[1] Measurement of absolute oxygen levels in cells and tissues using oxygen sensors and 2-nitroimidazole EF5

https://doi.org/10.1016/S0076-6879(02)52003-6Get rights and content

Abstract

Despite the enormous range and variety of chemical, biochemical, and biological effects of oxygen, accurate control and assessment of the “oxygen concentration” remain extremely difficult experimental tasks in all but the simplest of systems. The difficulty of such control and assessment increases greatly as the oxygen concentration decreases below physiological levels, often the range of greatest biological significance. This chapter discusses possible approaches to these difficult tasks using quantitative measurements of binding of a metabolic marker of hypoxia, the 2-nitroimidazole EF5 [2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetamide]. The accuracy, dynamic range, and specificity of the pO2 measurement capability of EF5 is discussed in the context of an accurate polarographic pO2 sensor used as a calibration source. Present results suggest that it is indeed possible to assess tissue PO2 at high accuracy and spatial resolution.

References (89)

  • J.E. Moulder et al.

    Int. J. Radiat. Oncol. Biol. Phys

    (1984)
  • K.A. Kennedy et al.

    Biochem. Pharm

    (1980)
  • J.M. Henk

    Int. J. Radiat. Oncol. Biol. Phys

    (1986)
  • J. Overgaard et al.

    Int. J. Radiat. Oncol. Biol. Phys

    (1989)
  • R.C. Urtasun et al.

    Int. J. Radiat. Oncol. Biol. Phys

    (1984)
  • D.M. Brizel et al.

    Int. J. Radiat. Oncol. Biol. Phys

    (1994)
  • P. Okunieff et al.

    Int. J. Radiat. Biol. Oncol. Phys

    (1993)
  • R. Rampling et al.

    Int. J. Radiat. Oncol. Biol. Phys

    (1994)
  • A.W. Fyles et al.

    Radiother. Oncol

    (1998)
  • M. Hockel et al.

    Radiother. Oncol

    (1993)
  • M. Nordsmark et al.

    Radiother. Oncol

    (1996)
  • R.A. Gatenby et al.

    Int. J. Radiat. Oncol. Biol. Phys

    (1988)
  • L.-W. Lo et al.

    Anal. Biochem

    (1996)
  • C.Y. Li et al.

    J. Nat. Cancer Inst

    (2000)
  • C.J. Koch et al.

    Arch. Biochem. Biophys

    (1991)
  • J.A. Raleigh et al.

    Biochem. Pharmacol

    (1990)
  • A.J. Franko et al.

    Int. J. Radiat. Oncol. Biol. Phys

    (1984)
  • L.M. Cobb et al.

    Int. J. Radiat. Oncol. Biol. Phys

    (1992)
  • D.J. Van Os-Corby et al.

    Biochem. Pharmacol

    (1987)
  • M.R. Woods et al.

    Int. J. Radiat. Oncol. Biol. Phys

    (1996)
  • M. Bergeron et al.

    Neuroscience

    (1999)
  • C.N. Coleman et al.

    Int. J. Radiat. Oncol. Mal. Phys

    (1989)
  • A.S. Kennedy et al.

    Int. J. Radiat. Oncol. Biol. Phys

    (1997)
  • M.I. Walton et al.

    Biochem. Pharmacol

    (1985)
  • J.D. Chapman et al.

    Radiother. Oncol

    (1998)
  • J.D. Chapman et al.

    Biological Bases and Clinical Implications of Tumor Radioresistance

  • G.E. Adams

    Cancer

    (1981)
  • J. Overgaard

    Radiother. Oncol

    (1992)
  • T.L. Phillips et al.

    Cancer

    (1981)
  • H.B. Stone et al.

    Radiat. Res

    (1993)
  • D.M. Brizel et al.

    Cancer Res

    (1996)
  • D.B. Cater et al.

    Acta Radiol

    (1942)
  • R.A. Gatenby et al.

    Radiology

    (1985)
  • E. Vaupel et al.

    Radiat. Res

    (1989)
  • E. Wendling et al.

    Adv. Exp. Med. Biol

    (1984)
  • T.G. Graeber et al.

    Nature

    (1996)
  • T.Y. Reynolds et al.

    Cancer Res

    (1990)
  • S.D. Young et al.
  • E.Y. Chen et al.

    Tetatology

    (1999)
  • R.I. Clyman et al.

    Pediatr Res

    (1999)
  • Adv. Exp. Med. Biol., published...
  • L.C.J. Clark

    Trans. Am. Soc. Artif. Int. Organs

    (1956)
  • C.J. Koch

    Polarographic Oxygen Sensor with Glass Seal

    (June 30, 1992)
  • Cited by (0)

    View full text