Skip to main content
Log in

Kisspeptin Influence on Polycystic Ovary Syndrome—a Mini Review

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) affects 6% to 20% of reproductive age women and is the most frequent cause of anovulatory infertility. Its physiopathology may result in part from hypothalamic alterations in the pulsatile secretion of gonadotropin-releasing hormone (GnRH). The neuropeptide kisspeptin participates in the mechanism through stimulation of the hormone’s production. The purpose of this study was to review the articles which compared kisspeptin levels in women with PCOS with those of controls. A systematic review of observational studies was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) recommendations. The selected studies encompassed a population of patients with PCOS and controls, whose serum kisspeptin levels were evaluated. The studies were retrieved from the Medline, Cochrane, and Embase databases, and four of them were chosen for the review. In most studies, the serum kisspeptin levels were higher in women with PCOS than in controls notwithstanding the BMI. One of the articles showed that circulating plasma levels of kisspeptin were significantly higher in women with PCOS whose BMI was lower than 25 than in obese and overweight women. Our data suggest a higher concentration of serum kisspeptin in women with PCOS irrespective of their BMI. Further experimental and clinical studies are needed to ascertain the role of kisspeptin in PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Azziz R, Carmina E, Chen Z, Dunaif A, Laven JS, Legro RS, et al. Polycystic ovary syndrome. Nat Rev Dis Primers. 2016;2:16057. https://doi.org/10.1038/nrdp.2016.57.

    Article  Google Scholar 

  2. Tng EL. Kisspeptin signalling and its roles in humans. Singapore Med J. 2015 Dec;56(12):649–56. doi: https://doi.org/10.11622/smedj.2015183. Review.

    Article  Google Scholar 

  3. Silveira LG, Noel SD, Silveira-Neto AP, Abreu AP, Brito VN, Santos MG, et al. Mutations of the KISS1 gene in disorders of puberty. J Clin Endocrinol Metab. 2010;95(5):2276–80. https://doi.org/10.1210/jc.2009-2421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, et al. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst. 1996;88(23):1731–7.

    Article  CAS  Google Scholar 

  5. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature. 2001;411(6837):613–7.

    Article  CAS  Google Scholar 

  6. Navarro VM, Castellano JM, García-Galiano D, Tena-Sempere M. Neuroendocrine factors in the initiation of puberty: the emergent role of kisspeptin. Rev Endocr Metab Disord. 2007;8(1):11–20.

    Article  CAS  Google Scholar 

  7. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A. 2003;100(19):10972–6.

    Article  Google Scholar 

  8. Roseweir AK, Kauffman AS, Smith JT, Guerriero KA, Morgan K, Pielecka-Fortuna J, Pineda R, Gottsch ML, Tena-Sempere M, Moenter SM, Terasawa E, Clarke IJ, Steiner RA, Millar RP. Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation.

  9. Terao Y, Kumano S, Takatsu Y, Hattori M, Nishimura A, Ohtaki T, et al. Expression of KiSS-1, a metastasis suppressor gene, in trophoblast giant cells of the rat placenta. Biochim Biophys Acta. 2004;1678(2–3):102–10.

    Article  CAS  Google Scholar 

  10. David Moher, Alessandro Liberati, Jennifer Tetzlaff, Douglas G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. Altman, The PRISMA Group.

  11. Santos CMC, Pimenta CAM, Nobre MRC. The PICO Strategy for the research question construction and evidence search. Rev Latino-am Enfermagem.. 2007 maio-junho; 15(3).

    Article  Google Scholar 

  12. Ozay O., Ozay A.C., Acar B., Cagliyan E., Seçil M., Küme T. Role of kisspeptin in polycystic ovary syndrome (PCOS). Gynecol Endocrinol 2016 (1–5).

  13. Gorkem U, Togrul C, Arslan E, Sargin Oruc A, Buyukkayaci DN. Is there a role for kisspeptin in pathogenesis of polycystic ovary syndrome? Gynecol Endocrinol. 2018;34(2):157–60.

    Article  CAS  Google Scholar 

  14. Yilmaz SA, Kerimoglu OS, Pekin AT, Incesu F, Dogan NU, Celik C, et al. Metastin levels in relation with hormonal and metabolic profile in patients with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2014;180:56–60.

    Article  CAS  Google Scholar 

  15. Jeon YE, Lee KE, Jung JA, Yim SY, Kim H, Seo SK, et al. Kisspeptin, leptin, and retinol-binding protein 4 in women with polycystic ovary syndrome. Gynecol Obstet Investig. 2013;75(4):268–74.

    Article  CAS  Google Scholar 

  16. Panidis D, Rousso D, Koliakos G, Kourtis A, Katsikis I, Farmakiotis D, et al. Plasma metastin levels are negatively correlated with insulin resistance and free androgens in women with polycystic ovary syndrome. Fertil Steril. 2006;85(6):1778–83.

    Article  CAS  Google Scholar 

  17. Lizneva D, Kirubakaran R, Mykhalchenko K, Suturina L, Chernukha G, Diamond MP, et al. Phenotypes and body mass in women with polycystic ovary syndrome identified in referral versus unselected populations: systematic review and meta-analysis. Fertil Steril. 2016;106(6):1510–20.

    Article  Google Scholar 

  18. Lopes IM, Maganhin CC, Oliveira-Filho RM, Simões RS, Simões MJ, Iwata MC, et al. Histomorphometric analysis and markers of endometrial receptivity embryonic implantation in women with polycystic ovary syndrome during the treatment with progesterone. Reprod Sci. 2014;21(7):930–8.

    Article  Google Scholar 

  19. Skorupskaite K, George JT, Veldhuis JD, Millar RP, Anderson RA. Interactions between neurokinin B and kisspeptin in mediating estrogen feedback in healthy women. J Clin Endocrinol Metab. 2016;101(12):4628–36.

    Article  CAS  Google Scholar 

  20. George JT, Kakkar R, Marshall J, Scott ML, Finkelman RD, Ho TW, et al. Neurokinin B receptor antagonism in women with polycystic ovary syndrome: a randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2016;101(11):4313–21.

    Article  CAS  Google Scholar 

  21. Crespo RP, Bachega TASS, Mendonça BB, Gomes LG. An update of genetic basis of PCOS pathogenesis. Arch Endocrinol Metab. 2018;62(3):352–61.

    Article  Google Scholar 

  22. Owens LA, Abbara A, Lerner A, O’floinn S, Christopoulos G, Khanjani S, et al. The direct and indirect effects of kisspeptin-54 on granulosa lutein cell function. Hum Reprod. 2018;33(2):292–302.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Maria Soares-Jr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, B.S., Baracat, M.C.P., dos Santos Simões, R. et al. Kisspeptin Influence on Polycystic Ovary Syndrome—a Mini Review. Reprod. Sci. 27, 455–460 (2020). https://doi.org/10.1007/s43032-019-00085-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-019-00085-6

Keywords

Navigation