Skip to main content
Erschienen in: Sports Medicine 9/2017

03.03.2017 | Review Article

How Biomechanical Improvements in Running Economy Could Break the 2-hour Marathon Barrier

verfasst von: Wouter Hoogkamer, Rodger Kram, Christopher J. Arellano

Erschienen in: Sports Medicine | Ausgabe 9/2017

Einloggen, um Zugang zu erhalten

Abstract

A sub-2-hour marathon requires an average velocity (5.86 m/s) that is 2.5% faster than the current world record of 02:02:57 (5.72 m/s) and could be accomplished with a 2.7% reduction in the metabolic cost of running. Although supporting body weight comprises the majority of the metabolic cost of running, targeting the costs of forward propulsion and leg swing are the most promising strategies for reducing the metabolic cost of running and thus improving marathon running performance. Here, we calculate how much time could be saved by taking advantage of unconventional drafting strategies, a consistent tailwind, a downhill course, and specific running shoe design features while staying within the current International Association of Athletic Federations regulations for record purposes. Specifically, running in shoes that are 100 g lighter along with second-half scenarios of four runners alternately leading and drafting, or a tailwind of 6.0 m/s, combined with a 42-m elevation drop could result in a time well below the 2-hour marathon barrier.
Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Examples include 5000-m runner Harald Norpoth and cyclist Michael Rasmussen.
 
2
For sprinting events on the track, the maximum IAAF allowable wind velocity for record purposes is only 2.0 m/s (IAAF rule 260.14c [54]).
 
Literatur
1.
Zurück zum Zitat Joyner MJ, Ruiz JR, Lucia A. The two-hour marathon: who and when? J Appl Physiol. 2011;110:275–7.CrossRefPubMed Joyner MJ, Ruiz JR, Lucia A. The two-hour marathon: who and when? J Appl Physiol. 2011;110:275–7.CrossRefPubMed
2.
Zurück zum Zitat Weiss M, Newman A, Whitmore C, et al. One hundred and fifty years of sprint and distance running—past trends and future prospects. Eur J Sport Sci. 2016;16:393–401.CrossRefPubMed Weiss M, Newman A, Whitmore C, et al. One hundred and fifty years of sprint and distance running—past trends and future prospects. Eur J Sport Sci. 2016;16:393–401.CrossRefPubMed
3.
Zurück zum Zitat Hill AV. The physiological basis of athletic records. Lancet. 1925;206:481–6.CrossRef Hill AV. The physiological basis of athletic records. Lancet. 1925;206:481–6.CrossRef
4.
Zurück zum Zitat Kennelly AE. An approximate law of fatigue in the speeds of racing animals. Proc Am Acad Arts Sci. 1906;42:275.CrossRef Kennelly AE. An approximate law of fatigue in the speeds of racing animals. Proc Am Acad Arts Sci. 1906;42:275.CrossRef
5.
Zurück zum Zitat Liu Y, Schutz RW. Prediction models for track and field performances. Meas Phys Educ Exerc Sci. 1998;2:205–23.CrossRef Liu Y, Schutz RW. Prediction models for track and field performances. Meas Phys Educ Exerc Sci. 1998;2:205–23.CrossRef
6.
Zurück zum Zitat Caesar E. Two hours: the quest to run the impossible marathon. New York: Simon & Schuster; 2015. Caesar E. Two hours: the quest to run the impossible marathon. New York: Simon & Schuster; 2015.
7.
Zurück zum Zitat Tucker R, Santos-Concejero J. An imminent sub 2-hours marathon is unlikely: historical trends of the gender gap in running events. Int J Sports Physiol Perform. Epub 14 December 2016. Tucker R, Santos-Concejero J. An imminent sub 2-hours marathon is unlikely: historical trends of the gender gap in running events. Int J Sports Physiol Perform. Epub 14 December 2016.
12.
Zurück zum Zitat Péronnet F, Thibault G. Mathematical analysis of running performance and world running records. J Appl Physiol. 1989;67:453–65.PubMed Péronnet F, Thibault G. Mathematical analysis of running performance and world running records. J Appl Physiol. 1989;67:453–65.PubMed
13.
Zurück zum Zitat Joyner MJ. Modeling: optimal marathon performance on the basis of physiological factors. J Appl Physiol. 1991;70:683–7.PubMed Joyner MJ. Modeling: optimal marathon performance on the basis of physiological factors. J Appl Physiol. 1991;70:683–7.PubMed
14.
Zurück zum Zitat Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586:35–44.CrossRefPubMed Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586:35–44.CrossRefPubMed
15.
Zurück zum Zitat Shaw AJ, Ingham SA, Atkinson G, et al. The correlation between running economy and maximal oxygen uptake: cross-sectional and longitudinal relationships in highly trained distance runners. PLoS One. 2015;10:e0123101.CrossRefPubMedPubMedCentral Shaw AJ, Ingham SA, Atkinson G, et al. The correlation between running economy and maximal oxygen uptake: cross-sectional and longitudinal relationships in highly trained distance runners. PLoS One. 2015;10:e0123101.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:70–84.CrossRefPubMed Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:70–84.CrossRefPubMed
17.
Zurück zum Zitat Coyle EF. Integration of the physiological factors determining endurance performance ability. Exerc Sport Sci Rev. 1995;23:25–63.CrossRefPubMed Coyle EF. Integration of the physiological factors determining endurance performance ability. Exerc Sport Sci Rev. 1995;23:25–63.CrossRefPubMed
18.
Zurück zum Zitat Williams KR, Cavanagh PR. Relationship between distance running mechanics, running economy, and performance. J Appl Physiol. 1987;63:1236–45.PubMed Williams KR, Cavanagh PR. Relationship between distance running mechanics, running economy, and performance. J Appl Physiol. 1987;63:1236–45.PubMed
19.
Zurück zum Zitat Fuller JT, Bellenger CR, Thewlis D, et al. The effect of footwear on running performance and running economy in distance runners. Sports Med. 2015;45:411–22.CrossRefPubMed Fuller JT, Bellenger CR, Thewlis D, et al. The effect of footwear on running performance and running economy in distance runners. Sports Med. 2015;45:411–22.CrossRefPubMed
20.
Zurück zum Zitat Hoogkamer W, Kipp S, Spiering BA, et al. Altered running economy directly translates to altered distance-running performance. Med Sci Sports Exerc. 2016;48:2175–80.CrossRefPubMed Hoogkamer W, Kipp S, Spiering BA, et al. Altered running economy directly translates to altered distance-running performance. Med Sci Sports Exerc. 2016;48:2175–80.CrossRefPubMed
21.
22.
Zurück zum Zitat Di Prampero PE, Atchou G, Brückner JC, et al. The energetics of endurance running. Eur J Appl Physiol Occup Physiol. 1986;55:259–66.CrossRefPubMed Di Prampero PE, Atchou G, Brückner JC, et al. The energetics of endurance running. Eur J Appl Physiol Occup Physiol. 1986;55:259–66.CrossRefPubMed
23.
Zurück zum Zitat Smith CGM, Jones AM. The relationship between critical velocity, maximal lactate steady-state velocity and lactate turnpoint velocity in runners. Eur J Appl Physiol. 2001;85:19–26.CrossRefPubMed Smith CGM, Jones AM. The relationship between critical velocity, maximal lactate steady-state velocity and lactate turnpoint velocity in runners. Eur J Appl Physiol. 2001;85:19–26.CrossRefPubMed
24.
Zurück zum Zitat Poole DC, Burnley M, Vanhatalo A, et al. Critical power: an important fatigue threshold in exercise physiology. Med Sci Sports Exerc. 2016;48:2320–34.CrossRefPubMed Poole DC, Burnley M, Vanhatalo A, et al. Critical power: an important fatigue threshold in exercise physiology. Med Sci Sports Exerc. 2016;48:2320–34.CrossRefPubMed
25.
Zurück zum Zitat Frederick EC, Daniels JT, Hayes JW. The effect of shoe weight on the aerobic demands of running. In: Bachl N, Prokop L, Suckert R, editors. Curr Top Sports Med Proc World Congr Sports Med. Vienna: Urban and Schwarzenberg; 1984. p. 616–25. Frederick EC, Daniels JT, Hayes JW. The effect of shoe weight on the aerobic demands of running. In: Bachl N, Prokop L, Suckert R, editors. Curr Top Sports Med Proc World Congr Sports Med. Vienna: Urban and Schwarzenberg; 1984. p. 616–25.
26.
Zurück zum Zitat Franz JR, Wierzbinski CM, Kram R. Metabolic cost of running barefoot versus shod. Med Sci Sports Exerc. 2012;44:1519–25.CrossRefPubMed Franz JR, Wierzbinski CM, Kram R. Metabolic cost of running barefoot versus shod. Med Sci Sports Exerc. 2012;44:1519–25.CrossRefPubMed
27.
28.
Zurück zum Zitat Steudel-Numbers KL, Wall-Scheffler CM. Optimal running speed and the evolution of hominin hunting strategies. J Hum Evol. 2009;56:355–60.CrossRefPubMed Steudel-Numbers KL, Wall-Scheffler CM. Optimal running speed and the evolution of hominin hunting strategies. J Hum Evol. 2009;56:355–60.CrossRefPubMed
29.
Zurück zum Zitat Daniels J, Krahenbuhl G, Foster C, et al. Aerobic responses of female distance runners to submaximal and maximal exercise. Ann NY Acad Sci. 1977;301:726–33.CrossRefPubMed Daniels J, Krahenbuhl G, Foster C, et al. Aerobic responses of female distance runners to submaximal and maximal exercise. Ann NY Acad Sci. 1977;301:726–33.CrossRefPubMed
30.
Zurück zum Zitat Daniels JT. A physiologist’s view of running economy. Med Sci Sports Exerc. 1985;17:332–8.PubMed Daniels JT. A physiologist’s view of running economy. Med Sci Sports Exerc. 1985;17:332–8.PubMed
31.
Zurück zum Zitat Batliner M. Does VO2 increase linearly with speed in average and sub-elite distance runners?. Boulder: University of Colorado; 2013. Batliner M. Does VO2 increase linearly with speed in average and sub-elite distance runners?. Boulder: University of Colorado; 2013.
32.
Zurück zum Zitat Margaria R, Cerretelli P, Aghemo P, et al. Energy cost of running. J Appl Physiol. 1963;18:367–70.PubMed Margaria R, Cerretelli P, Aghemo P, et al. Energy cost of running. J Appl Physiol. 1963;18:367–70.PubMed
33.
Zurück zum Zitat Léger L, Mercier D. Gross energy cost of horizontal treadmill and track running. Sports Med. 1984;1:270–7.CrossRefPubMed Léger L, Mercier D. Gross energy cost of horizontal treadmill and track running. Sports Med. 1984;1:270–7.CrossRefPubMed
34.
Zurück zum Zitat Jones AM, Doust JH. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J Sports Sci. 1996;14:321–7.CrossRefPubMed Jones AM, Doust JH. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J Sports Sci. 1996;14:321–7.CrossRefPubMed
35.
Zurück zum Zitat Kyle CR, Caiozzo VJ. The effect of athletic clothing aerodynamics upon running speed. Med Sci Sports Exerc. 1986;18:509–15.CrossRefPubMed Kyle CR, Caiozzo VJ. The effect of athletic clothing aerodynamics upon running speed. Med Sci Sports Exerc. 1986;18:509–15.CrossRefPubMed
36.
Zurück zum Zitat McMiken DF, Daniels JT. Aerobic requirements and maximum aerobic power in treadmill and track running. Med Sci Sports Exerc. 1976;8:14–7.CrossRef McMiken DF, Daniels JT. Aerobic requirements and maximum aerobic power in treadmill and track running. Med Sci Sports Exerc. 1976;8:14–7.CrossRef
37.
Zurück zum Zitat Tam E, Rossi H, Moia C, et al. Energetics of running in top-level marathon runners from Kenya. Eur J Appl Physiol. 2012;112:3797–806.CrossRefPubMed Tam E, Rossi H, Moia C, et al. Energetics of running in top-level marathon runners from Kenya. Eur J Appl Physiol. 2012;112:3797–806.CrossRefPubMed
38.
Zurück zum Zitat Pugh LG. The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces. J Physiol. 1971;213:255–76.CrossRefPubMedPubMedCentral Pugh LG. The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces. J Physiol. 1971;213:255–76.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Di Prampero P. The energy cost of human locomotion on land and in water. Int J Sports Med. 1986;07:55–72.CrossRef Di Prampero P. The energy cost of human locomotion on land and in water. Int J Sports Med. 1986;07:55–72.CrossRef
40.
Zurück zum Zitat Pollock ML. Submaximal and maximal working capacity of elite distance runners. Part I: cardiorespiratory aspects. Ann NY Acad Sci. 1977;301:310–22.CrossRefPubMed Pollock ML. Submaximal and maximal working capacity of elite distance runners. Part I: cardiorespiratory aspects. Ann NY Acad Sci. 1977;301:310–22.CrossRefPubMed
41.
Zurück zum Zitat Larsen HB. Kenyan dominance in distance running. Comp Biochem Physiol A Mol Integr Physiol. 2003;136:161–70.CrossRefPubMed Larsen HB. Kenyan dominance in distance running. Comp Biochem Physiol A Mol Integr Physiol. 2003;136:161–70.CrossRefPubMed
42.
Zurück zum Zitat Daniels JT, Gilbert J. Oxygen power: performance tables for distance runners. Tempe, AZ: Daniels and Gilbert; 1979. Daniels JT, Gilbert J. Oxygen power: performance tables for distance runners. Tempe, AZ: Daniels and Gilbert; 1979.
43.
Zurück zum Zitat Brueckner JC, Atchou G, Capelli C, et al. The energy cost of running increases with the distance covered. Eur J Appl Physiol Occup Physiol. 1991;62:385–9.CrossRefPubMed Brueckner JC, Atchou G, Capelli C, et al. The energy cost of running increases with the distance covered. Eur J Appl Physiol Occup Physiol. 1991;62:385–9.CrossRefPubMed
44.
Zurück zum Zitat Nicol C, Komi PV, Marconnet P. Effects of marathon fatigue on running kinematics and economy. Scand J Med Sci Sports. 1991;1:195–204.CrossRef Nicol C, Komi PV, Marconnet P. Effects of marathon fatigue on running kinematics and economy. Scand J Med Sci Sports. 1991;1:195–204.CrossRef
45.
Zurück zum Zitat Kyröläinen H, Pullinen T, Candau R, et al. Effects of marathon running on running economy and kinematics. Eur J Appl Physiol. 2000;82:297–304.CrossRefPubMed Kyröläinen H, Pullinen T, Candau R, et al. Effects of marathon running on running economy and kinematics. Eur J Appl Physiol. 2000;82:297–304.CrossRefPubMed
46.
Zurück zum Zitat Lacour JR, Bourdin M. Factors affecting the energy cost of level running at submaximal speed. Eur J Appl Physiol. 2015;115:651–73.CrossRefPubMed Lacour JR, Bourdin M. Factors affecting the energy cost of level running at submaximal speed. Eur J Appl Physiol. 2015;115:651–73.CrossRefPubMed
48.
49.
Zurück zum Zitat Teunissen LPJ, Grabowski A, Kram R. Effects of independently altering body weight and body mass on the metabolic cost of running. J Exp Biol. 2007;210:4418–27.CrossRefPubMed Teunissen LPJ, Grabowski A, Kram R. Effects of independently altering body weight and body mass on the metabolic cost of running. J Exp Biol. 2007;210:4418–27.CrossRefPubMed
50.
Zurück zum Zitat Aaron EA, Johnson BD, Seow CK, et al. Oxygen cost of exercise hyperpnea: measurement. J Appl Physiol. 1992;72:1810–7.PubMed Aaron EA, Johnson BD, Seow CK, et al. Oxygen cost of exercise hyperpnea: measurement. J Appl Physiol. 1992;72:1810–7.PubMed
51.
Zurück zum Zitat Aaron EA, Seow KC, Johnson BD, et al. Oxygen cost of exercise hyperpnea: implications for performance. J Appl Physiol. 1992;72:1818–25.PubMed Aaron EA, Seow KC, Johnson BD, et al. Oxygen cost of exercise hyperpnea: implications for performance. J Appl Physiol. 1992;72:1818–25.PubMed
52.
Zurück zum Zitat Farley CT, McMahon TA. Energetics of walking and running: insights from simulated reduced-gravity experiments. J Appl Physiol. 1992;73:2709–12.PubMed Farley CT, McMahon TA. Energetics of walking and running: insights from simulated reduced-gravity experiments. J Appl Physiol. 1992;73:2709–12.PubMed
53.
Zurück zum Zitat Judelson DA, Maresh CM, Anderson JM, et al. Hydration and muscular performance: does fluid balance affect strength, power and high-intensity endurance? Sports Med. 2007;37:907–21.CrossRefPubMed Judelson DA, Maresh CM, Anderson JM, et al. Hydration and muscular performance: does fluid balance affect strength, power and high-intensity endurance? Sports Med. 2007;37:907–21.CrossRefPubMed
54.
Zurück zum Zitat Coyle EF, González-Alonso J. Cardiovascular drift during prolonged exercise: new perspectives. Exerc Sport Sci Rev. 2001;29:88–92.CrossRefPubMed Coyle EF, González-Alonso J. Cardiovascular drift during prolonged exercise: new perspectives. Exerc Sport Sci Rev. 2001;29:88–92.CrossRefPubMed
55.
Zurück zum Zitat Armstrong LE, Whittlesey MJ, Casa DJ, et al. No effect of 5% hypohydration on running economy of competitive runners at 23 degrees C. Med Sci Sports Exerc. 2006;38:1762–9.CrossRefPubMed Armstrong LE, Whittlesey MJ, Casa DJ, et al. No effect of 5% hypohydration on running economy of competitive runners at 23 degrees C. Med Sci Sports Exerc. 2006;38:1762–9.CrossRefPubMed
56.
Zurück zum Zitat Beis LY, Wright-Whyte M, Fudge B, et al. Drinking behaviors of elite male runners during marathon competition. Clin J Sports Med. 2012;22:254–61.CrossRef Beis LY, Wright-Whyte M, Fudge B, et al. Drinking behaviors of elite male runners during marathon competition. Clin J Sports Med. 2012;22:254–61.CrossRef
57.
Zurück zum Zitat Pavei G, Biancardi CM, Minetti AE. Skipping vs. running as the bipedal gait of choice in hypogravity. J Appl Physiol. 2015;119:93–100.CrossRefPubMed Pavei G, Biancardi CM, Minetti AE. Skipping vs. running as the bipedal gait of choice in hypogravity. J Appl Physiol. 2015;119:93–100.CrossRefPubMed
58.
Zurück zum Zitat Kerdok AE, Biewener AA, McMahon TA, et al. Energetics and mechanics of human running on surfaces of different stiffnesses. J Appl Physiol. 2002;92:469–78.CrossRefPubMed Kerdok AE, Biewener AA, McMahon TA, et al. Energetics and mechanics of human running on surfaces of different stiffnesses. J Appl Physiol. 2002;92:469–78.CrossRefPubMed
59.
Zurück zum Zitat Tung KD, Franz JR, Kram R. A test of the metabolic cost of cushioning hypothesis during unshod and shod running. Med Sci Sports Exerc. 2014;46:324–9.CrossRefPubMed Tung KD, Franz JR, Kram R. A test of the metabolic cost of cushioning hypothesis during unshod and shod running. Med Sci Sports Exerc. 2014;46:324–9.CrossRefPubMed
60.
Zurück zum Zitat International Association of Athletics Federations. Competition rules 2016–2017. Monaco: International Association of Athletics Federations; 2015. International Association of Athletics Federations. Competition rules 2016–2017. Monaco: International Association of Athletics Federations; 2015.
61.
Zurück zum Zitat Chang YH, Kram R. Metabolic cost of generating horizontal forces during human running. J Appl Physiol. 1999;86:1657–62.CrossRefPubMed Chang YH, Kram R. Metabolic cost of generating horizontal forces during human running. J Appl Physiol. 1999;86:1657–62.CrossRefPubMed
62.
Zurück zum Zitat Vernillo G, Schena F, Berardelli C, et al. Anthropometric characteristics of top-class Kenyan marathon runners. J Sports Med Phys Fitness. 2013;53:403–8.PubMed Vernillo G, Schena F, Berardelli C, et al. Anthropometric characteristics of top-class Kenyan marathon runners. J Sports Med Phys Fitness. 2013;53:403–8.PubMed
63.
Zurück zum Zitat Brisswalter J, Hausswirth C. Consequences of drafting on human locomotion: benefits on sports performance. Int J Sports Physiol Perform. 2008;3:3–15.CrossRefPubMed Brisswalter J, Hausswirth C. Consequences of drafting on human locomotion: benefits on sports performance. Int J Sports Physiol Perform. 2008;3:3–15.CrossRefPubMed
65.
Zurück zum Zitat Kyle CR. Reduction of wind resistance and power output of racing cyclists and runners traveling in groups. Ergonomics. 1979;22:387–97.CrossRef Kyle CR. Reduction of wind resistance and power output of racing cyclists and runners traveling in groups. Ergonomics. 1979;22:387–97.CrossRef
66.
Zurück zum Zitat Davies CT. Effects of wind assistance and resistance on the forward motion of a runner. J Appl Physiol. 1980;48:702–9.PubMed Davies CT. Effects of wind assistance and resistance on the forward motion of a runner. J Appl Physiol. 1980;48:702–9.PubMed
67.
Zurück zum Zitat Snyder KL, Farley CT. Energetically optimal stride frequency in running: the effects of incline and decline. J Exp Biol. 2011;214:2089–95.CrossRefPubMed Snyder KL, Farley CT. Energetically optimal stride frequency in running: the effects of incline and decline. J Exp Biol. 2011;214:2089–95.CrossRefPubMed
68.
Zurück zum Zitat Minetti AE, Ardigò LP, Saibene F. Mechanical determinants of the minimum energy cost of gradient running in humans. J Exp Biol. 1994;195:211–25.PubMed Minetti AE, Ardigò LP, Saibene F. Mechanical determinants of the minimum energy cost of gradient running in humans. J Exp Biol. 1994;195:211–25.PubMed
69.
Zurück zum Zitat Minetti AE, Moia C, Roi GS, et al. Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol. 2002;93:1039–46.CrossRefPubMed Minetti AE, Moia C, Roi GS, et al. Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol. 2002;93:1039–46.CrossRefPubMed
70.
Zurück zum Zitat Myers MJ, Steudel K. Effect of limb mass and its distribution on the energetic cost of running. J Exp Biol. 1985;116:363–73.PubMed Myers MJ, Steudel K. Effect of limb mass and its distribution on the energetic cost of running. J Exp Biol. 1985;116:363–73.PubMed
71.
Zurück zum Zitat Martin PE. Mechanical and physiological responses to lower extremity loading during running. Med Sci Sports Exerc. 1985;17:427–33.CrossRefPubMed Martin PE. Mechanical and physiological responses to lower extremity loading during running. Med Sci Sports Exerc. 1985;17:427–33.CrossRefPubMed
72.
Zurück zum Zitat Saltin B, Larsen H, Terrados N, et al. Aerobic exercise capacity at sea level and at altitude in Kenyan boys, junior and senior runners compared with Scandinavian runners. Scand J Med Sci Sports. 1995;5:209–21.CrossRefPubMed Saltin B, Larsen H, Terrados N, et al. Aerobic exercise capacity at sea level and at altitude in Kenyan boys, junior and senior runners compared with Scandinavian runners. Scand J Med Sci Sports. 1995;5:209–21.CrossRefPubMed
73.
Zurück zum Zitat Brüggemann G-P, Arampatzis A, Emrich F, et al. Biomechanics of double transtibial amputee sprinting using dedicated sprinting prostheses. Sports Technol. 2009;1:220–7.CrossRef Brüggemann G-P, Arampatzis A, Emrich F, et al. Biomechanics of double transtibial amputee sprinting using dedicated sprinting prostheses. Sports Technol. 2009;1:220–7.CrossRef
74.
Zurück zum Zitat Weyand PG, Bundle MW, McGowan CP, et al. The fastest runner on artificial legs: different limbs, similar function? J Appl Physiol. 2009;107:903–11.CrossRefPubMed Weyand PG, Bundle MW, McGowan CP, et al. The fastest runner on artificial legs: different limbs, similar function? J Appl Physiol. 2009;107:903–11.CrossRefPubMed
75.
76.
Zurück zum Zitat Frederick EC, Clarke TE, Larsen JL, et al. The effects of shoe cushioning on the oxygen demands of running. In: Nigg BM, Kerr BA, editors. Biomechanical aspects of sports shoes and playing surfaces. Calgary: The University of Calgary; 1983. p. 107–14. Frederick EC, Clarke TE, Larsen JL, et al. The effects of shoe cushioning on the oxygen demands of running. In: Nigg BM, Kerr BA, editors. Biomechanical aspects of sports shoes and playing surfaces. Calgary: The University of Calgary; 1983. p. 107–14.
77.
Zurück zum Zitat Worobets J, Wannop JW, Tomaras E, et al. Softer and more resilient running shoe cushioning properties enhance running economy. Footwear Sci. 2014;6:147–53.CrossRef Worobets J, Wannop JW, Tomaras E, et al. Softer and more resilient running shoe cushioning properties enhance running economy. Footwear Sci. 2014;6:147–53.CrossRef
78.
Zurück zum Zitat Frederick EC, Howley ET, Powers SK. Lower O2 cost while running on air cushion type shoe. Med Sci Sports Exerc. 1980;12:81–2. Frederick EC, Howley ET, Powers SK. Lower O2 cost while running on air cushion type shoe. Med Sci Sports Exerc. 1980;12:81–2.
79.
Zurück zum Zitat Roy J-PR, Stefanyshyn DJ. Shoe midsole longitudinal bending stiffness and running economy, joint energy, and EMG. Med Sci Sports Exerc. 2006;38:562–9.CrossRefPubMed Roy J-PR, Stefanyshyn DJ. Shoe midsole longitudinal bending stiffness and running economy, joint energy, and EMG. Med Sci Sports Exerc. 2006;38:562–9.CrossRefPubMed
80.
Zurück zum Zitat Madden R, Sakaguchi M, Wannop J, et al. Forefoot bending stiffness, running economy and kinematics during overground running. Footwear Sci. 2015;7:S11–3.CrossRef Madden R, Sakaguchi M, Wannop J, et al. Forefoot bending stiffness, running economy and kinematics during overground running. Footwear Sci. 2015;7:S11–3.CrossRef
Metadaten
Titel
How Biomechanical Improvements in Running Economy Could Break the 2-hour Marathon Barrier
verfasst von
Wouter Hoogkamer
Rodger Kram
Christopher J. Arellano
Publikationsdatum
03.03.2017
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 9/2017
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-017-0708-0

Weitere Artikel der Ausgabe 9/2017

Sports Medicine 9/2017 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.