Skip to main content
Erschienen in: Sports Medicine 12/2018

08.10.2018 | Original Research Article

Modeling the Benefits of Cooperative Drafting: Is There an Optimal Strategy to Facilitate a Sub-2-Hour Marathon Performance?

verfasst von: Wouter Hoogkamer, Kristine L. Snyder, Christopher J. Arellano

Erschienen in: Sports Medicine | Ausgabe 12/2018

Einloggen, um Zugang zu erhalten

Abstract

Background

During a race, competing cyclists often cooperate by alternating between leading and drafting positions. This approach allows them to maximize velocity by using the energy saved while drafting, a technique to reduce the overall drag by exploiting the leader’s slipstream. We have argued that a similar cooperative drafting approach could benefit elite marathon runners in their quest for the sub-2-hour marathon.

Objective

Our aim was to model the effects of various cooperative drafting scenarios on marathon performance by applying the critical velocity concept for intermittent high-intensity running.

Methods

We used the physiological characteristics of the world’s most elite long-distance runners and mathematically simulated the depletion and recovery of their distance capacity when running above and below their critical velocity throughout a marathon.

Results

Our simulations showed that with four of the most elite runners in the world, a 2:00:48 (h:min:s) marathon is possible, a whopping 2 min faster than the current world record. We also explored the possibility of a sub-2-hour marathon using multiple runners with the physiological characteristics of Eliud Kipchoge, arguably the best marathon runner of our time. We found that a team of eight Kipchoge-like runners could break the sub-2-hour marathon barrier.

Conclusion

In the context of cooperative drafting, we show that the best team strategy for improving marathon performance time can be optimized using a mathematical model that is based on the physiological characteristics of each athlete.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat International Association of Athletics Federations. Competition rules 2018–2019. Monaco: International Association of Athletics Federations; 2017. International Association of Athletics Federations. Competition rules 2018–2019. Monaco: International Association of Athletics Federations; 2017.
2.
Zurück zum Zitat Hoogkamer W, Kram R, Arellano CJ. How biomechanical improvements in running economy could break the 2-hour marathon barrier. Sports Med. 2017;47:1739–50.CrossRef Hoogkamer W, Kram R, Arellano CJ. How biomechanical improvements in running economy could break the 2-hour marathon barrier. Sports Med. 2017;47:1739–50.CrossRef
3.
Zurück zum Zitat Broker JP, Kyle CR, Burke ER. Racing cyclist power requirements in the 4000-m individual and team pursuits. Med Sci Sports Exerc. 1999;31:1677–85.CrossRef Broker JP, Kyle CR, Burke ER. Racing cyclist power requirements in the 4000-m individual and team pursuits. Med Sci Sports Exerc. 1999;31:1677–85.CrossRef
4.
Zurück zum Zitat Heimans L, Dijkshoorn WR, Hoozemans MJ, de Koning JJ. Optimizing the team for required power during track cycling team pursuit. Int J Sports Physiol Perform. 2017;12:1385–91.CrossRef Heimans L, Dijkshoorn WR, Hoozemans MJ, de Koning JJ. Optimizing the team for required power during track cycling team pursuit. Int J Sports Physiol Perform. 2017;12:1385–91.CrossRef
5.
Zurück zum Zitat Di Prampero PE, Atchou G, Brückner JC, Moia C. The energetics of endurance running. Eur J Appl Physiol Occup Physiol. 1986;55:259–66.CrossRef Di Prampero PE, Atchou G, Brückner JC, Moia C. The energetics of endurance running. Eur J Appl Physiol Occup Physiol. 1986;55:259–66.CrossRef
6.
Zurück zum Zitat Joyner MJ. Modeling: optimal marathon performance on the basis of physiological factors. J Appl Physiol. 1991;70:683–7.CrossRef Joyner MJ. Modeling: optimal marathon performance on the basis of physiological factors. J Appl Physiol. 1991;70:683–7.CrossRef
7.
Zurück zum Zitat Jones AM, Vanhatalo A. The ‘critical power’ concept: applications to sports performance with a focus on intermittent high-intensity exercise. Sports Med. 2017;47:65–78.CrossRef Jones AM, Vanhatalo A. The ‘critical power’ concept: applications to sports performance with a focus on intermittent high-intensity exercise. Sports Med. 2017;47:65–78.CrossRef
8.
Zurück zum Zitat Morton RH, Billat LV. The critical power model for intermittent exercise. Eur J Appl Physiol. 2004;91:303–7.CrossRef Morton RH, Billat LV. The critical power model for intermittent exercise. Eur J Appl Physiol. 2004;91:303–7.CrossRef
9.
Zurück zum Zitat Skiba PF, Chidnok W, Vanhatalo A, Jones AM. Modeling the expenditure and reconstitution of work capacity above critical power. Med Sci Sports Exerc. 2012;44:1526–32.CrossRef Skiba PF, Chidnok W, Vanhatalo A, Jones AM. Modeling the expenditure and reconstitution of work capacity above critical power. Med Sci Sports Exerc. 2012;44:1526–32.CrossRef
10.
Zurück zum Zitat Hill DW. The critical power concept: a review. Sports Med. 1993;16:237–54.CrossRef Hill DW. The critical power concept: a review. Sports Med. 1993;16:237–54.CrossRef
11.
Zurück zum Zitat Poole DC, Burnley M, Vanhatalo A, et al. Critical power: an important fatigue threshold in exercise physiology. Med Sci Sports Exerc. 2016;48:2320–34.CrossRef Poole DC, Burnley M, Vanhatalo A, et al. Critical power: an important fatigue threshold in exercise physiology. Med Sci Sports Exerc. 2016;48:2320–34.CrossRef
12.
Zurück zum Zitat Skiba PF, Fulford J, Clarke DC, et al. Intramuscular determinants of the ability to recover work capacity above critical power. Eur J Appl Physiol. 2015;115:703–13.CrossRef Skiba PF, Fulford J, Clarke DC, et al. Intramuscular determinants of the ability to recover work capacity above critical power. Eur J Appl Physiol. 2015;115:703–13.CrossRef
13.
Zurück zum Zitat Jones AM, Vanhatalo A, Burnley M, et al. Critical power: implications for determination of VO2max and exercise tolerance. Med Sci Sports Exerc. 2010;42:1876–90.CrossRef Jones AM, Vanhatalo A, Burnley M, et al. Critical power: implications for determination of VO2max and exercise tolerance. Med Sci Sports Exerc. 2010;42:1876–90.CrossRef
14.
Zurück zum Zitat McDermott KS, Hill DW, Forbes MR. Application of the critical power concept to outdoor running [abstract]. Med Sci Sports Exerc. 1993;25:S109.CrossRef McDermott KS, Hill DW, Forbes MR. Application of the critical power concept to outdoor running [abstract]. Med Sci Sports Exerc. 1993;25:S109.CrossRef
15.
Zurück zum Zitat Hughson RL, Orok CJ, Staudt LE. A high velocity treadmill running test to assess endurance running potential. Int J Sports Med. 1984;5:23–5.CrossRef Hughson RL, Orok CJ, Staudt LE. A high velocity treadmill running test to assess endurance running potential. Int J Sports Med. 1984;5:23–5.CrossRef
16.
Zurück zum Zitat Vanhatalo A, Doust JH, Burnley M. Determination of critical power using a 3-min all-out cycling test. Med Sci Sports Exerc. 2007;39:548–55.CrossRef Vanhatalo A, Doust JH, Burnley M. Determination of critical power using a 3-min all-out cycling test. Med Sci Sports Exerc. 2007;39:548–55.CrossRef
17.
Zurück zum Zitat Broxterman RM, Ade CJ, Poole DC, et al. A single test for the determination of parameters of the speed–time relationship for running. Respir Physiol Neurobiol. 2013;185:380–5.CrossRef Broxterman RM, Ade CJ, Poole DC, et al. A single test for the determination of parameters of the speed–time relationship for running. Respir Physiol Neurobiol. 2013;185:380–5.CrossRef
18.
Zurück zum Zitat Brueckner JC, Atchou G, Capelli C, et al. The energy cost of running increases with the distance covered. Eur J Appl Physiol Occup Physiol. 1991;62:385–9.CrossRef Brueckner JC, Atchou G, Capelli C, et al. The energy cost of running increases with the distance covered. Eur J Appl Physiol Occup Physiol. 1991;62:385–9.CrossRef
19.
Zurück zum Zitat Nicol C, Komi PV, Marconnet P. Effects of marathon fatigue on running kinematics and economy. Scand J Med Sci Sports. 1991;1:195–204.CrossRef Nicol C, Komi PV, Marconnet P. Effects of marathon fatigue on running kinematics and economy. Scand J Med Sci Sports. 1991;1:195–204.CrossRef
20.
Zurück zum Zitat Kyröläinen H, Pullinen T, Candau R, et al. Effects of marathon running on running economy and kinematics. Eur J Appl Physiol. 2000;82:297–304.CrossRef Kyröläinen H, Pullinen T, Candau R, et al. Effects of marathon running on running economy and kinematics. Eur J Appl Physiol. 2000;82:297–304.CrossRef
21.
Zurück zum Zitat Lacour JR, Bourdin M. Factors affecting the energy cost of level running at submaximal speed. Eur J Appl Physiol. 2015;115:651–73.CrossRef Lacour JR, Bourdin M. Factors affecting the energy cost of level running at submaximal speed. Eur J Appl Physiol. 2015;115:651–73.CrossRef
22.
Zurück zum Zitat Earnest CP, Foster C, Hoyos J, et al. Time trial exertion traits of cycling’s Grand Tours. Int J Sports Med. 2009;30:240–4.CrossRef Earnest CP, Foster C, Hoyos J, et al. Time trial exertion traits of cycling’s Grand Tours. Int J Sports Med. 2009;30:240–4.CrossRef
23.
Zurück zum Zitat Pugh LG. Oxygen intake in track and treadmill running with observations on the effect of air resistance. J Physiol. 1970;207:823–35.CrossRef Pugh LG. Oxygen intake in track and treadmill running with observations on the effect of air resistance. J Physiol. 1970;207:823–35.CrossRef
24.
Zurück zum Zitat Pugh LG. The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces. J Physiol. 1971;213:255–76.CrossRef Pugh LG. The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces. J Physiol. 1971;213:255–76.CrossRef
25.
Zurück zum Zitat Cheuvront SN, Haymes EM. Thermoregulation and marathon running: biological and environmental influences. Sports Med. 2001;31:743–62.CrossRef Cheuvront SN, Haymes EM. Thermoregulation and marathon running: biological and environmental influences. Sports Med. 2001;31:743–62.CrossRef
26.
Zurück zum Zitat Hoogkamer W, Kipp S, Frank JH, et al. A comparison of the energetic cost of running in marathon racing shoes. Sports Med. 2018;48:1009–19.CrossRef Hoogkamer W, Kipp S, Frank JH, et al. A comparison of the energetic cost of running in marathon racing shoes. Sports Med. 2018;48:1009–19.CrossRef
27.
Zurück zum Zitat Olds T. The mathematics of breaking away and chasing in cycling. Eur J Appl Physiol Occup Physiol. 1998;77:492–7.CrossRef Olds T. The mathematics of breaking away and chasing in cycling. Eur J Appl Physiol Occup Physiol. 1998;77:492–7.CrossRef
Metadaten
Titel
Modeling the Benefits of Cooperative Drafting: Is There an Optimal Strategy to Facilitate a Sub-2-Hour Marathon Performance?
verfasst von
Wouter Hoogkamer
Kristine L. Snyder
Christopher J. Arellano
Publikationsdatum
08.10.2018
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 12/2018
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-018-0991-4

Weitere Artikel der Ausgabe 12/2018

Sports Medicine 12/2018 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.