Skip to main content

Advertisement

Log in

Ultrasonography as a guide during vascular access procedures and in the diagnosis of complications

  • Review
  • Published:
Journal of Ultrasound Aims and scope Submit manuscript

Abstract

Vascular access used in the treatment of patients involves central and peripheral vein accesses and arterial accesses. Catheterization of central veins is widely used in clinical practice; it is a necessary part of the treatment of patients in various settings. The most commonly involved vessels are the internal jugular, subclavian, and femoral veins. The mechanical, infectious, and thrombotic complications of central venous catheterization are markedly reduced when the procedure is performed with real-time ultrasound guidance or (to a slightly lesser extent) ultrasound assistance. Ultrasound guidance is also used to create peripheral venous accesses, for catheterization of peripheral veins and for peripheral insertion of central venous catheters. In this setting, it increases the catheterization success rate, especially during difficult procedures (e.g., obese patients, children) and reduces complications such as catheter-related infections and venous thrombosis. Arterial cannulation is used for invasive monitoring of arterial pressure and for access during diagnostic or therapeutic procedures. Ultrasound guidance reduces the risk of catheterization failure and complications. It is especially useful for arterial catheterization procedures performed in the absence of a palpable pulse (e.g., patient in shock, ECMO). Imaging support is being used increasingly to facilitate the creation of vascular accesses under difficult conditions, in part because of the growing use of ultrasonography as a bedside procedure. In clinical settings where patients are becoming increasingly vulnerable as a result of advanced age and/or complex disease, the possibility to reduce the risks associated with these invasive procedures should motivate clinicians to acquire the technical skills needed for routine use of sonographic support during vascular access procedures.

Riassunto

Gli accessi vascolari utilizzati nella cura dei pazienti comprendono gli accessi venosi centrali e periferici e gli accessi arteriosi. L’incannulamento di accessi venosi centrali è manovra largamente diffusa nella pratica clinica e si rende necessaria per la cura dei pazienti in molteplici contesti. I vasi centrali che usualmente vengono incannulati sono la vena giugulare interna, la vena succlavia e la vena femorale. Nell’incannulamento venoso centrale sia l’eco-assistenza che l’eco-guida real time, pur con una leggera superiorità di quest’ultima, riducono drasticamente le complicanze meccaniche, infettive e trombotiche. La guida ecografica viene utilizzata anche per l’accesso venoso periferico, per l’incannulamento di vasi periferici e di vasi centrali a inserzione periferica (PICC). In questo contesto la guida ecografica aumenta il successo della manovra di incannulamento soprattutto in condizioni di difficoltà, come avviene nei pazienti obesi o nei bambini, e diminuisce le complicanze quali le infezioni catetere correlate e le trombosi venose. L’incannulamento arterioso viene utilizzato per il monitoraggio cruento della pressione arteriosa e per garantire un accesso in caso di manovre diagnostiche e terapeutiche. La guida ecografica riduce il rischio di insuccesso, le complicanze e può essere utile per l’incannulamento arterioso soprattutto nei casi in cui non e’ reperibile un polso (shock, pazienti in ECMO). Il supporto dell’imaging per gli accessi vascolari difficili si sta quindi diffondendo rapidamente anche perchè è sempre più frequente l’impiego degli ultrasuoni nella pratica clinica al letto del malato. Nei contesti clinici attuali dove i pazienti sono sempre più fragili perchè anziani e con patologie più complesse, avere la possibilità di ridurre i rischi connessi alle metodiche invasive deve spingere i clinici ad acquisire le abilità tecniche per l’utilizzo routinario del supporto ultrasonografico per gli accessi vascolari difficili.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McGee DC, Gould MK (2003) Preventing complications of central venous catheterization. N Engl J Med 348:1123–1133

    Article  PubMed  Google Scholar 

  2. Merrer J, De Jonghe B, Golliot F et al (2001) Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial. JAMA 286:700–707

    Article  PubMed  CAS  Google Scholar 

  3. Sznajder JI, Zveibil FR, Bitterman H, Weiner P, Bursztein S (1986) Central vein catheterization: failure and complication rates by three percutaneous approaches. Arch Intern Med 146:259–261

    Article  PubMed  CAS  Google Scholar 

  4. Veenstra DL, Saint S, Saha S, Lumley T, Sullivan SD (1999) Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection: a meta-analysis. JAMA 281:261–267

    Article  PubMed  CAS  Google Scholar 

  5. Mansfield PF, Hohn DC, Fornage BD, Gregurich MA, Ota DM (1994) Complications and failures of subclavian-vein catheterization. N Engl J Med 331:1735–1738

    Article  PubMed  CAS  Google Scholar 

  6. Ruesch S, Walder B, Tramer M (2002) Complications of central venous catheters: internal jugular versus subclavian access—a systematic review. Crit Care Med 30:454–460

    Article  PubMed  Google Scholar 

  7. Ullman JI, Stoelting RK (1978) Internal jugular vein location with the US Doppler blood flow detector. Anesth Analg 57:118

    Article  PubMed  CAS  Google Scholar 

  8. Yonei A, Nonoue T, Sari A (1986) Real-time ultrasonic guidance for percutaneous puncture of the internal jugular vein. Anesthesiology 64:830–831

    Article  PubMed  CAS  Google Scholar 

  9. Troianos CA, Jobes DR, Ellison N (1991) Ultrasound-guided cannulation of the internal jugular vein. A prospective, randomized study. Anesth Analg 72:823–826

    Article  PubMed  CAS  Google Scholar 

  10. Karakitsos D, Labropoulos N, De Groot E et al (2006) Real-time ultrasound guided catheterization of the internal jugular vein; a prospective comparison to the landmark technique in critical care patients (ISRCTN61258470). Crit Care 10:R162

    Article  PubMed  Google Scholar 

  11. Mallory D, McGee W, Shawker T et al (1990) Ultrasound guidance improves the success rate of internal jugular vein cannulation. A prospective, randomized trial. Chest 98:157–160

    Article  PubMed  CAS  Google Scholar 

  12. Denys B, Uretsky B, Reddy P (1993) Ultrasound-assisted cannulation of the internal jugular vein a prospective comparison to the external landmark guided technique. Circulation 87:1557–1562

    Article  PubMed  CAS  Google Scholar 

  13. Serafimidis K, Sakorafas G, Konstantoudakis G et al (2009) Ultrasound-guided catheterization of the internal jugular vein in oncologic patients; comparison with the classical anatomic landmark technique: prospective study. Int J Surg 7:526–528

    Article  PubMed  Google Scholar 

  14. Fragou M, Gravvanis A, Dimitriou V et al (2011) Real-time ultrasound-guided subclavian vein cannulation versus the landmark method in critical care patients: a prospective randomized study. Crit Care Med 39:1607–1612

    Article  PubMed  Google Scholar 

  15. O’Grady NP, Alexander M, Burns LA et al (2011) Healthcare Infection Control Practices Advisory Committee. Guidelines for the prevention of intravascular catheter-related infections. Am J Infect Control 39:S1–S34

    Article  PubMed  Google Scholar 

  16. Debordeau P, Chahml D, LeGal G et al (2009) 2008 SOR guidelines for the prevention and treatment of thrombosis associated with central venous catheters in patients with cancer: report from the working group. Ann Oncol 20:1459–1471

    Article  Google Scholar 

  17. Pronovost PJ, Needham D, Berhenholtz S et al (2006) An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med 355:2725–2732

    Article  PubMed  CAS  Google Scholar 

  18. Troianos C, Hartman G, Glas K, Skubas N, Eberhart R, Walker J et al (2011) Guidelines for performing ultrasound guided vascular cannulation: recommendations of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J Am Soc Echocardiogr 24:1291–1318

    Article  PubMed  Google Scholar 

  19. Lamperti M, Bodenham AR, Pittiruti M, Blaivas M et al (2012) International evidence-based recommendations on ultrasound-guided vascular access. Intensive Care Med 38:1105–1117

    Article  PubMed  Google Scholar 

  20. Lichtenstein D, Menu Y (1995) A bedside ultrasound sign ruling out pneumothorax in the critically ill. Chest 5:1345–1348

    Article  Google Scholar 

  21. Nichols I, Humprey J (2008) The efficacy of upper arm placement of peripherally inserted central catheters using bedside ultrasound and microintroducer technique. J Inf Nursing 31:165–176

    Article  Google Scholar 

  22. Pittiruti M, Hamilton H, Biffi R, MacFie J, Pertkiewicz M (2009) ESPEN guidelines on parenteral nutrition: central venous catheters (access, care, diagnosis and therapy of complications). Clinical Nutrition 28:365–377

    Article  PubMed  Google Scholar 

  23. Shiloh A, Savel E, Paulin L (2011) Ultrasound-guided catheterization of the radial artery: a systematic review and meta-analysis of randomized controller trials. Chest 139:524–529

    Article  PubMed  Google Scholar 

  24. Matalon TA, Silver B (1990) US guidance of interventional procedures. Radiology 174:43–47

    CAS  Google Scholar 

  25. Chapman GA, Johnson D, Bodenham AR (2006) Visualisation of needle position using ultrasonography. Anaesthesia 61:148–158

    Article  PubMed  CAS  Google Scholar 

  26. Abboud PA, Kendall JL (2004) Ultrasound guidance for vascular access. Emerg Med Clin North Am 22:749–773

    Article  PubMed  Google Scholar 

  27. Blaivas M, Brannam L, Fernandez E (2003) Short-axis versus long-axis approaches for teaching ultrasound-guided vascular access on a new inanimate model. Acad Emerg Med 10:1307–1311

    Article  PubMed  Google Scholar 

  28. French JLH, Raine-Fenning NJ, Hardman JG, Bedforth NM (2008) Pitfalls of ultrasound guided vascular access: the use of three four-dimensional ultrasound. Anaesthesia 63:806–813

    Article  PubMed  CAS  Google Scholar 

  29. Blaivas M, Adhikari S (2009) An unseen danger: frequency of posterior vessel wall penetration by needles during attempts to place internal jugular vein central catheters using ultrasound guidance. Care Med 37:2345–2349

    Article  Google Scholar 

  30. Denys BG, Uretsky BF (1991) Anatomical variations of internal jugular vein location: impact on central venous access. Crit Care Med 19:1516–1519

    Article  PubMed  CAS  Google Scholar 

  31. Hirsch DR, Ingenito EP, Goldhaber SZ (1995) Prevalence of deep venous thrombosis among patients in medical intensive care. JAMA 274:335–337

    Article  PubMed  CAS  Google Scholar 

  32. Timsit JF, Farkas JC, Boyer JM et al (1998) Central vein catheter-related thrombosis in intensive care patients: incidence, risk factors, and relationship with catheter-related sepsis. Chest 114:207–213

    Article  PubMed  CAS  Google Scholar 

  33. Troianos CA, Kuwik RJ, Pasqual JR, Lim AJ, Odasso DP (1996) Internal jugular vein and carotid artery anatomic relation as determined by ultrasonography. Anesthesiology 85:43–48

    Article  PubMed  CAS  Google Scholar 

  34. Gordon AC, Saliken JC, Johns D, Owen R, Gray R (1998) US-guided puncture of the internal jugular vein: complications and anatomic considerations. J Vasc Interv Radiol 9:333–338

    Article  PubMed  CAS  Google Scholar 

  35. Galloway S, Bodenham A (2003) Ultrasound imaging of the axillary vein—anatomical basis for central venous access. Br J Anaesth 90:589–595

    Article  PubMed  CAS  Google Scholar 

  36. Gibbs FJ, Murphy MC (2006) Ultrasound guidance for central venous catheter placement. Hosp Physician 2006:23–31

    Google Scholar 

  37. Maecken TM, Grau T (2007) Ultrasound imaging in vascular access. Crit Care Med 35(2):S178–S185

    Article  PubMed  Google Scholar 

  38. Highes P, Scott C, Bodenham A (2000) Ultrasonography of the femoral veins in the groin: implications for vascular access. Anesthesia 55:1198–1202

    Article  Google Scholar 

  39. Hilty WM, Hudson PA, Levitt MA, Hall JB (1997) Real-time US-guided femoral vein catheterization during cardiopulmonary resuscitation. Ann Emerg Med 29:331–337

    Article  PubMed  CAS  Google Scholar 

  40. Aouad MT, Kanazi GE, Abdallah FW, Moukaddem FH, Turbay MJ, Obeid MY et al (2010) Femoral vein cannulation performed by residents: a comparison between ultrasound-guided and landmark technique in infants and children undergoing cardiac surgery. Anesth Analg 111:724–728

    Article  PubMed  Google Scholar 

  41. Prabhu MV, Juneja D, Gopal PB, Sathyanarayanan M, Subhramanyam S, Gandhe S et al (2010) Ultrasound-guided femoral dialysis access placement: a single-center randomized trial. Clin J Am Soc Nephrol 5:235–239

    Article  PubMed  Google Scholar 

  42. Seto AH, Abu-Fadel MS, Sparling JM, Zacharias SJ, Daly TS, Harrison AT et al (2010) Real-time ultrasound guidance facilitates femoral arterial access and reduces vascular complications: FAUST (femoral arterial access with ultrasound trial). J Am Coll Cardiol Intv 3:751–758

    Article  Google Scholar 

  43. Constantino TG, Parikh AK, Satz WA et al (2005) Ultrasonography-guided peripheral intravenous access versus traditional approaches in patients with difficult intravenous access. Ann Emerg Med 46(5):456–461

    Article  Google Scholar 

  44. Brzezinski M, Luisetti T, London MJ (2009) Radial artery cannulation: a comprehensive review of recent anatomic and physiologic investigations. Anesth Analg 109:1763–1781

    Article  PubMed  Google Scholar 

  45. Barber JD, Wright DJ, Ellis RH (1973) Radial artery puncture. A simple screening test of the ulnar anastomotic circulation. Anaesthesia 28(3):291–292

    Article  PubMed  CAS  Google Scholar 

  46. Stein J, George B, River G, Hebig A, McDermott D (2009) Sonographically guided peripheral intravenous cannulation in emergency department patients with difficult intravenous access: a randomized trial. Ann Emerg Med 54:33–40

    Article  PubMed  Google Scholar 

  47. Bishop L, Dougherty L, Bodenham A et al (2007) Guidelines on the insertion and management of central venous access devices in adults. Int J Lab Hematol 29:261–278

    Article  PubMed  CAS  Google Scholar 

  48. Gladwin MT, Slonim A, Landucci DL et al (1999) Cannulation of the internal jugular vein: is a post procedural chest radiography always necessary? Crit Care Med 27:1819–1823

    Article  PubMed  CAS  Google Scholar 

  49. Taylor RW, Palagiri AV (2007) Central venous catheterization. Crit Care Med 35(5):1390–1396

    Article  PubMed  Google Scholar 

  50. Fletcher SJ, Bodenham AR (2000) Safe placement of central venous catheters: where should the tip of the catheter lie? Br J Anaesth 85:188–191

    Article  PubMed  CAS  Google Scholar 

  51. Ormel RM, McSwiney MM, Chamberlain-Webber RF (2007) Fatal cardiac tamponade as a result of a peripherally inserted central venous catheter: a case report and review of the literature. Br J Anaesth 99:384–388

    Article  Google Scholar 

  52. Booth SA, Norton B, Mulvey DA (2001) Central venous catheterization and fatal cardiac tamponade. Br J Anaesth 87(2):298–302

    Article  PubMed  CAS  Google Scholar 

  53. Domino KB, Bowdle TA, Posner KL, Spitellie PH, Lee LA, Cheney FW (2004) Injuries and liability related to central vascular catheters: a closed claims analysis. Anesthesiology 100(6):1411–1418

    Article  PubMed  Google Scholar 

  54. Lee JH, Bahk JH, Ryu HG, Jung C, Jeon Y (2009) Comparison of the bedside central venous catheter placement techniques: landmark vs electrocardiogram guidance. Br J Anaesth 102:662–666

    Article  PubMed  Google Scholar 

  55. Na S, Kim JT, Kim HS, Bahk JH, Kim CS, Kim SD (2009) Practical anatomic landmarks for determining the insertion depth of central venous catheter in paediatric patients. Br J Anaesth 102:820–823

    Article  PubMed  CAS  Google Scholar 

  56. Gebhard R, Szmuk P, Pivalizza E, Melnikov V, Vogt C, Warters R (2007) The accuracy of electrocardiogram-controlled central line placement. Anesth Analg 104:65–70

    Article  PubMed  Google Scholar 

  57. Wirsing M, Schummer C, Neumann R, Steenbeck J, Schmidt P, Schummer W (2008) Is traditional reading of the bedside chest radiograph appropriate to detect intraatrial central venous catheter position? Chest 134:527–533

    Article  PubMed  Google Scholar 

  58. Schuster M, Nave H, Piepenbrock S, Pabst R, Panning B (2000) The carina as a landmark in the central venous placement. Br J Anaesth 85(2):192–194

    Article  PubMed  CAS  Google Scholar 

  59. Albrecht K, Nave H, Breitmeier D, Panning B, Troger HD (2004) Applied anatomy of the superior vena cava: the carina as a landmark to guide central venous catheter placement. Br J Anaesth 92:75–77

    Article  PubMed  CAS  Google Scholar 

  60. Stonelake PA, Bodenham AR (2006) The carina as a radiological landmark for central venous catheter tip position. Br J Anaesth 96:335–340

    Article  PubMed  CAS  Google Scholar 

  61. Food and Drug Administration (1989) Precautions necessary with central venous catheter. US Government Printing Office, Washington DC, pp 15–16

    Google Scholar 

  62. Reynolds N, McCulloch AS, Pennington CR et al (2001) Assessment of distal tip position of long-term central venous feeding catheters using transesophageal echocardiology. J Parenter Enteral Nutr 25:39–41

    Article  CAS  Google Scholar 

  63. Beaulieu Y (2007) Bedside echocardiography in the assessment of the critically ill. Crit Care Med 35:S235–S249

    Article  PubMed  Google Scholar 

  64. Maury E, Guglielminotti J, Alzieu M, Guidet B, Offenstadt G (2001) An alternative to chest radiography after central venous catheter insertion? Am J Respir Crit Care Med 164(3):403–405

    Article  PubMed  CAS  Google Scholar 

  65. Jauss M, Zanette E, For the Consensus Conference (2000) Detection of the right-to-left shunt with ultrasound contrast agent and transcranial Doppler sonography. Cerebrovascular Dis 10:490–496

    Article  CAS  Google Scholar 

  66. Vezzani A, Brusasco C, Palermo S, Launo C, Mergoni M, Corradi F (2010) Ultrasound localization of central vein catheter and detection of postprocedural pneumothorax: an alternative to chest radiography. Crit Care Med 38:533–538

    Article  PubMed  Google Scholar 

  67. Alemen C, Alegre J, Armadans L et al (1999) The value of chest roentgenography in the diagnosis of pneumothorax after thoracocentesis. Am J Med 107:340–343

    Article  Google Scholar 

  68. Ball CG, Kirkpatrick AW, Laupland KB et al (2005) Factors related to the failure of radiographic recognition of occult posttraumatic pneumothoraces. Am J Surg 189:541–546

    Article  PubMed  Google Scholar 

  69. Lichtenstein DA, Mezière G, Lascols N et al (2005) Ultrasound diagnosis of occult pneumothorax. Crit Care Med 33(6):1231–1238

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

A. Vezzani, T. Manca, A. Vercelli, A. Braghieri, A. Magnacavallo declare that they have no conflict of interest.

Human and animal studies

The study described in this article did not include any procedures involving humans or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Magnacavallo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vezzani, A., Manca, T., Vercelli, A. et al. Ultrasonography as a guide during vascular access procedures and in the diagnosis of complications. J Ultrasound 16, 161–170 (2013). https://doi.org/10.1007/s40477-013-0046-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40477-013-0046-5

Keywords

Navigation