossRef
32.
Zurück zum Zitat Meeuwsen T, Hendriksen IJ, Holewijn M. Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. Eur J Appl Physiol. 2001;84(4):283–90.PubMedCrossRef Meeuwsen T, Hendriksen IJ, Holewijn M. Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. Eur J Appl Physiol. 2001;84(4):283–90.PubMedCrossRef
33.
Zurück zum Zitat Levine BD, Friedman DB, Engfred K, et al. The effect of normoxic or hypobaric hypoxic endurance training on the hypoxic ventilatory response. Med Sci Sports Exerc. 1992;24(7):769–75.PubMedCrossRef Levine BD, Friedman DB, Engfred K, et al. The effect of normoxic or hypobaric hypoxic endurance training on the hypoxic ventilatory response. Med Sci Sports Exerc. 1992;24(7):769–75.PubMedCrossRef
34.
Zurück zum Zitat Morton JP, Cable NT. Effects of intermittent hypoxic training on aerobic and anaerobic performance. Ergonomics. 2005;48(11–14):1535–46.PubMedCrossRef Morton JP, Cable NT. Effects of intermittent hypoxic training on aerobic and anaerobic performance. Ergonomics. 2005;48(11–14):1535–46.PubMedCrossRef
35.
Zurück zum Zitat Bailey DM, Davies B, Baker J. Training in hypoxia: modulation of metabolic and cardiovascular risk factors in men. Med Sci Sports Exerc. 2000;32(6):1058–66.PubMedCrossRef Bailey DM, Davies B, Baker J. Training in hypoxia: modulation of metabolic and cardiovascular risk factors in men. Med Sci Sports Exerc. 2000;32(6):1058–66.PubMedCrossRef
36.
Zurück zum Zitat Mao TY, Fu LL, Wang JS. Hypoxic exercise training causes erythrocyte senescence and rheological dysfunction by depressed Gardos channel activity. J Appl Physiol. 2011;111(2):382–91.PubMedCrossRef Mao TY, Fu LL, Wang JS. Hypoxic exercise training causes erythrocyte senescence and rheological dysfunction by depressed Gardos channel activity. J Appl Physiol. 2011;111(2):382–91.PubMedCrossRef
37.
Zurück zum Zitat Czuba M, Waskiewicz Z, Zajac A, et al. The effects of intermittent hypoxic training on aerobic capacity and endurance performance in cyclists. J Sports Sci Med. 2011;10(1):175–83.PubMedCentralPubMed Czuba M, Waskiewicz Z, Zajac A, et al. The effects of intermittent hypoxic training on aerobic capacity and endurance performance in cyclists. J Sports Sci Med. 2011;10(1):175–83.PubMedCentralPubMed
38.
Zurück zum Zitat Hendriksen IJ, Meeuwsen T. The effect of intermittent training in hypobaric hypoxia on sea-level exercise: a cross-over study in humans. Eur J Appl Physiol. 2003;88(4–5):396–403.PubMedCrossRef Hendriksen IJ, Meeuwsen T. The effect of intermittent training in hypobaric hypoxia on sea-level exercise: a cross-over study in humans. Eur J Appl Physiol. 2003;88(4–5):396–403.PubMedCrossRef
39.
Zurück zum Zitat Beidleman B, Muza S, Fulco C, et al. Intermittent hypoxic exposure does not improve endurance performance at altitude. Med Sci Sports Exerc. 2009;41(6):1317.PubMedCrossRef Beidleman B, Muza S, Fulco C, et al. Intermittent hypoxic exposure does not improve endurance performance at altitude. Med Sci Sports Exerc. 2009;41(6):1317.PubMedCrossRef
40.
Zurück zum Zitat Emonson DL, Aminuddin AHK, Wight RL, et al. Training-induced increases in sea level VO2 max and endurance are not enhanced by acute hypobaric exposure. Eur J Appl Physiol Occup Physiol. 1997;76(1):8–12.PubMed Emonson DL, Aminuddin AHK, Wight RL, et al. Training-induced increases in sea level VO2 max and endurance are not enhanced by acute hypobaric exposure. Eur J Appl Physiol Occup Physiol. 1997;76(1):8–12.PubMed
41.
Zurück zum Zitat Debevec T, Amon M, Keramidas ME, et al. Normoxic and hypoxic performance following 4 weeks of normobaric hypoxic training. Aviat Space Environ Med. 2010;81(4):387–93.PubMedCrossRef Debevec T, Amon M, Keramidas ME, et al. Normoxic and hypoxic performance following 4 weeks of normobaric hypoxic training. Aviat Space Environ Med. 2010;81(4):387–93.PubMedCrossRef
42.
Zurück zum Zitat Terrados N, Melichna J, Sylvén C, et al. Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road cyclists. Eur J Appl Physiol Occup Physiol. 1988;57(2):203–9.PubMed Terrados N, Melichna J, Sylvén C, et al. Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road cyclists. Eur J Appl Physiol Occup Physiol. 1988;57(2):203–9.PubMed
43.
Zurück zum Zitat Kime R, Karlsen T, Nioka S, et al. Discrepancy between cardiorespiratory system and skeletal muscle in elite cyclists after hypoxic training. Dyn Med. 2003;2(1):4.PubMedCentralPubMedCrossRef Kime R, Karlsen T, Nioka S, et al. Discrepancy between cardiorespiratory system and skeletal muscle in elite cyclists after hypoxic training. Dyn Med. 2003;2(1):4.PubMedCentralPubMedCrossRef
44.
Zurück zum Zitat Haufe S, Wiesner S, Engeli S, et al. Influences of normobaric hypoxia training on metabolic risk markers in human subjects. Med Sci Sports Exerc. 2008;40(11):1939–44.PubMedCrossRef Haufe S, Wiesner S, Engeli S, et al. Influences of normobaric hypoxia training on metabolic risk markers in human subjects. Med Sci Sports Exerc. 2008;40(11):1939–44.PubMedCrossRef
45.
Zurück zum Zitat Dufour SP, Ponsot E, Zoll J, et al. Exercise training in normobaric hypoxia in endurance runners: I. Improvement in aerobic performance capacity. J Appl Physiol. 2006;100(4):1238–48.PubMedCrossRef Dufour SP, Ponsot E, Zoll J, et al. Exercise training in normobaric hypoxia in endurance runners: I. Improvement in aerobic performance capacity. J Appl Physiol. 2006;100(4):1238–48.PubMedCrossRef
46.
Zurück zum Zitat Engfred K, Kjaer M, Secher NH, et al. Hypoxia and training-induced adaptation of hormonal responses to exercise in humans. Eur J Appl Physiol Occup Physiol. 1994;68(4):303–9.PubMed Engfred K, Kjaer M, Secher NH, et al. Hypoxia and training-induced adaptation of hormonal responses to exercise in humans. Eur J Appl Physiol Occup Physiol. 1994;68(4):303–9.PubMed
47.
Zurück zum Zitat Mounier R, Pialoux V, Roels B, et al. Effect of intermittent hypoxic training on HIF gene expression in human skeletal muscle and leukocytes. Eur J Appl Physiol. 2009;105(4):515–24.PubMedCrossRef Mounier R, Pialoux V, Roels B, et al. Effect of intermittent hypoxic training on HIF gene expression in human skeletal muscle and leukocytes. Eur J Appl Physiol. 2009;105(4):515–24.PubMedCrossRef
49.
Zurück zum Zitat Puype J, Van Proeyen K, Raymackers JM, et al. Sprint interval training in hypoxia stimulates glycolytic enzyme activity. Med Sci Sports Exerc. 2013;45(11):2166–74.PubMedCrossRef Puype J, Van Proeyen K, Raymackers JM, et al. Sprint interval training in hypoxia stimulates glycolytic enzyme activity. Med Sci Sports Exerc. 2013;45(11):2166–74.PubMedCrossRef
50.
Zurück zum Zitat Ho J-Y, Kuo T-Y, Liu K-L, et al. Combining normobaric hypoxia with short-term resistance training has no additive beneficial effect on muscular performance and body composition. J Strength Cond Res. 2014;28(4):935–41.PubMed Ho J-Y, Kuo T-Y, Liu K-L, et al. Combining normobaric hypoxia with short-term resistance training has no additive beneficial effect on muscular performance and body composition. J Strength Cond Res. 2014;28(4):935–41.PubMed
51.
Zurück zum Zitat Buchheit M, Kuitunen S, Voss SC, et al. Physiological strain associated with high-intensity hypoxic intervals in highly trained young runners. J Strength Cond Res. 2012;26(1):94–105.PubMedCrossRef Buchheit M, Kuitunen S, Voss SC, et al. Physiological strain associated with high-intensity hypoxic intervals in highly trained young runners. J Strength Cond Res. 2012;26(1):94–105.PubMedCrossRef
52.
Zurück zum Zitat Garvican LA, Hammond K, Varley MC, et al. Lower running performance and exacerbated fatigue in soccer played at 1600 m. Int J Sports Physiol Perform. 2014;9:397–404.PubMed Garvican LA, Hammond K, Varley MC, et al. Lower running performance and exacerbated fatigue in soccer played at 1600 m. Int J Sports Physiol Perform. 2014;9:397–404.PubMed
53.
Zurück zum Zitat Buchheit M. Repeated-sprint performance in team sport players: associations with measures of aerobic fitness, metabolic control and locomotor function. Int J Sports Med. 2012;33(3):230–9.PubMedCrossRef Buchheit M. Repeated-sprint performance in team sport players: associations with measures of aerobic fitness, metabolic control and locomotor function. Int J Sports Med. 2012;33(3):230–9.PubMedCrossRef
54.
Zurück zum Zitat Calbet JA, Rådegran G, Boushel R, et al. On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass. J Physiol. 2009;587(2):477–90.PubMedCentralPubMedCrossRef Calbet JA, Rådegran G, Boushel R, et al. On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass. J Physiol. 2009;587(2):477–90.PubMedCentralPubMedCrossRef
55.
Zurück zum Zitat Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I. Cardiopulmonary emphasis. Sports Med. 2013;43(5):313–38.PubMedCrossRef Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I. Cardiopulmonary emphasis. Sports Med. 2013;43(5):313–38.PubMedCrossRef
56.
Zurück zum Zitat Lepretre P-M, Koralsztein J-P, Billat VL. Effect of exercise intensity on relationship between VO2max and cardiac output. Med Sci Sports Exerc. 2004;36:1357–63.PubMedCrossRef Lepretre P-M, Koralsztein J-P, Billat VL. Effect of exercise intensity on relationship between VO2max and cardiac output. Med Sci Sports Exerc. 2004;36:1357–63.PubMedCrossRef
57.
Zurück zum Zitat Desplanches D, Hoppeler H, Linossier MT, et al. Effects of training in normoxia and normobaric hypoxia on human muscle ultrastructure. Pflugers Arch. 1993;425(3–4):263–7.PubMedCrossRef Desplanches D, Hoppeler H, Linossier MT, et al. Effects of training in normoxia and normobaric hypoxia on human muscle ultrastructure. Pflugers Arch. 1993;425(3–4):263–7.PubMedCrossRef
58.
Zurück zum Zitat Bailey DM, Davies B, Castell LM, et al. Physical exercise and normobaric hypoxia: independent modulators of peripheral cholecystokinin metabolism in man. J Appl Physiol. 2001;90(1):105–13.PubMed Bailey DM, Davies B, Castell LM, et al. Physical exercise and normobaric hypoxia: independent modulators of peripheral cholecystokinin metabolism in man. J Appl Physiol. 2001;90(1):105–13.PubMed
59.
Zurück zum Zitat Wang HY, Hu Y, Wang SH, et al. Association of androgen receptor CAG repeat polymorphism with VO(2)max response to hypoxic training in North China Han men. Int J Androl. 2010;33(6):794–9.PubMedCrossRef Wang HY, Hu Y, Wang SH, et al. Association of androgen receptor CAG repeat polymorphism with VO(2)max response to hypoxic training in North China Han men. Int J Androl. 2010;33(6):794–9.PubMedCrossRef
60.
Zurück zum Zitat Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013;43(3):179–94.PubMedCrossRef Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013;43(3):179–94.PubMedCrossRef
61.
Zurück zum Zitat McCaulley GO, McBride JM, Cormie P, et al. Acute hormonal and neuromuscular responses to hypertrophy, strength and power type resistance exercise. Eur J Appl Physiol. 2009;105(5):695–704.PubMedCrossRef McCaulley GO, McBride JM, Cormie P, et al. Acute hormonal and neuromuscular responses to hypertrophy, strength and power type resistance exercise. Eur J Appl Physiol. 2009;105(5):695–704.PubMedCrossRef
62.
Zurück zum Zitat Takarada Y, Takazawa H, Sato Y, et al. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol. 2000;88(6):2097–106.PubMed Takarada Y, Takazawa H, Sato Y, et al. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol. 2000;88(6):2097–106.PubMed
63.
Zurück zum Zitat Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol. 2002;86(4):308–14.PubMedCrossRef Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol. 2002;86(4):308–14.PubMedCrossRef
64.
Zurück zum Zitat Girard O, Brocherie F, Millet GP. On the use of mobile inflatable hypoxic marquees for sport-specific altitude training in team sports. Br J Sports Med. 2013;47(Suppl 1):i121–3.PubMedCentralPubMedCrossRef Girard O, Brocherie F, Millet GP. On the use of mobile inflatable hypoxic marquees for sport-specific altitude training in team sports. Br J Sports Med. 2013;47(Suppl 1):i121–3.PubMedCentralPubMedCrossRef
Metadaten
Titel
Application of ‘Live Low-Train High’ for Enhancing Normoxic Exercise Performance in Team Sport Athletes
verfasst von
Blake D. McLean
Christopher J. Gore
Justin Kemp
Publikationsdatum
01.09.2014
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 9/2014
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-014-0204-8

Weitere Artikel der Ausgabe 9/2014

Sports Medicine 9/2014 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.