Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-29T15:03:56.339Z Has data issue: false hasContentIssue false

HapMap tag-SNP analysis confirms a role for COMT in schizophrenia risk and reveals a novel association

Published online by Cambridge University Press:  15 April 2020

J. Voisey
Affiliation:
Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
C.D. Swagell
Affiliation:
Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
I.P. Hughes
Affiliation:
Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
B.R. Lawford
Affiliation:
Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia Division of Mental Health, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
R.M. Young
Affiliation:
Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
C.P. Morris*
Affiliation:
Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
*
*Corresponding author. Tel.: +61 7 31386196; fax: +61 7 31386030. E-mail address: p.morris@qut.edu.au
Get access

Abstract

Catechol-O-methyl transferase (COMT) encodes an enzyme involved in the metabolism of dopamine and maps to a commonly deleted region that increases schizophrenia risk. A non-synonymous polymorphism (rs4680) in COMT has been previously found to be associated with schizophrenia and results in altered activity levels of COMT. Using a haplotype block-based gene-tagging approach we conducted an association study of seven COMT single nucleotide polymorphisms (SNPs) in 160 patients with a DSM-IV diagnosis of schizophrenia and 250 controls in an Australian population. Two polymorphisms including rs4680 and rs165774 were found to be significantly associated with schizophrenia. The rs4680 results in a Val/Met substitution but the strongest association was shown by the novel SNP, rs165774, which may still be functional even though it is located in intron five. Individuals with schizophrenia were more than twice as likely to carry the GG genotype compared to the AA genotype for both the rs165774 and rs4680 SNPs. This association was slightly improved when males were analysed separately possibly indicating a degree of sexual dimorphism. Our results confirm that COMT is a good candidate for schizophrenia risk, by replicating the association with rs4680 and identifying a novel SNP association.

Type
Original articles
Copyright
Copyright © Elsevier Masson SAS 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdolmaleky, H.M., Cheng, K.H., Faraone, S.V., Wilcox, M., Glatt, S.J., Gao, F.et al.Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet. 2006; 15: 31323145.CrossRefGoogle ScholarPubMed
Abramson, J.H.WINPEPI (PEPI-for-Windows): computer programs for epidemiologists. Epidemiol Perspect Innov. 2004; 1: 6.CrossRefGoogle ScholarPubMed
Axelrod, J., Tomchick, R.Enzymatic O-methylation of epinephrine and other catechols. J Biol Chem. 1958; 233: 702705.Google ScholarPubMed
Bassett, A.S., Chow, E.W.22q11 deletion syndrome: a genetic subtype of schizophrenia. Biol Psychiatry. 1999; 46: 882891.CrossRefGoogle ScholarPubMed
Bassett, A.S., Hodgkinson, K., Chow, E.W., Correia, S., Scutt, L.E., Weksberg, R.22q11 deletion syndrome in adults with schizophrenia. Am J Med Genet. 1998; 81: 328337.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Benjamini, Y., Hochberg, Y.Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B. 1995; 57: 289300.Google Scholar
Bray, N.J., Buckland, P.R., Williams, N.M., Williams, H.J., Norton, N., Owen, M.J.et al.A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. Am J Hum Genet. 2003; 73: 152161.CrossRefGoogle ScholarPubMed
Carter, K.W., McCaskie, P.A., Palmer, L.J.J.L.I.N.A java based linkage disequilibrium plotter. BMC Bioinformatics. 2006; 7: 60.CrossRefGoogle ScholarPubMed
Chen, J., Lipska, B.K., Halim, N., Ma, Q.D., Matsumoto, M., Melhem, S.et al.Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet. 2004; 75: 807821.CrossRefGoogle ScholarPubMed
de Chaldee, M., Laurent, C., Thibaut, F., Martinez, M., Samolyk, D., Petit, M.et al.Linkage disequilibrium on the COMT gene in French schizophrenics and controls. Am J Med Genet. 1999; 88: 452457.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Egan, M.F., Goldberg, T.E., Kolachana, B.S., Callicott, J.H., Mazzanti, C.M., Straub, R.E.et al.Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A. 2001; 98: 69176922.CrossRefGoogle ScholarPubMed
Frazer, K.A., Ballinger, D.G., Cox, D.R., Hinds, D.A., Stuve, L.L., Gibbs, R.A.et al.A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007; 449: 851861.Google ScholarPubMed
Funke, B., Malhotra, A.K., Finn, C.T., Plocik, A.M., Lake, S.L., Lencz, T.et al.COMT genetic variation confers risk for psychotic and affective disorders: a case control study. Behav Brain Funct. 2005; 1: 19.10.1186/1744-9081-1-19CrossRefGoogle ScholarPubMed
Glatt, S.J., Faraone, S.V., Tsuang, M.T.Association between a functional catechol O-methyltransferase gene polymorphism and schizophrenia: meta-analysis of case-control and family-based studies. Am J Psychiatry. 2003; 160: 469476.CrossRefGoogle ScholarPubMed
Goghari, V.M., Sponheim, S.R.Differential association of the COMT Val158Met polymorphism with clinical phenotypes in schizophrenia and bipolar disorder. Schizophr Res. 2008; 103: 186191.CrossRefGoogle ScholarPubMed
Gothelf, D., Frisch, A., Munitz, H., Rockah, R., Aviram, A., Mozes, T.et al.Velocardiofacial manifestations and microdeletions in schizophrenic inpatients. Am J Med Genet. 1997; 72: 455461.10.1002/(SICI)1096-8628(19971112)72:4<455::AID-AJMG16>3.0.CO;2-Q3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Graf, W.D., Unis, A.S., Yates, C.M., Sulzbacher, S., Dinulos, M.B., Jack, R.M.et al.Catecholamines in patients with 22q11.2 deletion syndrome and the low-activity COMT polymorphism. Neurology. 2001; 57: 410416.CrossRefGoogle ScholarPubMed
Grossman, M.H., Emanuel, B.S., Budarf, M.L.Chromosomal mapping of the human catechol-O-methyltransferase gene to 22q11.1----q11.2. Genomics. 1992; 12: 822825.CrossRefGoogle Scholar
Gupta, M., Chauhan, C., Bhatnagar, P., Gupta, S., Grover, S., Singh, P.K.et al.Genetic susceptibility to schizophrenia: role of dopaminergic pathway gene polymorphisms. Pharmacogenomics. 2009; 10: 277291.10.2217/14622416.10.2.277CrossRefGoogle ScholarPubMed
Hoenicka J, Garrido E, Martinez I, Ponce G, Aragues M, Rodriguez-Jimenez R, et al. Gender-specific COMT Val158Met polymorphism association in Spanish schizophrenic patients. Am J Med Genet B Neuropsychiatr Genet 2009.CrossRefGoogle Scholar
Hong, J.P., Lee, J.S., Chung, S., Jung, J., Yoo, H.K., Chang, S.M.et al.New functional single nucleotide polymorphism (Ala72Ser) in the COMT gene is associated with aggressive behavior in male schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 147B 2008 658660.10.1002/ajmg.b.30649CrossRefGoogle ScholarPubMed
Kremer, I., Pinto, M., Murad, I., Muhaheed, M., Bannoura, I., Muller, D.J.et al.Family-based and case-control study of catechol-O-methyltransferase in schizophrenia among Palestinian Arabs. Am J Med Genet B Neuropsychiatr Genet. 119B 2003 3539.CrossRefGoogle ScholarPubMed
Lachman, H.M., Morrow, B., Shprintzen, R., Veit, S., Parsia, S.S., Faedda, G.et al.Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardio-facial syndrome. Am J Med Genet. 1996; 67: 468472.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Lee, S.G., Joo, Y., Kim, B., Chung, S., Kim, H.L., Lee, I.et al.Association of Ala72Ser polymorphism with COMT enzyme activity and the risk of schizophrenia in Koreans. Hum Genet. 2005; 116: 319328.CrossRefGoogle ScholarPubMed
Li, T., Sham, P.C., Vallada, H., Xie, T., Tang, X., Murray, R.M.et al.Preferential transmission of the high activity allele of COMT in schizophrenia. Psychiatr Genet. 1996; 6: 131133.CrossRefGoogle Scholar
Meyer-Lindenberg, A., Nichols, T., Callicott, J.H., Ding, J., Kolachana, B., Buckholtz, J.et al.Impact of complex genetic variation in COMT on human brain function. Mol Psychiatry. 2006; 11: 867877 [797].CrossRefGoogle ScholarPubMed
Munafo, M.R., Bowes, L., Clark, T.G., Flint, J.Lack of association of the COMT (Val158/108 Met) gene and schizophrenia: a meta-analysis of case-control studies. Mol Psychiatry. 2005; 10: 765770.CrossRefGoogle ScholarPubMed
Ohmori, O., Shinkai, T., Kojima, H., Terao, T., Suzuki, T., Mita, T.et al.Association study of a functional catechol-O-methyltransferase gene polymorphism in Japanese schizophrenics. Neurosci Lett. 1998; 243: 109112.CrossRefGoogle ScholarPubMed
Okochi, T., Ikeda, M., Kishi, T., Kawashima, K., Kinoshita, Y., Kitajima, T.et al.Meta-analysis of association between genetic variants in COMT and schizophrenia: an update. Schizophr Res. 2009; 110: 140148.10.1016/j.schres.2009.02.019CrossRefGoogle ScholarPubMed
Ott, J.Utility programs for analysis of genetic linkage, Program, HWE version 1.10. New York: Columbia University; 1988.Google Scholar
Peralta, V., Cuesta, M.J.Psychometric properties of the positive and negative syndrome scale (PANSS) in schizophrenia. Psychiatry Res. 1994; 53: 3140.CrossRefGoogle Scholar
Sanders, A.R., Duan, J., Levinson, D.F., Shi, J., He, D., Hou, C.et al.No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics. Am J Psychiatry. 2008; 165: 497506.CrossRefGoogle Scholar
Sazci, A., Ergul, E., Kucukali, I., Kilic, G., Kaya, G., Kara, I.Catechol-O-methyltransferase gene Val108/158Met polymorphism, and susceptibility to schizophrenia: association is more significant in women. Brain Res Mol Brain Res. 2004; 132: 5156.CrossRefGoogle ScholarPubMed
Shifman, S., Bronstein, M., Sternfeld, M., Pisante-Shalom, A., Lev-Lehman, E., Weizman, A.et al.A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet. 2002; 71: 12961302.CrossRefGoogle Scholar
Talkowski, M.E., Kirov, G., Bamne, M., Georgieva, L., Torres, G., Mansour, H.et al.A network of dopaminergic gene variations implicated as risk factors for schizophrenia. Hum Mol Genet. 2008; 17: 747758.CrossRefGoogle Scholar
Wang, Y., Hu, Y., Fang, Y., Zhang, K., Yang, H., Ma, J.et al.Evidence of epistasis between the catechol-O-methyltransferase and aldehyde dehydrogenase 3B1 genes in paranoid schizophrenia. Biol Psychiatry. 2009; 65: 10481054.CrossRefGoogle ScholarPubMed
Weinshilboum, R.M., Otterness, D.M., Szumlanski, C.L.Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu Rev Pharmacol Toxicol. 1999; 39: 1952.CrossRefGoogle ScholarPubMed
Wonodi, I., Stine, O.C., Mitchell, B.D., Buchanan, R.W., Thaker, G.K.Association between Val108/158 Met polymorphism of the COMT gene and schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 120B 2003 4750.CrossRefGoogle Scholar
Submit a response

Comments

No Comments have been published for this article.