Skip to main content
Log in

Measurement of muscle mass in sarcopenia: from imaging to biochemical markers

  • Review Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Sarcopenia encompasses the loss of muscle mass and strength/function during aging. Several methods are available for the estimation of muscle or lean body mass. Popular assessment tools include body imaging techniques (e.g., magnetic resonance imaging, computed tomography, dual X-ray absorptiometry, ultrasonography), bioelectric impedance analysis, anthropometric parameters (e.g., calf circumference, mid-arm muscle circumference), and biochemical markers (total or partial body potassium, serum and urinary creatinine, deuterated creatine dilution method). The heterogeneity of the populations to be evaluated as well as the setting in which sarcopenia is investigated impacts the definition of “gold standard” assessment techniques. The aim of this article is to critically review available methods for muscle mass estimation, highlighting strengths and weaknesses of each of them as well as their proposed field of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marzetti E (2012) Editorial: imaging, functional and biological markers for sarcopenia: the pursuit of the golden ratio. J Frailty Aging 1:97–98

    CAS  Google Scholar 

  2. Cruz-Jentoft AJ, Landi F (2014) Sarcopenia. Clin Med (Lond) 14:183–186. doi:10.7861/clinmedicine

    Article  Google Scholar 

  3. Cesari M, Fielding RA, Pahor M, Goodpaster B, Hellerstein M, van Kan GA, Anker SD, Rutkove S, Vrijbloed JW, Isaac M, Rolland Y, M’rini C, Aubertin-Leheudre M, Cedarbaum JM, Zamboni M, Sieber CC, Laurent D, Evans WJ, Roubenoff R, Morley JE, Vellas B; International Working Group on Sarcopenia (2012) Biomarkers of sarcopenia in clinical trials-recommendations from the International Working Group on Sarcopenia. J Cachexia Sarcopenia Muscle 3:181–190. doi:10.1007/s13539-012-0078-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Houmard JA, Smith R, Jendrasiak GL (1995) Relationship between MRI relaxation time and muscle fiber composition. J Appl Physiol (1985) 78;807–809

    CAS  Google Scholar 

  5. White LJ, Ferguson MA, McCoy SC, Kim H (2003) Intramyocellular lipid changes in men and women during aerobic exercise: a (1)H-magnetic resonance spectroscopy study. J Clin Endocrinol Metab 88:5638–5643. doi:10.1210/jc.2003-031006

    Article  CAS  PubMed  Google Scholar 

  6. Marzetti E, Lees HA, Manini TM, Buford TW, Aranda JM Jr, Calvani R, Capuani G, Marsiske M, Lott DJ, Vandenborne K, Bernabei R, Pahor M, Leeuwenburgh C, Wohlgemuth SE (2012) Skeletal muscle apoptotic signaling predicts thigh muscle volume and gait speed in community-dwelling older persons: an exploratory study. PLoS One 7:e32829. doi:10.1371/journal.pone.0032829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kuno S, Katsuta S, Akisada M, Anno I, Matsumoto K (1990) Effect of strength training on the relationship between magnetic resonance relaxation time and muscle fibre composition. Eur J Appl Physiol Occup Physiol 61:33–36. doi:10.1007/BF00236690

    Article  CAS  PubMed  Google Scholar 

  8. Prado CM, Heymsfield SB (2014) Lean tissue imaging: a new era for nutritional assessment and intervention. JPEN J Parenter Enteral Nutr 38:940–953. doi:10.1177/0148607114550189

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shen W, Punyanitya M, Wang Z, Gallagher D, St-Onge MP, Albu J, Heymsfield SB, Heshka S (2004) Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol (1985) 97:2333–2338. doi:10.1152/japplphysiol.00744.2004

    Article  Google Scholar 

  10. Ferland M, Després JP, Tremblay A, Pinault S, Nadeau A, Moorjani S, Lupien PJ, Thériault G, Bouchard C (1989) Assessment of adipose tissue distribution by computed axial tomography in obese women: association with body density and anthropometric measurements. Br J Nutr 61:139–148. doi:10.1079/BJN19890104

    Article  CAS  PubMed  Google Scholar 

  11. Mattsson S, Thomas BJ (2006) Development of methods for body composition studies. Phys Med Biol 51:R203–R228. doi:10.1088/0031-9155/51/13/R13

    Article  CAS  PubMed  Google Scholar 

  12. Hangartner TN, Warner S, Braillon P, Jankowski L, Shepherd J (2013) The Official Positions of the International Society for Clinical Densitometry: acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures. J Clin Densitom 16:520–536. doi:10.1016/j.jocd.2013.08.007

    Article  PubMed  Google Scholar 

  13. Levine JA, Abboud L, Barry M, Reed JE, Sheedy PF, Jensen MD (2000) Measuring leg muscle and fat mass in humans: comparison of CT and dual-energy X-ray absorptiometry. J Appl Physiol (1985) 88:452–456

    CAS  Google Scholar 

  14. Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, Stamm E, Newman AB (2001) Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J Appl Physiol (1985) 90:2157–2165

    CAS  Google Scholar 

  15. Lang T, Cauley JA, Tylavsky F, Bauer D, Cummings S, Harris TB; Health ABC Study (2010) Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J Bone Miner Res 25;513–519. doi:10.1359/jbmr.090807

    Article  PubMed  Google Scholar 

  16. Damilakis J, Adams JE, Guglielmi G, Link TM (2010) Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol 20:2707–2714. doi:10.1007/s00330-010-1845-0

    Article  PubMed  PubMed Central  Google Scholar 

  17. Frank-Wilson AW, Johnston JD, Olszynski WP, Kontulainen SA (2015) Measurement of muscle and fat in postmenopausal women: precision of previously reported pQCT imaging methods. Bone 75:49–54. doi:10.1016/j.bone.2015.01.016

    Article  PubMed  Google Scholar 

  18. Lustgarten MS, Fielding RA (2011) Assessment of analytical methods used to measure changes in body composition in the elderly and recommendations for their use in phase II clinical trials. J Nutr Health Aging 15:368–375. doi:10.1007/s12603-011-0049-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Damilakis J, Perisinakis K, Vrahoriti H, Kontakis G, Varveris H, Gourtsoyiannis N (2002) Embryo/fetus radiation dose and risk from dual X-ray absorptiometry examinations. Osteoporos Int 13:716–722. doi:10.1007/s001980200098

    Article  CAS  PubMed  Google Scholar 

  20. Heymsfield SB, Adamek M, Gonzalez MC, Jia G, Thomas DM (2014) Assessing skeletal muscle mass: historical overview and state of the art. J Cachexia Sarcopenia Muscle 5:9–18. doi:10.1007/s13539-014-0130-5

    Article  PubMed  PubMed Central  Google Scholar 

  21. Proctor DN, O’Brien PC, Atkinson EJ, Nair KS (1999) Comparison of techniques to estimate total body skeletal muscle mass in people of different age groups. Am J Physiol 277:E489–E495

    CAS  PubMed  Google Scholar 

  22. Bredella MA, Ghomi RH, Thomas BJ, Torriani M, Brick DJ, Gerweck AV, Misra M, Klibanski A, Miller KK (2010) Comparison of DXA and CT in the assessment of body composition in premenopausal women with obesity and anorexia nervosa. Obesity (Silver Spring) 18:2227–2233. doi:10.1038/oby.2010.5

    Article  Google Scholar 

  23. Marzetti E, Calvani R, Landi F, Hoogendijk EO, Fougère B, Vellas B, Pahor M, Bernabei R, Cesari M; SPRINTT Consortium (2015) Innovative Medicines Initiative: The SPRINTT Project. J Frailty Aging 4:207–208. doi:10.14283/jfa.2015.69

    CAS  Google Scholar 

  24. Wagner DR (2013) Ultrasound as a tool to assess body fat. J Obes 2013:280713. doi: 10.1155/2013/280713

    PubMed  PubMed Central  Google Scholar 

  25. Tillquist M, Kutsogiannis DJ, Wischmeyer PE, Kummerlen C, Leung R, Stollery D, Karvellas CJ, Preiser JC, Bird N, Kozar R, Heyland DK (2013) Bedside ultrasound is a practical and reliable measurement tool for assessing quadriceps muscle layer thickness. JPEN J Parenter Enteral Nutr 38:886–890. doi:10.1177/0148607113501327

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mayans D, Cartwright MS, Walker FO (2012) Neuromuscular ultrasonography: quantifying muscle and nerve measurements. Phys Med Rehabil Clin N Am 23:133–148. doi:10.1016/j.pmr.2011.11.009

    Article  PubMed  Google Scholar 

  27. Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI (1985) Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 41:810–817

    CAS  PubMed  Google Scholar 

  28. Janssen I, Heymsfield SB, Baumgartner RN, Ross R (2000) Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol (1985) 89:465–471

    CAS  Google Scholar 

  29. Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R (2004) Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol 159:413–421

    Article  PubMed  Google Scholar 

  30. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M; European Working Group on Sarcopenia in Older People (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423. doi:10.1093/ageing/afq034

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chumlea WC, Guo SS, Kuczmarski RJ, Flegal KM, Johnson CL, Heymsfield SB, Lukaski HC, Friedl K, Hubbard VS (2002) Body composition estimates from NHANES III bioelectrical impedance data. Int J Obes Relat Metab Disord 26:1596–1609. doi:10.1038/sj.ijo.0802167

    Article  CAS  PubMed  Google Scholar 

  32. NIH Expert Panel (1996) Bioelectrical impedance analysis in body composition measurement: National Institutes of Health Technology Assessment Conference Statement. Am J Clin Nutr 64(3 Suppl):524S–532S

    Google Scholar 

  33. Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S, Cederholm T, Coats AJ, Cummings SR, Evans WJ, Fearon K, Ferrucci L, Fielding RA, Guralnik JM, Harris TB, Inui A, Kalantar-Zadeh K, Kirwan BA, Mantovani G, Muscaritoli M, Newman AB, Rossi-Fanelli F, Rosano GM, Roubenoff R, Schambelan M, Sokol GH, Storer TW, Vellas B, von Haehling S, Yeh SS, Anker SD; Society on Sarcopenia, Cachexia and Wasting Disorders Trialist Workshop (2011) Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc 12:403–409. doi:10.1016/j.jamda.2011.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rutkove SB, Aaron R, Shiffman CA (2002) Localized bioimpedance analysis in the evaluation of neuromuscular disease. Muscle Nerve 25:390–397. doi:10.1002/mus.10048

    Article  PubMed  Google Scholar 

  35. Rutkove SB (2009) Electrical impedance myography: Background, current state, and future directions. Muscle Nerve 40:936–946. doi:10.1002/mus.21362

    Article  PubMed  PubMed Central  Google Scholar 

  36. Aaron R, Shiffman CA (2000) Using localized impedance measurements to study muscle changes in injury and disease. Ann N Y Acad Sci 904:171–180. doi:10.1111/j.1749-6632.2000.tb06443.x

    Article  CAS  PubMed  Google Scholar 

  37. Shiffman CA, Aaron R, Amoss V, Therrien J, Coomler K (1999) Resistivity and phase in localized BIA. Phys Med Biol 44:2409–2429. doi:10.1088/0031-9155/44/10/304

    Article  CAS  PubMed  Google Scholar 

  38. Faes TJ, van der Meij HA, de Munck JC, Heethaar RM (1999) The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies. Physiol Meas 20:R1–R10. doi:10.1088/0967-3334/20/4/201

    Article  CAS  PubMed  Google Scholar 

  39. Landi F, Martone AM, Calvani R, Marzetti E (2014) Sarcopenia risk screening tool: a new strategy for clinical practice. J Am Med Dir Assoc 15:613–614. doi:10.1016/j.jamda.2014.05.015

    Article  PubMed  Google Scholar 

  40. Landi F, Russo A, Liperoti R, Pahor M, Tosato M, Capoluongo E, Bernabei R, Onder G (2010) Midarm muscle circumference, physical performance and mortality: results from the aging and longevity study in the Sirente geographic area (ilSIRENTE study). Clin Nutr 29:441–447. doi:10.1016/j.clnu.2009.12.006

    Article  PubMed  Google Scholar 

  41. Landi F, Onder G, Russo A, Liperoti R, Tosato M, Martone AM, Capoluongo E, Bernabei R (2014) Calf circumference, frailty and physical performance among older adults living in the community. Clin Nutr 33:539–544. doi:10.1016/j.clnu.2013.07.013

    Article  PubMed  Google Scholar 

  42. Wijnhoven HA, van Bokhorst-de van der Schueren MA, Heymans MW, de Vet HC, Kruizenga HM, Twisk JW, Visser M (2010) Low mid-upper arm circumference, calf circumference, and body mass index and mortality in older persons. J Gerontol A Biol Sci Med Sci 65:1107–1114. doi:10.1093/gerona/glq100

    Article  PubMed  Google Scholar 

  43. Rolland Y, Lauwers-Cances V, Cournot M, Nourhashémi F, Reynish W, Rivière D, Vellas B, Grandjean H (2003) Sarcopenia, calf circumference, and physical function of elderly women: a cross-sectional study. J Am Geriatr Soc 51:1120–1124. doi:10.1046/j.1532-5415.2003.51362.x

    Article  PubMed  Google Scholar 

  44. de Onis M, Habicht JP (1996) Anthropometric reference data for international use: recommendations from a World Health Organization Expert Committee. Am J Clin Nutr 64:650–658

    PubMed  Google Scholar 

  45. Antonelli Incalzi R, Landi F, Cipriani L, Bruno E, Pagano F, Gemma A, Capparella O, Carbonin PU (1996) Nutritional assessment: a primary component of multidimensional geriatric assessment in the acute care setting. J Am Geriatr Soc 44:166–174. doi:10.1111/j.1532-5415.1996.tb02434

    Article  CAS  PubMed  Google Scholar 

  46. Calvani R, Marini F, Cesari M, Tosato M, Anker SD, von Haehling S, Miller RR, Bernabei R, Landi F, Marzetti E; SPRINTT consortium (2015) Biomarkers for physical frailty and sarcopenia: state of the science and future developments. J Cachexia Sarcopenia Muscle 6;278–286. doi:10.1002/jcsm.12051

    Article  PubMed  PubMed Central  Google Scholar 

  47. Heymsfield SB, Gallagher D, Visser M, Nuñez C, Wang ZM (1995) Measurement of skeletal muscle: laboratory and epidemiological methods. J Gerontol A Biol Sci Med Sci 50 Spec No:23–29. doi:10.1093/gerona/50A

    PubMed  Google Scholar 

  48. Kehayias JJ, Fiatarone MA, Zhuang H, Roubenoff R (1997) Total body potassium and body fat: relevance to aging. Am J Clin Nutr 66:904–910

    CAS  PubMed  Google Scholar 

  49. Wielopolski L, Ramirez LM, Gallagher D, Sarkar SR, Zhu F, Kaysen GA, Levin NW, Heymsfield SB, Wang ZM (2006) Measuring partial body potassium in the arm versus total body potassium. J Appl Physiol (1985) 101;945–949. doi:10.1152/japplphysiol.00999.2005

    Article  CAS  Google Scholar 

  50. Wielopolski L, Ramirez LM, Spungen AM, Swaby S, Asselin P, Bauman WA (2009) Measuring partial body potassium in the legs of patients with spinal cord injury: a new approach. J Appl Physiol (1985) 106;268–273. doi:10.1152/japplphysiol.90435.2008

    Article  CAS  Google Scholar 

  51. Heymsfield SB, Arteaga C, McManus C, Smith J, Moffitt S (1983) Measurement of muscle mass in humans: validity of the 24-hour urinary creatinine method. Am J Clin Nutr 37:478–494

    CAS  PubMed  Google Scholar 

  52. Keshaviah PR, Nolph KD, Moore HL, Prowant B, Emerson PF, Meyer M, Twardowski ZJ, Khanna R, Ponferrada L, Collins A (1994) Lean body mass estimation by creatinine kinetics. J Am Soc Nephrol 4:1475–1485

    CAS  PubMed  Google Scholar 

  53. Bhatla B, Moore H, Emerson P, Keshaviah P, Prowant B, Nolph KD, Singh A (1995) Lean body mass estimation by creatinine kinetics, bioimpedance, and dual energy X-ray absorptiometry in patients on continuous ambulatory peritoneal dialysis. ASAIO J 41:M442–M446

    Article  CAS  PubMed  Google Scholar 

  54. Patel SS, Molnar MZ, Tayek JA, Ix JH, Noori N, Benner D, Heymsfield S, Kopple JD, Kovesdy CP, Kalantar-Zadeh K (2013) Serum creatinine as a marker of muscle mass in chronic kidney disease: results of a cross-sectional study and review of literature. J Cachexia Sarcopenia Muscle 4:19–29. doi:10.1007/s13539-012-0079-1

    Article  PubMed  Google Scholar 

  55. Wang ZM, Gallagher D, Nelson ME, Matthews DE, Heymsfield SB (1996) Total-body skeletal muscle mass: evaluation of 24-h urinary creatinine excretion by computerized axial tomography. Am J Clin Nutr 63:863–869

    CAS  PubMed  Google Scholar 

  56. Gerber LM, Mann SJ (2014) Development of a model to estimate 24-hour urinary creatinine excretion. J Clin Hypertens (Greenwich) 16:367–371. doi:10.1111/jch.12294

    Article  CAS  Google Scholar 

  57. Clark RV, Walker AC, O’Connor-Semmes RL, Leonard MS, Miller RR, Stimpson SA, Turner SM, Ravussin E, Cefalu WT, Hellerstein MK, Evans WJ (2014) Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans. J Appl Physiol (1985) 116:1605–1613. doi:10.1152/japplphysiol.00045.2014

    Article  CAS  Google Scholar 

  58. Stimpson SA, Turner SM, Clifton LG, Poole JC, Mohammed HA, Shearer TW, Waitt GM, Hagerty LL, Remlinger KS, Hellerstein MK, Evans WJ (2012) Total-body creatine pool size and skeletal muscle mass determination by creatine-(methyl-D3) dilution in rats. J Appl Physiol (1985) 112:1940–1948. doi:10.1152/japplphysiol.00122.2012

    Article  CAS  Google Scholar 

  59. Stimpson SA, Leonard MS, Clifton LG, Poole JC, Turner SM, Shearer TW, Remlinger KS, Clark RV, Hellerstein MK, Evans WJ (2013) Longitudinal changes in total body creatine pool size and skeletal muscle mass using the D3-creatine dilution method. J Cachexia Sarcopenia Muscle. doi:10.1007/s13539-013-0110-1

    PubMed  PubMed Central  Google Scholar 

  60. Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, Kiel DP, Kritchevsky SB, Shardell MD, Dam TT, Vassileva MT (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 69:547–558. doi:10.1093/gerona/glu010

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cawthon PM, Peters KW, Shardell MD, McLean RR, Dam TT, Kenny AM, Fragala MS, Harris TB, Kiel DP, Guralnik JM, Ferrucci L, Kritchevsky SB, Vassileva MT, Studenski SA, Alley DE (2014) Cutpoints for low appendicular lean mass that identify older adults with clinically significant weakness. J Gerontol A Biol Sci Med Sci 69:567–575. doi:10.1093/gerona/glu023

    Article  PubMed  PubMed Central  Google Scholar 

  62. McLean RR, Shardell MD, Alley DE, Cawthon PM, Fragala MS, Harris TB, Kenny AM, Peters KW, Ferrucci L, Guralnik JM, Kritchevsky SB, Kiel DP, Vassileva MT, Xue QL, Perera S, Studenski SA, Dam TT (2014) Criteria for clinically relevant weakness and low lean mass and their longitudinal association with incident mobility impairment and mortality: the foundation for the National Institutes of Health (FNIH) sarcopenia project. J Gerontol A Biol Sci Med Sci 69:576–583. doi:10.1093/gerona/glu012

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present work was funded by a Grant from the Innovative Medicines Initiative—Joint Undertaking (IMI-JU 115621). The work was also partly supported by the “Centro Studi Achille e Linda Lorenzon” (E.M., R.C.), Fondazione Roma (NCDs Call for Proposals 2013; E.M., R.C.), and intramural research grants from the Catholic University of the Sacred Heart (D3.2 2013 and D3.2 2015; E.M., F.L., M.T., R.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Calvani.

Ethics declarations

Conflict of interest

The authors of the present work are partners of the SPRINTT Consortium, which is partly funded by the European Federation of Pharmaceutical Industries and Associations (EFPIA). E.M. served as a consultant for Huron Consulting Group, Genactis and Novartis. M.C. served as a consultant for and/or received honoraria for scientific presentations from Nestlé.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study informed consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosato, M., Marzetti, E., Cesari, M. et al. Measurement of muscle mass in sarcopenia: from imaging to biochemical markers. Aging Clin Exp Res 29, 19–27 (2017). https://doi.org/10.1007/s40520-016-0717-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-016-0717-0

Keywords

Navigation