Skip to main content
Erschienen in: Journal of Nephrology 1/2018

01.02.2018 | Review

Cisplatin nephrotoxicity: a review of the literature

verfasst von: Sandhya Manohar, Nelson Leung

Erschienen in: Journal of Nephrology | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

Cisplatin is a platinum containing drug first approved as an antineoplastic agent in 1978. It remains an important and effective therapy in many forms of cancer today. Cisplatin mediates its tumorcidal effects via a number of different cytotoxic mechanisms. Although it is best known for DNA damage, cisplatin also causes cytoplasmic organelle dysfunction particularly with the endoplasmic reticulum and mitochondria. It also activates apoptotic pathways and inflicts cellular damage via oxidative stress and inflammation. One of its dose limiting toxicities is its effects on the kidney. This includes acute kidney injury as well as tubular injury resulting in electrolyte wasting. Extensive research has found that cisplatin entry into a cell is facilitated by a number of cellular transporters including human copper transport protein 1 (Ctr1) and the organic cation transporter 2 (OCT2) which are expressed on renal tubular cells. The interactions between the mechanisms of cytotoxicity and cellular transport play an important role in the nephrotoxicity. Better understanding of these interactions could one day help devise better renoprotection that would not reduce its anti-tumor effects.
Literatur
1.
Zurück zum Zitat Prestayko AW, Crooke ST, Carter SK, University of Alabama in Birmingham (1980) Comprehensive Cancer Center., Bristol Laboratories.: Cisplatin, current status and new developments. Academic Press, New York Prestayko AW, Crooke ST, Carter SK, University of Alabama in Birmingham (1980) Comprehensive Cancer Center., Bristol Laboratories.: Cisplatin, current status and new developments. Academic Press, New York
2.
Zurück zum Zitat Liira J, Verbeek JH, Costa G, Driscoll TR, Sallinen M, Isotalo LK, Ruotsalainen JH (2014) Pharmacological interventions for sleepiness and sleep disturbances caused by shift work. Cochrane Database Syst Rev 2014(8):CD009776 Liira J, Verbeek JH, Costa G, Driscoll TR, Sallinen M, Isotalo LK, Ruotsalainen JH (2014) Pharmacological interventions for sleepiness and sleep disturbances caused by shift work. Cochrane Database Syst Rev 2014(8):CD009776
3.
Zurück zum Zitat Florea AM, Busselberg D (2011) Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel) 3(1):1351–1371CrossRef Florea AM, Busselberg D (2011) Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel) 3(1):1351–1371CrossRef
4.
Zurück zum Zitat Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73(9):994–1007CrossRefPubMed Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73(9):994–1007CrossRefPubMed
5.
Zurück zum Zitat Townsend DM, Hanigan MH (2002) Inhibition of gamma-glutamyl transpeptidase or cysteine S-conjugate beta-lyase activity blocks the nephrotoxicity of cisplatin in mice. J Pharmacol Exp Ther 300(1):142–148CrossRefPubMed Townsend DM, Hanigan MH (2002) Inhibition of gamma-glutamyl transpeptidase or cysteine S-conjugate beta-lyase activity blocks the nephrotoxicity of cisplatin in mice. J Pharmacol Exp Ther 300(1):142–148CrossRefPubMed
6.
Zurück zum Zitat Townsend DM, Deng M, Zhang L, Lapus MG, Hanigan MH (2003) Metabolism of Cisplatin to a nephrotoxin in proximal tubule cells. J Am Soc Nephrol 14(1):1–10CrossRefPubMed Townsend DM, Deng M, Zhang L, Lapus MG, Hanigan MH (2003) Metabolism of Cisplatin to a nephrotoxin in proximal tubule cells. J Am Soc Nephrol 14(1):1–10CrossRefPubMed
7.
Zurück zum Zitat Cozzaglio L, Doci R, Colella G, Zunino F, Casciarri G, Gennari L (1990) A feasibility study of high-dose cisplatin and 5-fluorouracil with glutathione protection in the treatment of advanced colorectal cancer. Tumori 76(6):590–594PubMed Cozzaglio L, Doci R, Colella G, Zunino F, Casciarri G, Gennari L (1990) A feasibility study of high-dose cisplatin and 5-fluorouracil with glutathione protection in the treatment of advanced colorectal cancer. Tumori 76(6):590–594PubMed
8.
Zurück zum Zitat Zunino F, Pratesi G, Micheloni A, Cavalletti E, Sala F, Tofanetti O (1989) Protective effect of reduced glutathione against cisplatin-induced renal and systemic toxicity and its influence on the therapeutic activity of the antitumor drug. Chem Biol Interact 70(1–2):89–101CrossRefPubMed Zunino F, Pratesi G, Micheloni A, Cavalletti E, Sala F, Tofanetti O (1989) Protective effect of reduced glutathione against cisplatin-induced renal and systemic toxicity and its influence on the therapeutic activity of the antitumor drug. Chem Biol Interact 70(1–2):89–101CrossRefPubMed
9.
Zurück zum Zitat Gosland M, Lum B, Schimmelpfennig J, Baker J, Doukas M (1996) Insights into mechanisms of cisplatin resistance and potential for its clinical reversal. Pharmacotherapy 16(1):16–39PubMed Gosland M, Lum B, Schimmelpfennig J, Baker J, Doukas M (1996) Insights into mechanisms of cisplatin resistance and potential for its clinical reversal. Pharmacotherapy 16(1):16–39PubMed
10.
Zurück zum Zitat Godwin AK, Meister A, O’Dwyer PJ, Huang CS, Hamilton TC, Anderson ME (1992) High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci USA 89(7):3070–3074CrossRefPubMedPubMedCentral Godwin AK, Meister A, O’Dwyer PJ, Huang CS, Hamilton TC, Anderson ME (1992) High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci USA 89(7):3070–3074CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Hanigan MH, Gallagher BC, Townsend DM, Gabarra V (1999) Gamma-glutamyl transpeptidase accelerates tumor growth and increases the resistance of tumors to cisplatin in vivo. Carcinogenesis 20(4):553–559CrossRefPubMed Hanigan MH, Gallagher BC, Townsend DM, Gabarra V (1999) Gamma-glutamyl transpeptidase accelerates tumor growth and increases the resistance of tumors to cisplatin in vivo. Carcinogenesis 20(4):553–559CrossRefPubMed
12.
Zurück zum Zitat Kemp G, Rose P, Lurain J, Berman M, Manetta A, Roullet B, Homesley H, Belpomme D, Glick J (1996) Amifostine pretreatment for protection against cyclophosphamide-induced and cisplatin-induced toxicities: results of a randomized control trial in patients with advanced ovarian cancer. J Clin Oncol 14(7):2101–2112CrossRefPubMed Kemp G, Rose P, Lurain J, Berman M, Manetta A, Roullet B, Homesley H, Belpomme D, Glick J (1996) Amifostine pretreatment for protection against cyclophosphamide-induced and cisplatin-induced toxicities: results of a randomized control trial in patients with advanced ovarian cancer. J Clin Oncol 14(7):2101–2112CrossRefPubMed
13.
Zurück zum Zitat Sastry J, Kellie SJ (2005) Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine. Pediatr Hematol Oncol 22(5):441–445CrossRefPubMed Sastry J, Kellie SJ (2005) Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine. Pediatr Hematol Oncol 22(5):441–445CrossRefPubMed
14.
Zurück zum Zitat Ekborn A, Hansson J, Ehrsson H, Eksborg S, Wallin I, Wagenius G, Laurell G (2004) High-dose Cisplatin with amifostine: ototoxicity and pharmacokinetics. Laryngoscope 114(9):1660–1667CrossRefPubMed Ekborn A, Hansson J, Ehrsson H, Eksborg S, Wallin I, Wagenius G, Laurell G (2004) High-dose Cisplatin with amifostine: ototoxicity and pharmacokinetics. Laryngoscope 114(9):1660–1667CrossRefPubMed
15.
Zurück zum Zitat Esposito M, Viale M, Vannozzi MO, Zicca A, Cadoni A, Merlo F, Gogioso L (1996) Effect of the antiarrhythmic drug procainamide on the toxicity and antitumor activity of cis-diamminedichloroplatinum(II). Toxicol Appl Pharmacol 140(2):370–377CrossRefPubMed Esposito M, Viale M, Vannozzi MO, Zicca A, Cadoni A, Merlo F, Gogioso L (1996) Effect of the antiarrhythmic drug procainamide on the toxicity and antitumor activity of cis-diamminedichloroplatinum(II). Toxicol Appl Pharmacol 140(2):370–377CrossRefPubMed
16.
Zurück zum Zitat Viale M, Vannozzi MO, Pastrone I, Mariggio MA, Zicca A, Cadoni A, Cafaggi S, Tolino G, Lunardi G, Civalleri D et al (2000) Reduction of cisplatin nephrotoxicity by procainamide: does the formation of a cisplatin-procainamide complex play a role? J Pharmacol Exp Ther 293(3):829–836PubMed Viale M, Vannozzi MO, Pastrone I, Mariggio MA, Zicca A, Cadoni A, Cafaggi S, Tolino G, Lunardi G, Civalleri D et al (2000) Reduction of cisplatin nephrotoxicity by procainamide: does the formation of a cisplatin-procainamide complex play a role? J Pharmacol Exp Ther 293(3):829–836PubMed
17.
Zurück zum Zitat Miller RP, Tadagavadi RK, Ramesh G, Reeves WB (2010) Mechanisms of Cisplatin nephrotoxicity. Toxins (Basel) 2(11):2490–2518CrossRef Miller RP, Tadagavadi RK, Ramesh G, Reeves WB (2010) Mechanisms of Cisplatin nephrotoxicity. Toxins (Basel) 2(11):2490–2518CrossRef
18.
Zurück zum Zitat Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4(4):307–320CrossRefPubMed Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4(4):307–320CrossRefPubMed
19.
Zurück zum Zitat Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99(9):2467–2498CrossRefPubMed Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99(9):2467–2498CrossRefPubMed
20.
Zurück zum Zitat Cullen KJ, Yang Z, Schumaker L, Guo Z (2007) Mitochondria as a critical target of the chemotheraputic agent cisplatin in head and neck cancer. J Bioenerg Biomembr 39(1):43–50CrossRefPubMed Cullen KJ, Yang Z, Schumaker L, Guo Z (2007) Mitochondria as a critical target of the chemotheraputic agent cisplatin in head and neck cancer. J Bioenerg Biomembr 39(1):43–50CrossRefPubMed
21.
Zurück zum Zitat Mandic A, Hansson J, Linder S, Shoshan MC (2003) Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J Biol Chem 278(11):9100–9106CrossRefPubMed Mandic A, Hansson J, Linder S, Shoshan MC (2003) Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J Biol Chem 278(11):9100–9106CrossRefPubMed
22.
Zurück zum Zitat Hirama M, Isonishi S, Yasuda M, Ishikawa H (2006) Characterization of mitochondria in cisplatin-resistant human ovarian carcinoma cells. Oncol Rep 16(5):997–1002PubMed Hirama M, Isonishi S, Yasuda M, Ishikawa H (2006) Characterization of mitochondria in cisplatin-resistant human ovarian carcinoma cells. Oncol Rep 16(5):997–1002PubMed
23.
Zurück zum Zitat Isnard-Bagnis C, Moulin B, Launay-Vacher V, Izzedine H, Tostivint I, Deray G (2005) [Anticancer drug-induced nephrotoxicity]. Nephrol Ther 1(2):101–114CrossRefPubMed Isnard-Bagnis C, Moulin B, Launay-Vacher V, Izzedine H, Tostivint I, Deray G (2005) [Anticancer drug-induced nephrotoxicity]. Nephrol Ther 1(2):101–114CrossRefPubMed
24.
Zurück zum Zitat Portilla D, Dai G, McClure T, Bates L, Kurten R, Megyesi J, Price P, Li S (2002) Alterations of PPARalpha and its coactivator PGC-1 in cisplatin-induced acute renal failure. Kidney Int 62(4):1208–1218CrossRefPubMed Portilla D, Dai G, McClure T, Bates L, Kurten R, Megyesi J, Price P, Li S (2002) Alterations of PPARalpha and its coactivator PGC-1 in cisplatin-induced acute renal failure. Kidney Int 62(4):1208–1218CrossRefPubMed
25.
Zurück zum Zitat Li S, Wu P, Yarlagadda P, Vadjunec NM, Proia AD, Harris RA, Portilla D (2004) PPAR alpha ligand protects during cisplatin-induced acute renal failure by preventing inhibition of renal FAO and PDC activity. Am J Physiol Renal Physiol 286(3):F572-580. Li S, Wu P, Yarlagadda P, Vadjunec NM, Proia AD, Harris RA, Portilla D (2004) PPAR alpha ligand protects during cisplatin-induced acute renal failure by preventing inhibition of renal FAO and PDC activity. Am J Physiol Renal Physiol 286(3):F572-580.
26.
Zurück zum Zitat Qian W, Nishikawa M, Haque AM, Hirose M, Mashimo M, Sato E, Inoue M (2005) Mitochondrial density determines the cellular sensitivity to cisplatin-induced cell death. Am J Physiol Cell Physiol 289(6):C1466–C1475CrossRefPubMed Qian W, Nishikawa M, Haque AM, Hirose M, Mashimo M, Sato E, Inoue M (2005) Mitochondrial density determines the cellular sensitivity to cisplatin-induced cell death. Am J Physiol Cell Physiol 289(6):C1466–C1475CrossRefPubMed
27.
Zurück zum Zitat Periyasamy-Thandavan S, Jiang M, Wei Q, Smith R, Yin XM, Dong Z (2008) Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int 74(5):631–640CrossRefPubMed Periyasamy-Thandavan S, Jiang M, Wei Q, Smith R, Yin XM, Dong Z (2008) Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int 74(5):631–640CrossRefPubMed
28.
Zurück zum Zitat Fraser M, Bai T, Tsang BK (2008) Akt promotes cisplatin resistance in human ovarian cancer cells through inhibition of p53 phosphorylation and nuclear function. Int J Cancer 122(3):534–546CrossRefPubMed Fraser M, Bai T, Tsang BK (2008) Akt promotes cisplatin resistance in human ovarian cancer cells through inhibition of p53 phosphorylation and nuclear function. Int J Cancer 122(3):534–546CrossRefPubMed
29.
Zurück zum Zitat Chirino YI, Pedraza-Chaverri J (2009) Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol 61(3):223–242CrossRefPubMed Chirino YI, Pedraza-Chaverri J (2009) Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol 61(3):223–242CrossRefPubMed
30.
Zurück zum Zitat Ramesh G, Reeves WB (2005) p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice. Am J Physiol Renal Physiol 289(1):F166–174CrossRefPubMed Ramesh G, Reeves WB (2005) p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice. Am J Physiol Renal Physiol 289(1):F166–174CrossRefPubMed
31.
Zurück zum Zitat Jiang M, Wei Q, Pabla N, Dong G, Wang CY, Yang T, Smith SB, Dong Z (2007) Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem Pharmacol 73(9):1499–1510CrossRefPubMedPubMedCentral Jiang M, Wei Q, Pabla N, Dong G, Wang CY, Yang T, Smith SB, Dong Z (2007) Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem Pharmacol 73(9):1499–1510CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Weijl NI, Elsendoorn TJ, Lentjes EG, Hopman GD, Wipkink-Bakker A, Zwinderman AH, Cleton FJ, Osanto S (2004) Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy: a randomised, double-blind, placebo-controlled study. Eur J Cancer 40(11):1713–1723CrossRefPubMed Weijl NI, Elsendoorn TJ, Lentjes EG, Hopman GD, Wipkink-Bakker A, Zwinderman AH, Cleton FJ, Osanto S (2004) Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy: a randomised, double-blind, placebo-controlled study. Eur J Cancer 40(11):1713–1723CrossRefPubMed
33.
Zurück zum Zitat Solanki MH, Chatterjee PK, Xue X, Gupta M, Rosales I, Yeboah MM, Kohn N, Metz CN: Magnesium protects against cisplatin-induced acute kidney injury without compromising cisplatin-mediated killing of an ovarian tumor xenograft in mice. Am J Physiol Renal Physiol 2015, 309(1):F35–47CrossRefPubMed Solanki MH, Chatterjee PK, Xue X, Gupta M, Rosales I, Yeboah MM, Kohn N, Metz CN: Magnesium protects against cisplatin-induced acute kidney injury without compromising cisplatin-mediated killing of an ovarian tumor xenograft in mice. Am J Physiol Renal Physiol 2015, 309(1):F35–47CrossRefPubMed
34.
Zurück zum Zitat Gluba A, Banach M, Hannam S, Mikhailidis DP, Sakowicz A, Rysz J (2010) The role of Toll-like receptors in renal diseases. Nat Rev Nephrol 6(4):224–235CrossRefPubMed Gluba A, Banach M, Hannam S, Mikhailidis DP, Sakowicz A, Rysz J (2010) The role of Toll-like receptors in renal diseases. Nat Rev Nephrol 6(4):224–235CrossRefPubMed
36.
Zurück zum Zitat Zhang B, Ramesh G, Uematsu S, Akira S, Reeves WB (2008) TLR4 signaling mediates inflammation and tissue injury in nephrotoxicity. J Am Soc Nephrol 19(5):923–932CrossRefPubMedPubMedCentral Zhang B, Ramesh G, Uematsu S, Akira S, Reeves WB (2008) TLR4 signaling mediates inflammation and tissue injury in nephrotoxicity. J Am Soc Nephrol 19(5):923–932CrossRefPubMedPubMedCentral
37.
38.
Zurück zum Zitat Ramesh G, Reeves WB (2004) Salicylate reduces cisplatin nephrotoxicity by inhibition of tumor necrosis factor-alpha. Kidney Int 65(2):490–499CrossRefPubMed Ramesh G, Reeves WB (2004) Salicylate reduces cisplatin nephrotoxicity by inhibition of tumor necrosis factor-alpha. Kidney Int 65(2):490–499CrossRefPubMed
39.
Zurück zum Zitat Kang KP, Kim DH, Jung YJ, Lee AS, Lee S, Lee SY, Jang KY, Sung MJ, Park SK, Kim W (2009) Alpha-lipoic acid attenuates cisplatin-induced acute kidney injury in mice by suppressing renal inflammation. Nephrol Dial Transplant 24(10):3012–3020CrossRefPubMed Kang KP, Kim DH, Jung YJ, Lee AS, Lee S, Lee SY, Jang KY, Sung MJ, Park SK, Kim W (2009) Alpha-lipoic acid attenuates cisplatin-induced acute kidney injury in mice by suppressing renal inflammation. Nephrol Dial Transplant 24(10):3012–3020CrossRefPubMed
40.
Zurück zum Zitat Ramesh G, Reeves WB (2002) TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Investig 110(6):835–842CrossRefPubMedPubMedCentral Ramesh G, Reeves WB (2002) TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Investig 110(6):835–842CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci USA 99(22):14298–14302CrossRefPubMedPubMedCentral Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci USA 99(22):14298–14302CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Pabla N, Murphy RF, Liu K, Dong Z (2009) The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am J Physiol Renal Physiol 296(3):F505–511 Pabla N, Murphy RF, Liu K, Dong Z (2009) The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am J Physiol Renal Physiol 296(3):F505–511
43.
Zurück zum Zitat Hall MD, Okabe M, Shen DW, Liang XJ, Gottesman MM (2008) The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy. Annu Rev Pharmacol Toxicol 48:495–535CrossRefPubMed Hall MD, Okabe M, Shen DW, Liang XJ, Gottesman MM (2008) The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy. Annu Rev Pharmacol Toxicol 48:495–535CrossRefPubMed
44.
Zurück zum Zitat Ishida S, McCormick F, Smith-McCune K, Hanahan D (2010) Enhancing tumor-specific uptake of the anticancer drug cisplatin with a copper chelator. Cancer Cell 17(6):574–583CrossRefPubMedPubMedCentral Ishida S, McCormick F, Smith-McCune K, Hanahan D (2010) Enhancing tumor-specific uptake of the anticancer drug cisplatin with a copper chelator. Cancer Cell 17(6):574–583CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Jacobs C, Coleman CN, Rich L, Hirst K, Weiner MW (1984) Inhibition of cis-diamminedichloroplatinum secretion by the human kidney with probenecid. Cancer Res 44(8):3632–3635PubMed Jacobs C, Coleman CN, Rich L, Hirst K, Weiner MW (1984) Inhibition of cis-diamminedichloroplatinum secretion by the human kidney with probenecid. Cancer Res 44(8):3632–3635PubMed
46.
Zurück zum Zitat Klein J, Bentur Y, Cheung D, Moselhy G, Koren G (1991) Renal handling of cisplatin: interactions with organic anions and cations in the dog. Clin Investig Med 14(5):388–394 Klein J, Bentur Y, Cheung D, Moselhy G, Koren G (1991) Renal handling of cisplatin: interactions with organic anions and cations in the dog. Clin Investig Med 14(5):388–394
47.
Zurück zum Zitat Jacobs C, Kaubisch S, Halsey J, Lum BL, Gosland M, Coleman CN, Sikic BI (1991) The use of probenecid as a chemoprotector against cisplatin nephrotoxicity. Cancer 67(6):1518–1524CrossRefPubMed Jacobs C, Kaubisch S, Halsey J, Lum BL, Gosland M, Coleman CN, Sikic BI (1991) The use of probenecid as a chemoprotector against cisplatin nephrotoxicity. Cancer 67(6):1518–1524CrossRefPubMed
48.
Zurück zum Zitat Koepsell H (1998) Organic cation transporters in intestine, kidney, liver, and brain. Annu Rev Physiol 60:243–266CrossRefPubMed Koepsell H (1998) Organic cation transporters in intestine, kidney, liver, and brain. Annu Rev Physiol 60:243–266CrossRefPubMed
49.
Zurück zum Zitat Koepsell H, Schmitt BM, Gorboulev V (2003) Organic cation transporters. Rev Physiol Biochem Pharmacol 150:36–90CrossRefPubMed Koepsell H, Schmitt BM, Gorboulev V (2003) Organic cation transporters. Rev Physiol Biochem Pharmacol 150:36–90CrossRefPubMed
50.
Zurück zum Zitat Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A (2009) Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther 86(4):396–402CrossRefPubMedPubMedCentral Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A (2009) Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther 86(4):396–402CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, Pavenstadt H, Lanvers-Kaminsky C, am Zehnhoff-Dinnesen A, Schinkel AH et al (2010) Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol 176(3):1169–1180CrossRefPubMedPubMedCentral Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, Pavenstadt H, Lanvers-Kaminsky C, am Zehnhoff-Dinnesen A, Schinkel AH et al (2010) Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol 176(3):1169–1180CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Ciarimboli G, Ludwig T, Lang D, Pavenstadt H, Koepsell H, Piechota HJ, Haier J, Jaehde U, Zisowsky J, Schlatter E (2005) Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol 167(6):1477–1484CrossRefPubMedPubMedCentral Ciarimboli G, Ludwig T, Lang D, Pavenstadt H, Koepsell H, Piechota HJ, Haier J, Jaehde U, Zisowsky J, Schlatter E (2005) Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol 167(6):1477–1484CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Yonezawa A, Inui K (2011) Organic cation transporter OCT/SLC22A and H(+)/organic cation antiporter MATE/SLC47A are key molecules for nephrotoxicity of platinum agents. Biochem Pharmacol 81(5):563–568CrossRefPubMed Yonezawa A, Inui K (2011) Organic cation transporter OCT/SLC22A and H(+)/organic cation antiporter MATE/SLC47A are key molecules for nephrotoxicity of platinum agents. Biochem Pharmacol 81(5):563–568CrossRefPubMed
54.
Zurück zum Zitat Urakami Y, Akazawa M, Saito H, Okuda M, Inui K (2002) cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J Am Soc Nephrol 13(7):1703–1710CrossRefPubMed Urakami Y, Akazawa M, Saito H, Okuda M, Inui K (2002) cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J Am Soc Nephrol 13(7):1703–1710CrossRefPubMed
55.
Zurück zum Zitat Sleijfer DT, Offerman JJ, Mulder NH, Verweij M, van der Hem GK, Schraffordt Koops HS, Meijer S (1987) The protective potential of the combination of verapamil and cimetidine on cisplatin-induced nephrotoxicity in man. Cancer 60(11):2823–2828CrossRefPubMed Sleijfer DT, Offerman JJ, Mulder NH, Verweij M, van der Hem GK, Schraffordt Koops HS, Meijer S (1987) The protective potential of the combination of verapamil and cimetidine on cisplatin-induced nephrotoxicity in man. Cancer 60(11):2823–2828CrossRefPubMed
56.
Zurück zum Zitat Goldstein RS, Mayor GH (1983) Minireview. The nephrotoxicity of cisplatin. Life Sci 32(7):685–690CrossRefPubMed Goldstein RS, Mayor GH (1983) Minireview. The nephrotoxicity of cisplatin. Life Sci 32(7):685–690CrossRefPubMed
57.
Zurück zum Zitat Hartmann JT, Kollmannsberger C, Kanz L, Bokemeyer C (1999) Platinum organ toxicity and possible prevention in patients with testicular cancer. Int J Cancer 83(6):866–869CrossRefPubMed Hartmann JT, Kollmannsberger C, Kanz L, Bokemeyer C (1999) Platinum organ toxicity and possible prevention in patients with testicular cancer. Int J Cancer 83(6):866–869CrossRefPubMed
58.
59.
Zurück zum Zitat Maxwell MH, Kleeman CR, Narins RG (1994) Maxwell & Kleeman’s clinical disorders of fluid and electrolyte metabolism, 5th edn. McGraw-Hill, Health Professions Division, New York Maxwell MH, Kleeman CR, Narins RG (1994) Maxwell & Kleeman’s clinical disorders of fluid and electrolyte metabolism, 5th edn. McGraw-Hill, Health Professions Division, New York
60.
Zurück zum Zitat Schilsky RL, Anderson T (1979) Hypomagnesemia and renal magnesium wasting in patients receiving cisplatin. Ann Intern Med 90(6):929–931CrossRefPubMed Schilsky RL, Anderson T (1979) Hypomagnesemia and renal magnesium wasting in patients receiving cisplatin. Ann Intern Med 90(6):929–931CrossRefPubMed
61.
Zurück zum Zitat Sutton RA, Walker VR, Halabe A, Swenerton K, Coppin CM (1991) Chronic hypomagnesemia caused by cisplatin: effect of calcitriol. J Lab Clin Med 117(1):40–43PubMed Sutton RA, Walker VR, Halabe A, Swenerton K, Coppin CM (1991) Chronic hypomagnesemia caused by cisplatin: effect of calcitriol. J Lab Clin Med 117(1):40–43PubMed
62.
Zurück zum Zitat Goldstein RS, Mayor GH, Rosenbaum RW, Hook JB, Santiago JV, Bond JT (1982) Glucose intolerance following cis-platinum treatment in rats. Toxicology 24(3–4):273–280CrossRefPubMed Goldstein RS, Mayor GH, Rosenbaum RW, Hook JB, Santiago JV, Bond JT (1982) Glucose intolerance following cis-platinum treatment in rats. Toxicology 24(3–4):273–280CrossRefPubMed
63.
Zurück zum Zitat Kim YK, Byun HS, Kim YH, Woo JS, Lee SH (1995) Effect of cisplatin on renal function in rabbits: mechanism of reduced glucose reabsorption. Toxicol Appl Pharmacol 130(1):19–26CrossRefPubMed Kim YK, Byun HS, Kim YH, Woo JS, Lee SH (1995) Effect of cisplatin on renal function in rabbits: mechanism of reduced glucose reabsorption. Toxicol Appl Pharmacol 130(1):19–26CrossRefPubMed
64.
Zurück zum Zitat Wangila GW, Nagothu KK, Steward R, 3rd, Bhatt R, Iyere PA, Willingham WM, Sorenson JR, Shah SV, Portilla D (2006) Prevention of cisplatin-induced kidney epithelial cell apoptosis with a Cu superoxide dismutase-mimetic [copper2II(3,5-ditertiarybutylsalicylate)4(ethanol)4]. Toxicol In Vitro 20(8):1300–1312CrossRefPubMed Wangila GW, Nagothu KK, Steward R, 3rd, Bhatt R, Iyere PA, Willingham WM, Sorenson JR, Shah SV, Portilla D (2006) Prevention of cisplatin-induced kidney epithelial cell apoptosis with a Cu superoxide dismutase-mimetic [copper2II(3,5-ditertiarybutylsalicylate)4(ethanol)4]. Toxicol In Vitro 20(8):1300–1312CrossRefPubMed
65.
Zurück zum Zitat Swainson CP, Colls BM, Fitzharris BM (1985) Cis-platinum and distal renal tubule toxicity. NZ Med J 98(779):375–378 Swainson CP, Colls BM, Fitzharris BM (1985) Cis-platinum and distal renal tubule toxicity. NZ Med J 98(779):375–378
66.
Zurück zum Zitat Safirstein R, Miller P, Dikman S, Lyman N, Shapiro C (1981) Cisplatin nephrotoxicity in rats: defect in papillary hypertonicity. Am J Physiol 241(2):F175–185PubMed Safirstein R, Miller P, Dikman S, Lyman N, Shapiro C (1981) Cisplatin nephrotoxicity in rats: defect in papillary hypertonicity. Am J Physiol 241(2):F175–185PubMed
67.
Zurück zum Zitat Seguro AC, Shimizu MH, Kudo LH, dos Santos Rocha A (1989) Renal concentration defect induced by cisplatin. The role of thick ascending limb and papillary collecting duct. Am J Nephrol 9(1):59–65CrossRefPubMed Seguro AC, Shimizu MH, Kudo LH, dos Santos Rocha A (1989) Renal concentration defect induced by cisplatin. The role of thick ascending limb and papillary collecting duct. Am J Nephrol 9(1):59–65CrossRefPubMed
68.
Zurück zum Zitat Jackson AM, Rose BD, Graff LG, Jacobs JB, Schwartz JH, Strauss GM, Yang JP, Rudnick MR, Elfenbein IB, Narins RG (1984) Thrombotic microangiopathy and renal failure associated with antineoplastic chemotherapy. Ann Intern Med 101(1):41–44CrossRefPubMed Jackson AM, Rose BD, Graff LG, Jacobs JB, Schwartz JH, Strauss GM, Yang JP, Rudnick MR, Elfenbein IB, Narins RG (1984) Thrombotic microangiopathy and renal failure associated with antineoplastic chemotherapy. Ann Intern Med 101(1):41–44CrossRefPubMed
69.
Zurück zum Zitat Lam M, Adelstein DJ (1986) Hypomagnesemia and renal magnesium wasting in patients treated with cisplatin. Am J Kidney Dis 8(3):164–169CrossRefPubMed Lam M, Adelstein DJ (1986) Hypomagnesemia and renal magnesium wasting in patients treated with cisplatin. Am J Kidney Dis 8(3):164–169CrossRefPubMed
70.
Zurück zum Zitat Lajer H, Kristensen M, Hansen HH, Nielsen S, Frokiaer J, Ostergaard LF, Christensen S, Daugaard G, Jonassen TE (2005) Magnesium depletion enhances cisplatin-induced nephrotoxicity. Cancer Chemother Pharmacol 56(5):535–542CrossRefPubMed Lajer H, Kristensen M, Hansen HH, Nielsen S, Frokiaer J, Ostergaard LF, Christensen S, Daugaard G, Jonassen TE (2005) Magnesium depletion enhances cisplatin-induced nephrotoxicity. Cancer Chemother Pharmacol 56(5):535–542CrossRefPubMed
71.
Zurück zum Zitat Portilla D, Li S, Nagothu KK, Megyesi J, Kaissling B, Schnackenberg L, Safirstein RL, Beger RD (2006) Metabolomic study of cisplatin-induced nephrotoxicity. Kidney Int 69(12):2194–2204CrossRefPubMed Portilla D, Li S, Nagothu KK, Megyesi J, Kaissling B, Schnackenberg L, Safirstein RL, Beger RD (2006) Metabolomic study of cisplatin-induced nephrotoxicity. Kidney Int 69(12):2194–2204CrossRefPubMed
72.
Zurück zum Zitat Kim SW, Lee JU, Nah MY, Kang DG, Ahn KY, Lee HS, Choi KC (2001) Cisplatin decreases the abundance of aquaporin water channels in rat kidney. J Am Soc Nephrol 12(5):875–882PubMed Kim SW, Lee JU, Nah MY, Kang DG, Ahn KY, Lee HS, Choi KC (2001) Cisplatin decreases the abundance of aquaporin water channels in rat kidney. J Am Soc Nephrol 12(5):875–882PubMed
73.
Zurück zum Zitat Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334(2):115–124CrossRefPubMed Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334(2):115–124CrossRefPubMed
74.
Zurück zum Zitat Goldstein RS, Mayor GH, Gingerich RL, Hook JB, Rosenbaum RW, Bond JT (1983) The effects of cisplatin and other divalent platinum compounds on glucose metabolism and pancreatic endocrine function. Toxicol Appl Pharmacol 69(3):432–441CrossRefPubMed Goldstein RS, Mayor GH, Gingerich RL, Hook JB, Rosenbaum RW, Bond JT (1983) The effects of cisplatin and other divalent platinum compounds on glucose metabolism and pancreatic endocrine function. Toxicol Appl Pharmacol 69(3):432–441CrossRefPubMed
75.
Zurück zum Zitat Stewart DJ, Dulberg CS, Mikhael NZ, Redmond MD, Montpetit VA, Goel R (1997) Association of cisplatin nephrotoxicity with patient characteristics and cisplatin administration methods. Cancer Chemother Pharmacol 40(4):293–308CrossRefPubMed Stewart DJ, Dulberg CS, Mikhael NZ, Redmond MD, Montpetit VA, Goel R (1997) Association of cisplatin nephrotoxicity with patient characteristics and cisplatin administration methods. Cancer Chemother Pharmacol 40(4):293–308CrossRefPubMed
76.
Zurück zum Zitat Reece PA, Stafford I, Russell J, Khan M, Gill PG (1987) Creatinine clearance as a predictor of ultrafilterable platinum disposition in cancer patients treated with cisplatin: relationship between peak ultrafilterable platinum plasma levels and nephrotoxicity. J Clin Oncol 5(2):304–309CrossRefPubMed Reece PA, Stafford I, Russell J, Khan M, Gill PG (1987) Creatinine clearance as a predictor of ultrafilterable platinum disposition in cancer patients treated with cisplatin: relationship between peak ultrafilterable platinum plasma levels and nephrotoxicity. J Clin Oncol 5(2):304–309CrossRefPubMed
77.
Zurück zum Zitat Skinner R, Pearson AD, English MW, Price L, Wyllie RA, Coulthard MG, Craft AW (1998) Cisplatin dose rate as a risk factor for nephrotoxicity in children. Br J Cancer 77(10):1677–1682CrossRefPubMedPubMedCentral Skinner R, Pearson AD, English MW, Price L, Wyllie RA, Coulthard MG, Craft AW (1998) Cisplatin dose rate as a risk factor for nephrotoxicity in children. Br J Cancer 77(10):1677–1682CrossRefPubMedPubMedCentral
78.
Zurück zum Zitat Caglar K, Kinalp C, Arpaci F, Turan M, Saglam K, Ozturk B, Komurcu S, Yavuz I, Yenicesu M, Ozet A et al (2002) Cumulative prior dose of cisplatin as a cause of the nephrotoxicity of high-dose chemotherapy followed by autologous stem-cell transplantation. Nephrol Dial Transplant 17(11):1931–1935CrossRefPubMed Caglar K, Kinalp C, Arpaci F, Turan M, Saglam K, Ozturk B, Komurcu S, Yavuz I, Yenicesu M, Ozet A et al (2002) Cumulative prior dose of cisplatin as a cause of the nephrotoxicity of high-dose chemotherapy followed by autologous stem-cell transplantation. Nephrol Dial Transplant 17(11):1931–1935CrossRefPubMed
79.
Zurück zum Zitat Tanaka H, Ishikawa E, Teshima S, Shimizu E (1986) Histopathological study of human cisplatin nephropathy. Toxicol Pathol 14(2):247–257CrossRefPubMed Tanaka H, Ishikawa E, Teshima S, Shimizu E (1986) Histopathological study of human cisplatin nephropathy. Toxicol Pathol 14(2):247–257CrossRefPubMed
80.
Zurück zum Zitat Vickers AE, Rose K, Fisher R, Saulnier M, Sahota P, Bentley P (2004) Kidney slices of human and rat to characterize cisplatin-induced injury on cellular pathways and morphology. Toxicol Pathol 32(5):577–590CrossRefPubMed Vickers AE, Rose K, Fisher R, Saulnier M, Sahota P, Bentley P (2004) Kidney slices of human and rat to characterize cisplatin-induced injury on cellular pathways and morphology. Toxicol Pathol 32(5):577–590CrossRefPubMed
81.
Zurück zum Zitat Cornelison TL, Reed E (1993) Nephrotoxicity and hydration management for cisplatin, carboplatin, and ormaplatin. Gynecol Oncol 50(2):147–158CrossRefPubMed Cornelison TL, Reed E (1993) Nephrotoxicity and hydration management for cisplatin, carboplatin, and ormaplatin. Gynecol Oncol 50(2):147–158CrossRefPubMed
82.
Zurück zum Zitat Dekkers IA, Blijdorp K, Cransberg K, Pluijm SM, Pieters R, Neggers SJ, van den Heuvel-Eibrink MM (2013) Long-term nephrotoxicity in adult survivors of childhood cancer. Clin J Am Soc Nephrol CJASN 8(6):922–929CrossRefPubMed Dekkers IA, Blijdorp K, Cransberg K, Pluijm SM, Pieters R, Neggers SJ, van den Heuvel-Eibrink MM (2013) Long-term nephrotoxicity in adult survivors of childhood cancer. Clin J Am Soc Nephrol CJASN 8(6):922–929CrossRefPubMed
83.
Zurück zum Zitat Knijnenburg SL, Mulder RL, Schouten-Van Meeteren AY, Bokenkamp A, Blufpand H, van Dulmen-den Broeder E, Veening MA, Kremer LC, Jaspers MW: Early and late renal adverse effects after potentially nephrotoxic treatment for childhood cancer. Cochrane Database Syst Rev 2013(10):CD008944 Knijnenburg SL, Mulder RL, Schouten-Van Meeteren AY, Bokenkamp A, Blufpand H, van Dulmen-den Broeder E, Veening MA, Kremer LC, Jaspers MW: Early and late renal adverse effects after potentially nephrotoxic treatment for childhood cancer. Cochrane Database Syst Rev 2013(10):CD008944
84.
Zurück zum Zitat Li S, Gokden N, Okusa MD, Bhatt R, Portilla D: Anti-inflammatory effect of fibrate protects from cisplatin-induced ARF. Am J Physiol Renal Physiol 2005, 289(2):F469–480CrossRefPubMed Li S, Gokden N, Okusa MD, Bhatt R, Portilla D: Anti-inflammatory effect of fibrate protects from cisplatin-induced ARF. Am J Physiol Renal Physiol 2005, 289(2):F469–480CrossRefPubMed
85.
Zurück zum Zitat Deng J, Kohda Y, Chiao H, Wang Y, Hu X, Hewitt SM, Miyaji T, McLeroy P, Nibhanupudy B, Li S et al (2001) Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int 60(6):2118–2128CrossRefPubMed Deng J, Kohda Y, Chiao H, Wang Y, Hu X, Hewitt SM, Miyaji T, McLeroy P, Nibhanupudy B, Li S et al (2001) Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int 60(6):2118–2128CrossRefPubMed
86.
Zurück zum Zitat Rani N, Bharti S, Tomar A, Dinda AK, Arya DS, Bhatia J (2016) Inhibition of PARP activation by enalapril is crucial for its renoprotective effect in cisplatin-induced nephrotoxicity in rats. Free Radic Res 50(11):1226–1236CrossRefPubMed Rani N, Bharti S, Tomar A, Dinda AK, Arya DS, Bhatia J (2016) Inhibition of PARP activation by enalapril is crucial for its renoprotective effect in cisplatin-induced nephrotoxicity in rats. Free Radic Res 50(11):1226–1236CrossRefPubMed
87.
Zurück zum Zitat Price PM, Safirstein RL, Megyesi J: Protection of renal cells from cisplatin toxicity by cell cycle inhibitors. Am J Physiol Renal Physiol 2004, 286(2):F378–384CrossRefPubMed Price PM, Safirstein RL, Megyesi J: Protection of renal cells from cisplatin toxicity by cell cycle inhibitors. Am J Physiol Renal Physiol 2004, 286(2):F378–384CrossRefPubMed
Metadaten
Titel
Cisplatin nephrotoxicity: a review of the literature
verfasst von
Sandhya Manohar
Nelson Leung
Publikationsdatum
01.02.2018
Verlag
Springer International Publishing
Erschienen in
Journal of Nephrology / Ausgabe 1/2018
Print ISSN: 1121-8428
Elektronische ISSN: 1724-6059
DOI
https://doi.org/10.1007/s40620-017-0392-z

Weitere Artikel der Ausgabe 1/2018

Journal of Nephrology 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.