Skip to main content
Log in

PET/MRI and prostate cancer

  • Review Article
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Advances in medical imaging are needed to support the general goal of personalized patient-centric care. This is particularly true for prostate cancer, which frequently presents as the initial multifocal disease with variable significance and outcome, and, when aggressive, can recur after the initial definitive management. The combined simultaneous acquisition of multi-parametric magnetic resonance imaging and positron emission tomography (PET) can provide combined structural, metabolic, and functional imaging information regarding prostate cancer status in a whole-body single session examination. As described in this review article, combining PET and MRI appears particularly useful for pelvic disease assessments, as PET and MRI provide complementary information, which can be best obtained with hybrid PET/MR scanners. While there is growing interest in the field of prostate cancer imaging regarding the value of PET/MRI, the current literature in this field is sparse and insufficient for a systematic analysis. This article, therefore, highlights available evidence and future perspectives of PET/MRI for the initial diagnosis, staging, and restaging of prostate cancer with choline-based radiotracers as well as ligands to target prostate-specific membrane antigen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. American Cancer Society (2012) Cancer facts and figures. Atlanta

  2. Robertson NL, Emberton M, Moore CM (2013) MRI-targeted prostate biopsy: a review of technique and results. Nat Rev Urol 10:589–597. doi:10.1038/nrurol.2013.196

    Article  PubMed  Google Scholar 

  3. Klotz L, Emberton M (2014) Management of low risk prostate cancer: active surveillance and focal therapy. Curr Opin Urol 24:270–279. doi:10.1097/MOU.0000000000000055

    Article  PubMed  Google Scholar 

  4. Ross HM, Kryvenko ON, Cowan JE, Simko JP, Wheeler TM, Epstein JI (2012) Do adenocarcinomas of the prostate with Gleason score (GS) ≤6 have the potential to metastasize to lymph nodes? Am J Surg Pathol 36:1346–1352. doi:10.1097/PAS.0b013e3182556dcd

    Article  PubMed  PubMed Central  Google Scholar 

  5. Klotz L, Emberton M (2014) Management of low risk prostate cancer-active surveillance and focal therapy. Nat Rev Clin Oncol 11:324–334. doi:10.1038/nrclinonc.2014.73

    Article  PubMed  Google Scholar 

  6. Rischke HC, Eiberger AK, Volegova-Neher N, Henne K, Krauss T, Grosu AL et al (2016) PET/CT and MRI directed extended salvage radiotherapy in recurrent prostate cancer with lymph node metastases. Adv Med Sci 61:212–218. doi:10.1016/j.advms.2016.01.003

    Article  PubMed  Google Scholar 

  7. Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T et al (2014) EAU guidelines on prostate cancer. part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol 65:124–137. doi:10.1016/j.eururo.2013.09.046

    Article  PubMed  Google Scholar 

  8. Evangelista L, Briganti A, Fanti S, Joniau S, Reske S, Schiavina R et al (2016) New clinical indications for F/C-choline, new tracers for positron emission tomography and a promising hybrid device for prostate cancer staging: a systematic review of the literature. Eur Urol. doi:10.1016/j.eururo.2016.01.029

    Google Scholar 

  9. Kitajima K, Murphy RC, Nathan MA, Froemming AT, Hagen CE, Takahashi N et al (2014) Detection of recurrent prostate cancer after radical prostatectomy: comparison of 11C-choline PET/CT with pelvic multiparametric MR imaging with endorectal coil. J Nucl Med 55:223–232. doi:10.2967/jnumed.113.123018

    Article  CAS  PubMed  Google Scholar 

  10. Fanti S, Minozzi S, Castellucci P, Balduzzi S, Herrmann K, Krause BJ et al (2016) PET/CT with 11C-choline for evaluation of prostate cancer patients with biochemical recurrence: meta-analysis and critical review of available data. Eur J Nucl Med Mol Imaging 43:55–69. doi:10.1007/s00259-015-3202-7

    Article  CAS  PubMed  Google Scholar 

  11. Umbehr MH, Muntener M, Hany T, Sulser T, Bachmann LM (2013) The role of 11C-choline and 18F-fluorocholine positron emission tomography (PET) and PET/CT in prostate cancer: a systematic review and meta-analysis. Eur Urol 64:106–117. doi:10.1016/j.eururo.2013.04.019

    Article  PubMed  Google Scholar 

  12. Turkbey B, Bernardo M, Merino MJ, Wood BJ, Pinto PA, Choyke PL (2012) MRI of localized prostate cancer: coming of age in the PSA era. Diagn Interv Radiol 18:34–45. doi:10.4261/1305-3825.DIR.4478-11.1

    PubMed  Google Scholar 

  13. Turkbey B, Pinto PA, Mani H, Bernardo M, Pang Y, McKinney YL et al (2010) Prostate cancer: value of multiparametric MR imaging at 3 T for detection—histopathologic correlation. Radiology 255:89–99. doi:10.1148/radiol.09090475

    Article  PubMed  PubMed Central  Google Scholar 

  14. Quon JS, Moosavi B, Khanna M, Flood TA, Lim CS, Schieda N (2015) False positive and false negative diagnoses of prostate cancer at multi-parametric prostate MRI in active surveillance. Insights Imaging 6:449–463. doi:10.1007/s13244-015-0411-3

    Article  PubMed  PubMed Central  Google Scholar 

  15. De Visschere PJ, Briganti A, Futterer JJ, Ghadjar P, Isbarn H, Massard C et al (2016) Role of multiparametric magnetic resonance imaging in early detection of prostate cancer. Insights Imaging 7:205–214. doi:10.1007/s13244-016-0466-9

    Article  PubMed  PubMed Central  Google Scholar 

  16. Futterer JJ, Briganti A, De Visschere P, Emberton M, Giannarini G, Kirkham A et al (2015) Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur Urol 68:1045–1053. doi:10.1016/j.eururo.2015.01.013

    Article  PubMed  Google Scholar 

  17. Rais-Bahrami S, Siddiqui MM, Turkbey B, Stamatakis L, Logan J, Hoang AN et al (2013) Utility of multiparametric magnetic resonance imaging suspicion levels for detecting prostate cancer. J Urol 190:1721–1727. doi:10.1016/j.juro.2013.05.052

    Article  PubMed  Google Scholar 

  18. Wetter A, Lipponer C, Nensa F, Beiderwellen K, Olbricht T, Rubben H et al (2013) Simultaneous 18F choline positron emission tomography/magnetic resonance imaging of the prostate: initial results. Invest Radiol 48:256–262. doi:10.1097/RLI.0b013e318282c654

    Article  PubMed  Google Scholar 

  19. Hartenbach M, Hartenbach S, Bechtloff W, Danz B, Kraft K, Klemenz B et al (2014) Combined PET/MRI improves diagnostic accuracy in patients with prostate cancer: a prospective diagnostic trial. Clin Cancer Res 20:3244–3253. doi:10.1158/1078-0432.CCR-13-2653

    Article  CAS  PubMed  Google Scholar 

  20. Meyer C, Ma B, Kunju LP, Davenport M, Piert M (2013) Challenges in accurate registration of 3-D medical imaging and histopathology in primary prostate cancer. Eur J Nucl Med Mol Imaging 40(Suppl 1):72–78. doi:10.1007/s00259-013-2382-2

    Article  PubMed Central  Google Scholar 

  21. Y-i Kim, Cheon GJ, Paeng JC, Cho JY, Kwak C, Kang KW et al (2015) Usefulness of MRI-assisted metabolic volumetric parameters provided by simultaneous 18F-fluorocholine PET/MRI for primary prostate cancer characterization. Eur J Nucl Med Mol Imaging 42:1247–1256. doi:10.1007/s00259-015-3026-5

    Article  Google Scholar 

  22. Eiber M, Weirich G, Holzapfel K, Souvatzoglou M, Haller B, Rauscher I et al (2016) Simultaneous Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur Urol. doi:10.1016/j.eururo.2015.12.053

    Google Scholar 

  23. Turkbey B, Aras O, Karabulut N, Turgut AT, Akpinar E, Alibek S et al (2012) Diffusion-weighted MRI for detecting and monitoring cancer: a review of current applications in body imaging. Diagn Interv Radiol 18:46–59. doi:10.4261/1305-3825.DIR.4708-11.2

    PubMed  Google Scholar 

  24. Varoquaux A, Rager O, Lovblad KO, Masterson K, Dulguerov P, Ratib O et al (2013) Functional imaging of head and neck squamous cell carcinoma with diffusion-weighted MRI and FDG PET/CT: quantitative analysis of ADC and SUV. Eur J Nucl Med Mol Imaging 40:842–852. doi:10.1007/s00259-013-2351-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baba S, Isoda T, Maruoka Y, Kitamura Y, Sasaki M, Yoshida T et al (2014) Diagnostic and prognostic value of pretreatment SUV in 18F-FDG/PET in breast cancer: comparison with apparent diffusion coefficient from diffusion-weighted MR imaging. J Nucl Med 55:736–742. doi:10.2967/jnumed.113.129395

    Article  CAS  PubMed  Google Scholar 

  26. Wetter A, Lipponer C, Nensa F, Heusch P, Rubben H, Schlosser TW et al (2014) Quantitative evaluation of bone metastases from prostate cancer with simultaneous [18F]choline PET/MRI: combined SUV and ADC analysis. Ann Nucl Med 28:405–410. doi:10.1007/s12149-014-0825-x

    Article  CAS  PubMed  Google Scholar 

  27. Park H, Wood D, Hussain H, Meyer CR, Shah RB, Johnson TD et al (2012) Introducing parametric fusion PET/MRI of primary prostate cancer. J Nucl Med 53:546–551. doi:10.2967/jnumed.111.091421

    Article  CAS  PubMed  Google Scholar 

  28. Gatidis S, Scharpf M, Martirosian P, Bezrukov I, Kustner T, Hennenlotter J et al (2015) Combined unsupervised–supervised classification of multiparametric PET/MRI data: application to prostate cancer. NMR Biomed 28:914–922. doi:10.1002/nbm.3329

    Article  PubMed  Google Scholar 

  29. Penson DF (2012) Factors influencing patients’ acceptance and adherence to active surveillance. J Natl Cancer Inst Monogr 2012:207–212. doi:10.1093/jncimonographs/lgs024

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pinto PA, Chung PH, Rastinehad AR, Baccala AA Jr, Kruecker J, Benjamin CJ et al (2011) Magnetic resonance imaging/ultrasound fusion guided prostate biopsy improves cancer detection following transrectal ultrasound biopsy and correlates with multiparametric magnetic resonance imaging. J Urol 186:1281–1285. doi:10.1016/j.juro.2011.05.078

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schimmoller L, Quentin M, Arsov C, Hiester A, Buchbender C, Rabenalt R et al (2014) MR-sequences for prostate cancer diagnostics: validation based on the PI-RADS scoring system and targeted MR-guided in-bore biopsy. Eur Radiol 24:2582–2589. doi:10.1007/s00330-014-3276-9

    Article  PubMed  Google Scholar 

  32. Siddiqui MM, Rais-Bahrami S, Turkbey B, George AK, Rothwax J, Shakir N et al (2015) Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 313:390–397. doi:10.1001/jama.2014.17942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abd-Alazeez M, Ahmed HU, Arya M, Charman SC, Anastasiadis E, Freeman A et al (2014) The accuracy of multiparametric MRI in men with negative biopsy and elevated PSA level—can it rule out clinically significant prostate cancer? Urol Oncol 32(45):e17–e22. doi:10.1016/j.urolonc.2013.06.007

    Google Scholar 

  34. Thompson JE, Moses D, Shnier R, Brenner P, Delprado W, Ponsky L et al (2014) Multiparametric magnetic resonance imaging guided diagnostic biopsy detects significant prostate cancer and could reduce unnecessary biopsies and over detection: a prospective study. J Urol 192:67–74. doi:10.1016/j.juro.2014.01.014

    Article  PubMed  Google Scholar 

  35. Jadvar H, Colletti PM (2014) Competitive advantage of PET/MRI. Eur J Radiol 83:84–94. doi:10.1016/j.ejrad.2013.05.028

    Article  PubMed  Google Scholar 

  36. Takei T, Souvatzoglou M, Beer AJ, Drzezga A, Ziegler S, Rummeny EJ et al (2012) A case of multimodality multiparametric 11C-choline PET/MR for biopsy targeting in prior biopsy-negative primary prostate cancer. Clin Nucl Med 37:918–919. doi:10.1097/RLU.0b013e31825b23a6

    Article  PubMed  Google Scholar 

  37. Piert M, Montgomery J, Kunju LP, Siddiqui J, Rogers V, Rajendiran T et al (2016) 18F-choline PET/MRI: the additional value of PET for MRI-guided transrectal prostate biopsies. J Nucl Med. doi:10.2967/jnumed.115.170878

    PubMed  Google Scholar 

  38. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446. doi:10.1016/j.ejca.2011.11.036

    Article  PubMed  PubMed Central  Google Scholar 

  39. El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D et al (2009) Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit 42:1162–1171. doi:10.1016/j.patcog.2008.08.011

    Article  PubMed  PubMed Central  Google Scholar 

  40. Naqa IE (2014) The role of quantitative PET in predicting cancer treatment outcomes. Clin Transl Imaging 2:305–320. doi:10.1007/s40336-014-0063-1

    Article  Google Scholar 

  41. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ (2015) Machine learning methods for quantitative radiomic biomarkers. Sci Rep 5:13087. doi:10.1038/srep13087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Khalvati F, Wong A, Haider MA (2015) Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models. BMC Med Imaging 15:27. doi:10.1186/s12880-015-0069-9

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cameron A, Khalvati F, Haider M, Wong A (2015) MAPS: a quantitative radiomics approach for prostate cancer detection. IEEE Trans Biomed Eng. doi:10.1109/TBME.2015.2485779

    PubMed  Google Scholar 

  44. Fehr D, Veeraraghavan H, Wibmer A, Gondo T, Matsumoto K, Vargas HA et al (2015) Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc Natl Acad Sci USA 112:E6265–E6273. doi:10.1073/pnas.1505935112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mapelli P, Panebianco V, Picchio M (2015) Prostate cancer recurrence: can PSA guide imaging? Eur J Nucl Med Mol Imaging 42:1781–1783. doi:10.1007/s00259-015-3091-9

    Article  CAS  PubMed  Google Scholar 

  46. Reske SN, Blumstein NM, Glatting G (2008) [(11)C]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging 35:9–17

    Article  PubMed  Google Scholar 

  47. Souvatzoglou M, Krause BJ, Purschel A, Thamm R, Schuster T, Buck AK et al (2011) Influence of (11)C-choline PET/CT on the treatment planning for salvage radiation therapy in patients with biochemical recurrence of prostate cancer. Radiother Oncol 99:193–200. doi:10.1016/j.radonc.2011.05.005

    Article  PubMed  Google Scholar 

  48. Souvatzoglou M, Eiber M, Takei T, Furst S, Maurer T, Gaertner F et al (2013) Comparison of integrated whole-body [11C]choline PET/MR with PET/CT in patients with prostate cancer. Eur J Nucl Med Mol Imaging 40:1486–1499. doi:10.1007/s00259-013-2467-y

    Article  CAS  PubMed  Google Scholar 

  49. Hauth E, Hohmuth H, Cozub-Poetica C, Bernand S, Beer M, Jaeger H (2015) Multiparametric MRI of the prostate with three functional techniques in patients with PSA elevation before initial TRUS-guided biopsy. Br J Radiol 88:20150422. doi:10.1259/bjr.20150422

    Article  PubMed  PubMed Central  Google Scholar 

  50. Grant K, Lindenberg ML, Shebel H, Pang Y, Agarwal HK, Bernardo M et al (2013) Functional and molecular imaging of localized and recurrent prostate cancer. Eur J Nucl Med Mol Imaging. doi:10.1007/s00259-013-2419-6

    Google Scholar 

  51. Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M et al (2015) The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 42:197–209. doi:10.1007/s00259-014-2949-6

    Article  CAS  PubMed  Google Scholar 

  52. Afshar-Oromieh A, Haberkorn U, Schlemmer HP, Fenchel M, Eder M, Eisenhut M et al (2014) Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience. Eur J Nucl Med Mol Imaging 41:887–897. doi:10.1007/s00259-013-2660-z

    Article  CAS  PubMed  Google Scholar 

  53. Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M, Linhart HG et al (2014) Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 41:11–20. doi:10.1007/s00259-013-2525-5

    Article  CAS  PubMed  Google Scholar 

  54. Giovacchini G, Picchio M, Garcia-Parra R, Mapelli P, Briganti A, Montorsi F et al (2013) [11C]choline positron emission tomography/computerized tomography for early detection of prostate cancer recurrence in patients with low increasing prostate specific antigen. J Urol 189:105–110. doi:10.1016/j.juro.2012.09.001

    Article  PubMed  Google Scholar 

  55. Fortuin A, Rooij M, Zamecnik P, Haberkorn U, Barentsz J (2013) Molecular and functional imaging for detection of lymph node metastases in prostate cancer. Int J Mol Sci 14:13842–13875. doi:10.3390/ijms140713842

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hovels AM, Heesakkers RA, Adang EM, Jager GJ, Strum S, Hoogeveen YL et al (2008) The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol 63:387–395. doi:10.1016/j.crad.2007.05.022

    Article  CAS  PubMed  Google Scholar 

  57. Thoeny HC, Froehlich JM, Triantafyllou M, Huesler J, Bains LJ, Vermathen P et al (2014) Metastases in normal-sized pelvic lymph nodes: detection with diffusion-weighted MR imaging. Radiology 273:125–135. doi:10.1148/radiol.14132921

    Article  PubMed  Google Scholar 

  58. Rauscher I, Eiber M, Souvatzoglou M, Schwaiger M, Beer AJ (2014) PET/MR in oncology: non-18F-FDG tracers for routine applications. J Nucl Med 55:25S–31S. doi:10.2967/jnumed.113.129536

    Article  CAS  PubMed  Google Scholar 

  59. Piccardo A, Paparo F, Picazzo R, Naseri M, Ricci P, Marziano A et al (2014) Value of fused 18F-Choline-PET/MRI to evaluate prostate cancer relapse in patients showing biochemical recurrence after EBRT: preliminary results. BioMed Res Int 2014:103718. doi:10.1155/2014/103718

    Article  PubMed  PubMed Central  Google Scholar 

  60. Beer AJ, Eiber M, Souvatzoglou M, Holzapfel K, Ganter C, Weirich G et al (2011) Restricted water diffusibility as measured by diffusion-weighted MR imaging and choline uptake in (11)C-Choline PET/CT are correlated in pelvic lymph nodes in patients with prostate cancer. Mol Imaging Biol 13:352–361. doi:10.1007/s11307-010-0337-6

    Article  PubMed  Google Scholar 

  61. Maurer T, Gschwend JE, Rauscher I, Souvatzoglou M, Haller B, Weirich G et al (2015) Diagnostic efficacy of Gallium-PSMA positron emission tomography compared to conventional imaging in lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J Urol. doi:10.1016/j.juro.2015.12.025

    PubMed  Google Scholar 

  62. Freitag MT, Radtke JP, Hadaschik BA, Kopp-Schneider A, Eder M, Kopka K et al (2016) Comparison of hybrid (68)Ga-PSMA PET/MRI and (68)Ga-PSMA PET/CT in the evaluation of lymph node and bone metastases of prostate cancer. Eur J Nucl Med Mol Imaging 43:70–83. doi:10.1007/s00259-015-3206-3

    Article  CAS  PubMed  Google Scholar 

  63. Beheshti M, Langsteger W, Fogelman I (2009) Prostate cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med 39:396–407. doi:10.1053/j.semnuclmed.2009.05.003

    Article  PubMed  Google Scholar 

  64. Shen G, Deng H, Hu S, Jia Z (2014) Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skelet Radiol 43:1503–1513. doi:10.1007/s00256-014-1903-9

    Article  Google Scholar 

  65. Hricak H, Choyke PL, Eberhardt SC, Leibel SA, Scardino PT (2007) Imaging prostate cancer: a multidisciplinary perspective. Radiology 243:28–53. doi:10.1148/radiol.2431030580

    Article  PubMed  Google Scholar 

  66. Lecouvet FE, El Mouedden J, Collette L, Coche E, Danse E, Jamar F et al (2012) Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol 62:68–75. doi:10.1016/j.eururo.2012.02.020

    Article  PubMed  Google Scholar 

  67. Picchio M, Spinapolice EG, Fallanca F, Crivellaro C, Giovacchini G, Gianolli L et al (2012) [11C]Choline PET/CT detection of bone metastases in patients with PSA progression after primary treatment for prostate cancer: comparison with bone scintigraphy. Eur J Nucl Med Mol Imaging 39:13–26. doi:10.1007/s00259-011-1920-z

    Article  CAS  PubMed  Google Scholar 

  68. Beer AJ, Eiber M, Souvatzoglou M, Schwaiger M, Krause BJ (2011) Radionuclide and hybrid imaging of recurrent prostate cancer. Lancet Oncol 12:181–191. doi:10.1016/S1470-2045(10)70103-0

    Article  PubMed  Google Scholar 

  69. Eschmann SM, Pfannenberg AC, Rieger A, Aschoff P, Muller M, Paulsen F et al (2007) Comparison of 11C-choline-PET/CT and whole body-MRI for staging of prostate cancer. Nuklearmedizin 46:161–168 (quiz N47-8)

    CAS  PubMed  Google Scholar 

  70. Souvatzoglou M, Eiber M, Martinez-Moeller A, Furst S, Holzapfel K, Maurer T et al (2013) PET/MR in prostate cancer: technical aspects and potential diagnostic value. Eur J Nucl Med Mol Imaging 40(Suppl 1):S79–S88. doi:10.1007/s00259-013-2445-4

    Article  PubMed  Google Scholar 

  71. Kabasakal L, Demirci E, Ocak M, Akyel R, Nematyazar J, Aygun A et al (2015) Evaluation of PSMA PET/CT imaging using a 68Ga-HBED-CC ligand in patients with prostate cancer and the value of early pelvic imaging. Nucl Med Commun 36:582–587. doi:10.1097/MNM.0000000000000290

    Article  CAS  PubMed  Google Scholar 

  72. Maurer T, Beer AJ, Wester HJ, Kubler H, Schwaiger M, Eiber M (2014) Positron emission tomography/magnetic resonance imaging with 68Gallium-labeled ligand of prostate-specific membrane antigen: promising novel option in prostate cancer imaging? Int J Urol 21:1286–1288. doi:10.1111/iju.12577

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morand Piert.

Ethics declarations

Funding

The research leading to stated results in Figs. 1 and 2 was funded by the US Department of Defense (DOD) Grant PC110389.

Conflict of interest

All six authors (Morand Piert, Issam El Naqa, Mathew S. Davenport, Elena Incerti, Paola Mapelli, and Maria Picchio) have no conflicts of interest.

Ethical approval

The institutional ethics committee of the University of Michigan approved protocols related to presented patient data in Figs. 1 and 2. Written informed consent was obtained. Otherwise, this article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piert, M., El Naqa, I., Davenport, M.S. et al. PET/MRI and prostate cancer. Clin Transl Imaging 4, 473–485 (2016). https://doi.org/10.1007/s40336-016-0192-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-016-0192-9

Keywords

Navigation