Cell
Volume 150, Issue 5, 31 August 2012, Pages 883-894
Journal home page for Cell

Article
Single-Stranded siRNAs Activate RNAi in Animals

https://doi.org/10.1016/j.cell.2012.08.014Get rights and content
Under an Elsevier user license
open archive

Summary

The therapeutic utility of siRNAs is limited by the requirement for complex formulations to deliver them to tissues. If potent single-stranded RNAs could be identified, they would provide a simpler path to pharmacological agents. Here, we describe single-stranded siRNAs (ss-siRNAs) that silence gene expression in animals absent lipid formulation. Effective ss-siRNAs were identified by iterative design by determining structure-activity relationships correlating chemically modified single strands and Argonaute 2 (AGO2) activities, potency in cells, nuclease stability, and pharmacokinetics. We find that the passenger strand is not necessary for potent gene silencing. The guide-strand activity requires AGO2, demonstrating action through the RNAi pathway. ss-siRNA action requires a 5′ phosphate to achieve activity in vivo, and we developed a metabolically stable 5′-(E)-vinylphosphonate (5′-VP) with conformation and sterioelectronic properties similar to the natural phosphate. Identification of potent ss-siRNAs offers an additional option for RNAi therapeutics and an alternate perspective on RNAi mechanism.

Highlights

► Chemically modified single-stranded siRNAs silence gene expression in animals ► ss-siRNAs require 5′ phosphate and association with AGO2 for gene silencing ► Passenger strand is dispensable for potent RNAi-mediated gene silencing ► Single-stranded siRNAs provide an alternate option for RNAi therapeutics

Cited by (0)