Skip to main content
Log in

Biomarkers for physical frailty and sarcopenia

  • Review
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Physical frailty (PF) and sarcopenia are major health issues in geriatric populations, given their high prevalence and association with several adverse outcomes. Nevertheless, the lack of an univocal operational definition for the two conditions has so far hampered their clinical implementation. Existing definitional ambiguities of PF and sarcopenia, together with their complex underlying pathophysiology, also account for the absence of robust biomarkers that can be used for screening, diagnostic and/or prognostication purposes. This review provides an overview of currently available biological markers for PF and sarcopenia, as well as a critical appraisal of strengths and weaknesses of traditional procedures for biomarker development in the field. A novel approach for biomarker identification and validation, based on multivariate methodologies, is also discussed. This strategy relies on the multidimensional modeling of complementary biomarkers to cope with the phenotypical and pathophysiological complexity of PF and sarcopenia. Biomarkers identified through the implementation of multivariate strategies may be used to support the detection of the two conditions, track their progression over time or in response to interventions, and reveal the onset of complications (e.g., mobility disability) at a very early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hirani V, Blyth F, Naganathan V, Le Couteur DG, Seibel MJ, Waite LM, Handelsman DJ, Cumming RG (2015) Sarcopenia is associated with incident disability, institutionalization, and mortality in community-dwelling older men: The Concord Health and Ageing in Men project. J Am Med Dir Assoc 16:607–613. doi:10.1016/j.jamda.2015.02.006

    Article  PubMed  Google Scholar 

  2. Landi F, Calvani R, Cesari M, Tosato M, Martone AM, Bernabei R, Onder G, Marzetti E (2015) Sarcopenia as the biological substrate of physical frailty. Clin Geriatr Med 31:367–374. doi:10.1016/j.cger.2015.04.005

    Article  PubMed  Google Scholar 

  3. Cesari M, Landi F, Vellas B, Bernabei R, Marzetti E (2014) Sarcopenia and physical frailty: two sides of the same coin. Front Aging Neurosci 6:192. doi:10.3389/fnagi.2014.00192

    PubMed  PubMed Central  Google Scholar 

  4. Calvani R, Marini F, Cesari M, Tosato M, Anker SD, von Haehling S, Miller RR, Bernabei R, Landi F, Marzetti E; for the SPRINTT consortium (2015) Biomarkers for physical frailty and sarcopenia: State of the science and future developments. J Cachexia Sarcopenia Muscle 6:278–286. doi:10.1002/jcsm.12051

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cesari M, Fielding RA, Pahor M, Goodpaster B, Hellerstein M, van Kan GA, Anker SD, Rutkove S, Vrijbloed JW, Isaac M, Rolland Y, M’rini C, Aubertin-Leheudre M, Cedarbaum JM, Zamboni M, Sieber CC, Laurent D, Evans WJ, Roubenoff R, Morley JE, Vellas B (2012) Biomarkers of sarcopenia in clinical trials-recommendations from the International Working Group on Sarcopenia. J Cachexia Sarcopenia Muscle 3:181–190. doi:10.1007/s13539-012-0078-2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763

    Article  CAS  PubMed  Google Scholar 

  7. Marzetti E (2012) Imaging, functional and biological markers for sarcopenia: the pursuit of the golden ratio. J Frailty. Aging 1:97–98

    CAS  PubMed  Google Scholar 

  8. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, Simonsick EM, Tylavsky FA, Visser M, Newman AB (2006) The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci 61:1059–1064

    Article  PubMed  Google Scholar 

  9. Reid KF, Callahan DM, Carabello RJ, Phillips EM, Frontera WR, Fielding RA (2008) Lower extremity power training in elderly subjects with mobility limitations: a randomized controlled trial. Aging Clin Exp Res 20:337–343. doi:10.1007/BF03324865

    Article  PubMed  PubMed Central  Google Scholar 

  10. Carter CS, Giovannini S, Seo DO, DuPree J, Morgan D, Chung HY, Lees H, Daniels M, Hubbard GB, Lee S, Ikeno Y, Foster TC, Buford TW, Marzetti E (2011) Differential effects of enalapril and losartan on body composition and indices of muscle quality in aged male Fischer 344 × Brown Norway rats. Age (Dordr) 33:167–183. doi:10.1007/s11357-010-9196-y

    Article  CAS  Google Scholar 

  11. Rantanen T, Guralnik JM, Foley D, Masaki K, Leveille S, Curb JD, White L (1999) Midlife hand grip strength as a predictor of old age disability. JAMA 281:558–560. doi:10.1001/jama.281.6.558

    Article  CAS  PubMed  Google Scholar 

  12. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, Wallace RB (1994) A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 49:M85–M94. doi:10.1093/geronj/49.2.M85

    Article  CAS  PubMed  Google Scholar 

  13. Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, Brach J, Chandler J, Cawthon P, Connor EB, Nevitt M, Visser M, Kritchevsky S, Badinelli S, Harris T, Newman AB, Cauley J, Ferrucci L, Guralnik J (2011) Gait speed and survival in older adults. JAMA 305:50–58. doi:10.1001/jama.2010.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bassey EJ, Fiatarone MA, O’Neill EF, Kelly M, Evans WJ, Lipsitz LA (1992) Leg extensor power and functional performance in very old men and women. Clin Sci (Lond) 82:321–327

    Article  CAS  Google Scholar 

  15. Marzetti E, Calvani R, Cesari M, Tosato M, Cherubini A, Di Bari M, Pahor M, Savera G, Collamati A, D’Angelo E, Bernabei R, Landi F (2016) Operationalization of the physical frailty & sarcopenia syndrome: rationale and clinical implementation. Transl Med UniSa 13:29–32

    PubMed  PubMed Central  Google Scholar 

  16. Marzetti E, Lees HA, Wohlgemuth SE, Leeuwenburgh C (2009) Sarcopenia of aging: underlying cellular mechanisms and protection by calorie restriction. Biofactors 35:28–35. doi:10.1002/biof.5

    Article  CAS  PubMed  Google Scholar 

  17. Marzetti E, Calvani R, Cesari M, Buford TW, Lorenzi M, Behnke BJ, Leeuwenburgh C (2013) Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials. Int J Biochem Cell Biol 45:2288–2301. doi:10.1016/j.biocel.2013.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fragala MS, Jajtner AR, Beyer KS, Townsend JR, Emerson NS, Scanlon TC, Oliveira LP, Hoffman JR, Stout JR (2014) Biomarkers of muscle quality: N-terminal propeptide of type III procollagen and C-terminal agrin fragment responses to resistance exercise training in older adults. J Cachexia Sarcopenia Muscle 5:139–148. doi:10.1007/s13539-013-0120-z

    Article  PubMed  Google Scholar 

  19. Bhasin S, He EJ, Kawakubo M, Schroeder ET, Yarasheski K, Opiteck GJ, Reicin A, Chen F, Lam R, Tsou JA, Castaneda-Sceppa C, Binder EF, Azen SP, Sattler FR (2009) N-terminal propeptide of type III procollagen as a biomarker of anabolic response to recombinant human GH and testosterone. J Clin Endocrinol Metab 94:4224–4233. doi:10.1210/jc.2009-1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen F, Lam R, Shaywitz D, Hendrickson RC, Opiteck GJ, Wishengrad D, Liaw A, Song Q, Stewart AJ, Cummings CE, Beals C, Yarasheski KE, Reicin A, Ruddy M, Hu X, Yates NA, Menetski J, Herman GA (2011) Evaluation of early biomarkers of muscle anabolic response to testosterone. J Cachexia Sarcopenia Muscle 2:45–56. doi:10.1007/s13539-011-0021-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Berry SD, Ramachandran VS, Cawthon PM, Gona P, McLean RR, Cupples LA, Kiel DP (2013) Procollagen type III N-terminal peptide (P3NP) and lean mass: a cross-sectional study. J Frailty Aging 2:129–134

    PubMed  PubMed Central  Google Scholar 

  22. Hettwer S, Dahinden P, Kucsera S, Farina C, Ahmed S, Fariello R, Drey M, Sieber CC, Vrijbloed JW (2013) Elevated levels of a C-terminal agrin fragment identifies a new subset of sarcopenia patients. Exp Gerontol 48:69–75. doi:10.1016/j.exger.2012.03.002

    Article  CAS  PubMed  Google Scholar 

  23. Drey M, Sieber CC, Bauer JM, Uter W, Dahinden P, Fariello RG, Vrijbloed JW (2013) C-terminal Agrin Fragment as a potential marker for sarcopenia caused by degeneration of the neuromuscular junction. Exp Gerontol 48:76–80. doi:10.1016/j.exger.2012.05.021

    Article  CAS  PubMed  Google Scholar 

  24. Stout JR, Fragala MS, Hoffman JR, Robinson EH, Mccormack WP, Townsend JR, Jatjner AR, Emerson NS, Oliveira LP, Fukuda DH (2015) C-terminal agrin fragment is inversely related to neuromuscular fatigue in older men. Muscle Nerve 51:132–133. doi:10.1002/mus.24443

    Article  CAS  PubMed  Google Scholar 

  25. Marzetti E, Calvani R, Lorenzi M, Marini F, D’Angelo E, Martone AM, Celi M, Tosato M, Bernabei R, Landi F (2014) Serum levels of C-terminal agrin fragment (CAF) are associated with sarcopenia in older hip fractured patients. Exp Gerontol 60C:79–82. doi:10.1016/j.exger.2014.10.003

    Article  Google Scholar 

  26. Landi F, Calvani R, Lorenzi M, Martone AM, Tosato M, Drey M, D’Angelo E, Capoluongo E, Russo A, Bernabei R, Onder G, Marzetti E (2016) Serum levels of C-terminal agrin fragment (CAF) are associated with sarcopenia in older multimorbid community-dwellers: results from the ilSIRENTE study. Exp Gerontol 79:31–36

    Article  CAS  PubMed  Google Scholar 

  27. Stephan A, Mateos JM, Kozlov SV, Cinelli P, Kistler AD, Hettwer S, Rülicke T, Streit P, Kunz B, Sonderegger P (2008) Neurotrypsin cleaves agrin locally at the synapse. FASEB J 22:1861–1873. doi:10.1096/fj.07-100008

    Article  CAS  PubMed  Google Scholar 

  28. Butikofer L, Zurlinden A, Bolliger MF, Kunz B, Sonderegger P (2011) Destabilization of the neuromuscular junction by proteolytic cleavage of agrin results in precocious sarcopenia. FASEB J 25:4378–4393. doi:10.1096/fj.11-191262

    Article  CAS  PubMed  Google Scholar 

  29. Steinbeck L, Ebner N, Valentova M, Bekfani T, Elsner S, Dahinden P, Hettwer S, Scherbakov N, Schefold JC, Sandek A, Springer J, Doehner W, Anker SD, von Haehling S (2015) Detection of muscle wasting in patients with chronic heart failure using C-terminal agrin fragment: Results from the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). Eur J Heart Fail 17:1283–1293. doi:10.1002/ejhf.400

    Article  CAS  PubMed  Google Scholar 

  30. Scherbakov N, Knops M, Ebner N, Valentova M, Sandek A, Grittner U, Dahinden P, Hettwer S, Schefold JC, von Haehling S, Anker SD, Joebges M, Doehner W (2016) Evaluation of C-terminal Agrin Fragment as a marker of muscle wasting in patients after acute stroke during early rehabilitation. J Cachexia Sarcopenia Muscle 7:60–67. doi:10.1002/jcsm.12068

    Article  PubMed  Google Scholar 

  31. Ogawa K, Kim HK, Shimizu T, Abe S, Shiga Y, Calderwood SK (2012) Plasma heat shock protein 72 as a biomarker of sarcopenia in elderly people. Cell Stress Chaperones 17:349–359. doi:10.1007/s12192-011-0310-6

    Article  CAS  PubMed  Google Scholar 

  32. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442. doi:10.1038/74697

    Article  CAS  PubMed  Google Scholar 

  33. Robinson MB, Tidwell JL, Gould T, Taylor AR, Newbern JM, Graves J, Tytell M, Milligan CE (2005) Extracellular heat shock protein 70: a critical component for motoneuron survival. J Neurosci 25:9735–9745. doi:10.1523/JNEUROSCI

    Article  CAS  PubMed  Google Scholar 

  34. Abreu EL, Cheng AL, Kelly PJ, Chertoff K, Brotto L, Griffith E, Kinder G, Uridge T, Zachow R, Brotto M (2014) Skeletal muscle troponin as a novel biomarker to enhance assessment of the impact of strength training on fall prevention in the older adults. Nurs Res 63:75–82. doi:10.1097/NNR.0000000000000018

    Article  PubMed  Google Scholar 

  35. Hinkle A, Goranson A, Butters CA, Tobacman LS (1999) Roles for the troponin tail domain in thin filament assembly and regulation. A deletional study of cardiac troponin T. J Biol Chem 274:7157–7164. doi:10.1074/jbc.274.11.7157

    Article  CAS  PubMed  Google Scholar 

  36. Zot AS, Potter JD (1987) Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Annu Rev Biophys. Biophys Chem 16:535–559. doi:10.1146/annurev.bb.16.060187.002535

    CAS  Google Scholar 

  37. Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction: interference microscopy of living muscle fibres. Nature 173:971–973. doi:10.1038/173971a0

    Article  CAS  PubMed  Google Scholar 

  38. Kalinkovich A, Livshits G (2015) Sarcopenia - The search for emerging biomarkers. Ageing Res Rev 22:58–71. doi:10.1016/j.arr.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  39. Marzetti E, Lorenzi M, Antocicco M, Bonassi S, Celi M, Mastropaolo S, Settanni S, Valdiglesias V, Landi F, Bernabei R, Onder G (2014) Shorter telomeres in peripheral blood mononuclear cells from older persons with sarcopenia: results from an exploratory study. Front Aging Neurosci 6:233. doi:10.3389/fnagi.2014.00233

    Article  PubMed  PubMed Central  Google Scholar 

  40. Collerton J, Martin-Ruiz C, Davies K, Hilkens CM, Isaacs J, Kolenda C, Parker C, Dunn M, Catt M, Jagger C, von Zglinicki T, Kirkwood TB (2012) Frailty and the role of inflammation, immunosenescence and cellular ageing in the very old: cross-sectional findings from the Newcastle 85 + Study. Mech Ageing Dev 133:456–466. doi:10.1016/j.mad.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  41. Clark RV, Walker AC, O’Connor-Semmes RL, Leonard MS, Miller RR, Stimpson SA, Turner SM, Ravussin E, Cefalu WT, Hellerstein MK, Evans WJ (2014) Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans. J Appl Physiol 116(1985):1605–1613. doi:10.1152/japplphysiol.00045.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stimpson SA, Leonard MS, Clifton LG, Poole JC, Turner SM, Shearer TW, Remlinger KS, Clark RV, Hellerstein MK, Evans WJ (2013) Longitudinal changes in total body creatine pool size and skeletal muscle mass using the D-creatine dilution method. J Cachexia Sarcopenia Muscle (Epub ahead of print). doi:10.1007/s13539-013-0110-1

    PubMed  PubMed Central  Google Scholar 

  43. Bro R, Smilde AK (2014) Principal component analysis. Anal Meth 6:2812–2831. doi:10.1039/c3ay41907j

    Article  CAS  Google Scholar 

  44. Smilde AK, Jansen JJ, Hoefsloot HC, Lamers RJ, van der Greef J, Timmerman ME (2005) ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics 21:3043–3048. doi:10.1093/bioinformatics/bti476

    Article  CAS  PubMed  Google Scholar 

  45. Jansen JJ, Hoefsloot HC, van der Greef J, Timmerman ME, Smilde AK (2005) Multilevel component analysis of time-resolved metabolic fingerprinting. Anal Chim Acta 530:173–183. doi:10.1016/j.aca.2004.09.074

    Article  CAS  Google Scholar 

  46. Marini F, de Beer D, Joubert E, Walczak B (2015) Analysis of variance of designed chromatographic data sets: The analysis of variance-target projection approach. J Chromatogr A 1405:94–102. doi:10.1016/j.chroma.2015.05.060

    Article  CAS  PubMed  Google Scholar 

  47. Bevilacqua M, Bucci R, Magrì AL, Magrì R, Nescatelli R, Marini F (2013) Classification and class-modeling. In: Marini F (ed) Chemometrics in food chemistry. Elsevier, Oxford, pp 171–233. doi:10.1016/B978-0-444-59528-7.00005-3

    Chapter  Google Scholar 

  48. Szymanska E, Saccenti E, Smilde AK, Westerhuis JA (2012) Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics 8:3–16. doi:10.1007/s11306-011-0330-3

    Article  CAS  PubMed  Google Scholar 

  49. Marzetti E, Landi F, Marini F, Cesari M, Buford TW, Manini TM, Onder G, Pahor M, Bernabei R, Leeuwenburgh C, Calvani R (2014) Patterns of circulating inflammatory biomarkers in older persons with varying levels of physical performance: a Partial Least Squares-Discriminant Analysis (PLS-DA) approach. Front Med 1:27. doi:10.3389/fmed.2014.00027

    Article  Google Scholar 

  50. Calvani R, Marini F, Cesari M, Manini TM, Buford TW, Pahor M, Leeuwenburgh C, Bernabei R, Landi F, Marzetti E (2016) Systemic inflammation, body composition, and physical performance in old community-dwellers. J Cachexia Sarcopenia Muscle (Epub ahead of print). doi:10.1002/jcsm.12134

    PubMed  PubMed Central  Google Scholar 

  51. Kourti T, MacGregor JF (2014) Process analysis, monitoring and diagnosis, using multivariate projection methods. Chemometr Intell Lab Syst 28:3–21. doi:10.1016/j.saa.2013.02.018

    Article  Google Scholar 

  52. Marzetti E, Sanna T, Calvani R, Bernabei R, Landi F, Cesari M (2016) Brand new medicine for an older society. J Am Med Dir Assoc 17:558–559. doi:10.1016/j.jamda.2016.02.024

    Article  PubMed  Google Scholar 

  53. Cesari M, Marzetti E, Thiem U, Pérez-Zepeda MU, Abellan Van Kan G, Landi F, Petrovic M, Cherubini A, Bernabei R (2016) The geriatric management of frailty as paradigm of “The end of the disease era”. Eur J Intern Med 31:11–14. doi:10.1016/j.ejim.2016.03.005

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by a grant from the Innovative Medicines Initiative–Joint Undertaking (IMI–JU 115621). The work was also partly supported by the “Centro Studi Achille e Linda Lorenzon” (E.M., R.C.), Fondazione Roma (NCDs Call for Proposals 2013; A.P., E.M., R.C.), and intramural research grants from the Catholic University of the Sacred Heart (D3.2 2013 and D3.2 2015; E.M., F.L., M.T., R.C.).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Emanuele Marzetti.

Ethics declarations

Conflict of interest

The authors of this work, with the exception of Anna Picca and Federico Marini, are partners of the SPRINTT Consortium, which is partly funded by the European Federation of Pharmaceutical Industries and Associations (EFPIA). E.M. served as a consultant for Huron Consulting Group, Genactis, and Novartis. M.C. served as a consultant for and/or received honoraria for scientific presentations from Nestlé. S.A. and S.v.H. received consultant honoraria from Thermo Fisher Scientific, Solartium Dietetics, Professional Dietetics, and Pfizer.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study informed consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvani, R., Marini, F., Cesari, M. et al. Biomarkers for physical frailty and sarcopenia. Aging Clin Exp Res 29, 29–34 (2017). https://doi.org/10.1007/s40520-016-0708-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-016-0708-1

Keywords

Navigation