J Appl Biomed 16:378-386, 2018 | DOI: 10.1016/j.jab.2018.04.001

In vitro antimalarial activity of synthesized TiO2 nanoparticles using Momordica charantia leaf extract against Plasmodium falciparum

Pachiyappan Rajiv Gandhia, Chidambaram Jayaseelanb,*, Chinnaperumal Kamarajc, S.R. Radhika Rajasreeb, Rathinasamy Regina Marya,*
a Auxilium College (Autonomous), Department of Zoology, Division of Nanobiotechnology, Gandhi Nagar, Vellore District, Tamil Nadu, India
b Sathyabama University, Centre for Ocean Research, Chennai, Tamil Nadu, India
c Periyar University, Department of Biotechnology, Salem, Tamil Nadu, India

Malaria is a serious global health challenge, and it has infected millions of people worldwide. There is an urgent need for new antimalarial drugs and drug targets for both prophylaxis and chemotherapy. In the present study, we biosynthesized TiO2 nanoparticles (NPs) using the Momordica charantia leaf aqueous extract as a reducing and stabilizing agent. TiO2 NPs were characterized by UV, XRD, FTIR, HRTEM, EDX, DLS and Zeta-potential. The maximum activity of mosquitocidal was observed in the synthesized TiO2 NPs against Anopheles stephensi Liston (Diptera: Culicidae) larvae and pupae, LC50 were 2.50 mg/l (I instar), 2.86 mg/l (II), 3.29 mg/l (III), 3.43 mg/l (IV), and 5.04 mg/l (pupa). The antimalarial activity of M. charantia leaf aqueous extract and TiO2 NPs were evaluated against CQ-resistant (CQ-r) and CQ sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of M. charantia leaf aqueous extract were 83.64 μg/ml (CQ-s) and 88.14 μg/ml (CQ-r). Synthesized TiO2 NPs achieved IC50 of 53.42 μg/ml (CQ-s) and 59.71 μg/ml (CQ-r). The TiO2 NPs did not exhibit any noticeable toxicity on Poecilia reticulata after 24 h of exposure. Overall, our results suggest that the synthesized TiO2 NPs may be employed to develop newer and safer agents for malaria control.

Keywords: Momordica charantia; Nanoparticles; Biosynthesis; Anopheles stephensi; Plasmodium falciparum

Received: February 2, 2017; Revised: March 24, 2018; Accepted: April 24, 2018; Published: November 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Rajiv Gandhi P, Jayaseelan C, Kamaraj C, Radhika Rajasree SR, Mary RR. In vitro antimalarial activity of synthesized TiO2 nanoparticles using Momordica charantia leaf extract against Plasmodium falciparum. J Appl Biomed. 2018;16(4):378-386. doi: 10.1016/j.jab.2018.04.001.
Download citation

References

  1. Abbott, W.S., 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265-267. Go to original source...
  2. Arjunan, N.K., Murugan, K., Rejeeth, C., Madhiyazhagan, P., Barnard, D.R., 2012. Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector Borne Zoon. Dis. 12 (3), 262-268. Go to original source... Go to PubMed...
  3. Arya, N., 2014. Evolution of mosquito larvicidal activity of neem seed kernel alkaloid against Anopheles stephensi. Int. J. Life Sci. Pharma Res. 3 (4), 129-135.
  4. Ashkarran, A.A., Theor, J., 2011. Antibacterial properties of silver-doped TiO2 nanoparticles under solar simulated light. Appl. Phys. 4, 1-8.
  5. Bagavan, A., Rahuman, A.A., Kaushik, N.K., Sahal, D., 2011. In vitro antimalarial activity of medicinal plant extracts against Plasmodium falciparum. Parasitol. Res. 108, 15-22. Go to original source... Go to PubMed...
  6. Bai, Z., Hu, Y., Yan, S., Shan, W., Wei, C., 2017. Preparation of mesoporous SiO2/Bi2 O3/ TiO2 superhydrophilic thin films and their surface self-cleaning properties. RSC Adv. 7 (4), 1966-1974. Go to original source...
  7. Basch, E., Gabardi, S., Ulbricht, C., 2003. Bitter melon (Momordica charantia): a review of efficacy and safety. Am. J. Health Syst. Pharm. 65, 356-359. Go to original source... Go to PubMed...
  8. Benelli, G., Mehlhorn, H., 2016. Declining malaria, rising dengue and Zika virus: insights for mosquito vector control. Parasitol. Res. 115 (5), 1747-1754. Go to original source... Go to PubMed...
  9. Benelli, G., Murugan, K., Panneerselvam, C., Madhiyazhagan, P., Conti, B., Nicoletti, M., 2015. Old ingredients for a new recipe? Neem cake, a low-cost botanical byproduct in the fight against mosquito-borne diseases. Parasitol. Res. 114 (2), 391-397. Go to original source... Go to PubMed...
  10. Benelli, G., 2015a. Research in mosquito control: current challenges for a brighter future. Parasitol. Res. 114, 2801-2805. Go to original source... Go to PubMed...
  11. Benelli, G., 2015b. Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol. Res. 114, 3201-3212. Go to original source... Go to PubMed...
  12. Benelli, G., 2016. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol. Res. 115, 23-34. Go to original source... Go to PubMed...
  13. Chan, W.C., 2006. Bionanotechnology progress and advances. Biol. Blood Mar. Trans. 12, 87-91. Go to original source... Go to PubMed...
  14. Dhalla, N.S., Gupta, K.C., Sastry, M.S., Malhotra, C.L., 1961. Chemical composition of the fruit of Momordica charantia Linn. Indian J. Pharm. 23, 128.
  15. Dinesh, D., Murugan, K., Madhiyazhagan, P., Panneerselvam, C., Nicoletti, M., Jiang, W., et al., 2015. Mosquitocidal and antibacterial activity of green synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol. Res. 114, 1519-1529. Go to original source... Go to PubMed...
  16. Finney, D.J., 1971. Probit Analysis, 3rd ed. Cambridge University Press, Cambridge.
  17. Gandhi, P.R., Jayaseelan, C., Vimalkumar, E., Mary, R.R., 2016. Larvicidal and pediculicidal activity of synthesized TiO2 nanoparticles using Vitex negundo leaf extract against blood feeding parasites. J. Asia Pac. Entomol. 19 (4), 1089-1094. Go to original source...
  18. Gandhi, P.R., Jayaseelan, C., Mary, R.R., Mathivanan, D., Suseem, S.R., 2017. Acaricidal, pediculicidal and larvicidal activity of synthesized ZnO nanoparticles using Momordica charantia leaf extract against blood feeding parasites. Exp. Parasitol. 181, 47-56. Go to original source... Go to PubMed...
  19. Ishwarya, R., Vaseeharan, B., Shanthi, S., Ramesh, S., Manogari, P., Dhanalakshmi, K., et al., 2017. Green synthesized silver nanoparticles: toxicity against Poecilia reticulata fishes and Ceriodaphnia cornuta crustaceans. J. Clust. Sci. 28 (1), 519- 527. Go to original source...
  20. Jayaseelan, C., Rahuman, A.A., 2012. Acaricidal efficacy of synthesized silver nanoparticles using aqueous leaf extract of Ocimum canum against Hyalomma anatolicum anatolicum and Hyalomma marginatum isaaci (Acari: Ixodidae). Parasitol. Res. 111 (3), 1369-1378. Go to original source... Go to PubMed...
  21. Jayaseelan, C., Gandhi, P.R., Rajasree, S.R.R., Suman, T.Y., Mary, R.R., 2017. Toxicity studies of nanofabricated palladium against filariasis and malaria vectors. Environ. Sci. Pollut. Res. 1-9. Go to original source...
  22. Jensen, M., Mehlhorn, H., 2009. Seventy-five years of Resochin1 in the fight against malaria. Parasitol. Res. 105, 609-627. Go to original source... Go to PubMed...
  23. Kamaraj, C., Rahuman, A.A., Bagavan, A., 2008a. Antifeedant and larvicidal effects of plant extracts against Spodoptera litura (F.): Aedes aegypti L. and Culex quinquefasciatus Say. Parasitol. Res. 103, 325-331. Go to original source... Go to PubMed...
  24. Kamaraj, C., Rahuman, A.A., Bagavan, A., 2008b. Screening for antifeedant and larvicidal activity of plant extracts against Helicoverpa armigera (Hübner), Sylepta derogata (F.) and Anopheles stephensi (Liston). Parasitol. Res. 103, 1361- 1368. Go to original source... Go to PubMed...
  25. Kamaraj, C., Kaushik, N.K., Rahuman, A.A., Mohanakrishnan, D., Bagavan, A., Elango, G., et al., 2012. Antimalarial activities of medicinal plants traditionally used in the villages of Dharmapuri regions of South India. J. Ethnopharmacol. 141, 796- 802. Go to original source... Go to PubMed...
  26. Kamaraj, C., Balasubramani, G., Siva, C., Raja, M., Balasubramanian, V., Raja, R.K., et al., 2017. Ag nanoparticles synthesized using b-caryophyllene isolated from Murraya koenigii: antimalarial (Plasmodium falciparum 3D7) and anticancer activity (A549 and HeLa Cell Lines). J. Clust. Sci. 28 (3), 1667-1684. Go to original source...
  27. Kamaraj, C., Gandhi, P.R., Elango, G., Karthi, S., Chung, I.M., Rajakumar, G., 2018. Novel and environmental friendly approach; Impact of Neem (Azadirachta indica) gum nano formulation (NGNF) on Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.). Int. J. Biol. Macromol. 107, 59-69. Go to original source... Go to PubMed...
  28. Kovendan, K., Murugan, K., Vincent, S., Barnard, D.R., 2012a. Studies on larvicidal and pupicidal activity of Leucas aspera Willd (Lamiaceae) and bacterial insecticide, Bacillus sphaericus against malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Parasitol. Res. 110, 195-203. Go to original source... Go to PubMed...
  29. Kovendan, K., Murugan, K., Shanthakumar, S.P., Vincent, S., Hwang, J.S., 2012b. Larvicidal activity of Morinda citrifolia L. (Noni) (Family: Rubiaceae) leaf extract against Anopheles stephensi Culex quinquefasciatus, and Aedes aegypti. Parasitol. Res. 111, 1481-1490. Go to original source... Go to PubMed...
  30. Malarkodi, C., Chitra, K., Rajeshkumar, S., Gnanajobitha, G., Paulkumar, K., Vanaja, M., Annadurai, G., 2013. Novel eco-friendly synthesis of titanium oxide nanoparticles by using Planomicrobium sp: and its antimicrobial evaluation. Der Pharmacia Sinica 4 (3), 59-66. Go to original source...
  31. Marimuthu, S., Rahuman, A.A., Jayaseelan, C., Kirthi, A.V., Santhoshkumar, T., Velayutham, K., et al., 2013. Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa. Asian Pac. J. Trop. Med. 6 (9), 682-688. Go to original source... Go to PubMed...
  32. Mathivanan, D., Gandhi, P.R., Mary, R.R., Suseem, S.R., 2017. Larvicidal and acaricidal efficacy of different solvent extracts of Andrographis echioides against bloodsucking parasites. Physiol. Mol. Plant Pathol. 1-10. Go to original source...
  33. Mishraa, A., Kaushik, N.K., Sardar, M., Sahal, D., 2013. Evaluation of antiplasmodial activity of green synthesized silver nanoparticles. Colloids Surf. B. Biointerf. 111, 713-718. Go to original source... Go to PubMed...
  34. Murugan, K., Kovendan, K., Vincent, S., Barnard, D.R., 2012. Biolarvicidal and pupicidal activity of Acalypha alnifolia Klein ex Willd. (Family Euphorbiaceae) leaf extract and microbial insecticide, Metarhizium anisopliae (Metsch.) against malaria fever mosquito Anopheles stephensi Liston. (Diptera: Culicidae). Parasitol. Res. 110, 2263-2270. Go to original source... Go to PubMed...
  35. Murugan, K., Aarthi, N., Kovendan, K., Panneerselvam, C., Chandramohan, B., Kumar, P.M., et al., 2015a. Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and Plasmodium falciparum. Parasitol. Res. 114 (10), 3657-3664. Go to original source... Go to PubMed...
  36. Murugan, K., Samidoss, C.M., Panneerselvam, C., Higuchi, A., Roni, M., Suresh, U., et al., 2015b. Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi? Parasitol. Res. 114 (11), 4087-4097. Go to original source... Go to PubMed...
  37. Murugan, K., Panneerselvam, C., Samidoss, C.M., Madhiyazhagan, P., Suresh, U., Roni, M., et al., 2016. In vivo and in vitro effectiveness of Azadirachta indicasynthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes. Res. Vet. Sci. 106, 14- 22. Go to original source... Go to PubMed...
  38. Nathan, S.S., Kalaivani, K., Murugan, K., 2005. Effects of neem limonoids on the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Acta. Trop. 96, 47-55. Go to original source... Go to PubMed...
  39. Ng, T.B., Chan, W.Y., Yeung, H.W., 1992. Proteins with abortifacient, ribosome inactivating, immunomodulatory, antitumor and anti-AIDS activities from Cucurbitaceae plants. Gen. Pharmacol. 23, 579-590. Go to original source... Go to PubMed...
  40. Panneerselvam, C., Murugan, K., Kovendan, K., Mahesh Kumar, P., Subramaniam, J., 2013. Mosquito larvicidal and pupicidal activity of Euphorbia hirta Linn. (Family: Euphorbiaceae) and bacterial insecticide, Bacillus sphaericus against malarial vector, Anopheles stephensi Liston. (Diptera: Culicidae). Asian Pac. J. Trop. Med. 6, 102-109. Go to original source... Go to PubMed...
  41. Pasupuleti, V.R., Prasad, T.N.V.K.V., Shiekh, R.A., Balam, S.K., Narasimhulu, G., et al., 2013. Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies. Int. J. Nanomed. 8 (1), 3355-3364. Go to original source... Go to PubMed...
  42. Patil, C.D., Patil, S.V., Borase, H.P., Salunke, B.K., Salunkhe, R.B., 2012. Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol. Res. 110 (5), 1815-1822. Go to original source... Go to PubMed...
  43. Priyadarshini, A., Murugan, K., Panneerselvam, C., Ponarulselvam, S., JiangShiou, H., Nicoletti, M., 2012. Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol. Res. 111, 997-1006. Go to original source... Go to PubMed...
  44. Rajakumar, G., Rahuman, A.A., Priyamvada, B., Khanna, V.G., Kumar, D.K., Sujin, P.J., 2012. Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Mater. Lett. 68, 115-117. Go to original source...
  45. Rajakumar, G., Rahuman, A.A., Roopan, S.M., Chung, I.M., Anbarasan, K., Karthikeyan, V., 2015. Efficacy of larvicidal activity of green synthesized titanium dioxide nanoparticles using Mangifera indica extract against blood-feeding parasites. Parasitol. Res. 114 (2), 571-581. Go to original source... Go to PubMed...
  46. Raman, A., Lau, C., 1996. Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae). Phytomed 2, 349-362. Go to original source... Go to PubMed...
  47. Rashid, M.M.O., Ferdous, J., Banik, S., Islam, M.R., Uddin, A.M., Robel, F.N., 2016. Anthelmintic activity of silver-extract nanoparticles synthesized from the combination of silver nanoparticles and M. charantia fruit extract. BMC Complement. Altern. Med. 16 (1), 242. Go to original source... Go to PubMed...
  48. Roni, M., Murugan, K., Panneerselvam, C., Subramaniam, J., Hwang, J.S., 2013. Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitol. Res. 112, 981-990. Go to original source... Go to PubMed...
  49. SPSS, 2007. SPSS for Windows Version 16 0. Release 16.0.0. SPSS, Chicago, IL, USA.
  50. Saravanan, S., Balamurugan, M., Lippitz, A., Fonda, E., Swaraj, S., 2016. XANES studies of titanium dioxide nanoparticles synthesized by using Peltophorum pterocarpum plant extract. Phys. B. Condens. Matter 503, 86-92. Go to original source...
  51. Sharanabasappa, A.P., Saraswati, B.P., 2011. Toxicological studies of Momordica charantia Linn Seed extracts in Male Mice. Int. J. Morphol. 29 (4), 1212-1218. Go to original source...
  52. Shih, Y.H., Liu, W.S., Su, Y.F., 2012. Aggregation of stabilized TiO2 nanoparticle suspensions in the presence of inorganic ions. Environ. toxicol. Chem. 31 (8), 1693-1698. Go to original source... Go to PubMed...
  53. Smilkstein, M., Sriwilaijaroen, N., Kelly, J.X., Wilairat, P., Riscoe, M., 2004. Simple and inexpensive fluorescence-based technique for high throughput antimalarial drug screening. Antimicrob. Agents Chemother. 48, 1803-1806. Go to original source... Go to PubMed...
  54. Subramaniam, J., Murugan, K., Panneerselvam, C., Kovendan, K., Madhiyazhagan, P., Dinesh, D., et al., 2016. Multipurpose effectiveness of Couroupita guianensissynthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ. Sci. Pollut. Res. 23 (8), 7543-7558. Go to original source... Go to PubMed...
  55. Suman, T.Y., Ravindranath, R.R., Elumalai, D., Kaleena, P.K., Ramkumar, R., Perumal, P., et al., 2015. Larvicidal activity of titanium dioxide nanoparticles synthesized using Morinda citrifolia root extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus and its other effect on non-target fish. Asian Pac. J. Trop. Dis. 5 (3), 224-230. Go to original source...
  56. Sundrarajan, M., Gowri, S., 2011. Green synthesis of titanium dioxide nanoparticles by Nyctanthes arbor-tristis leaves extract. Chalcogenide Lett. 8 (8), 447-451.
  57. Suresh, U., Murugan, K., Benelli, G., Nicoletti, M., Barnard, D.R., Panneerselvam, C., et al., 2015. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 114, 1551-1562. Go to original source... Go to PubMed...
  58. Thamaphat, K., Limsuwan, P., Ngotawornchai, B., 2008. Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J. (Nat. Sci.) 42 (5), 357-361.
  59. Trager, W., Jensen, J.B., 1976. Human malaria parasites in continuous culture. Science 193, 673-675. Go to original source... Go to PubMed...
  60. Tso, C.P., Zhung, C.M., Shih, Y.H., Tseng, Y.M., Wu, S.C., Doong, R.A., 2010. Stability of metal oxide nanoparticles in aqueous solutions. Water Sci. Technol. 61 (1), 127- 133. Go to original source... Go to PubMed...
  61. Venkatasubbu, G.D., Ramasamy, S., Ramakrishnan, V., Kumar, J., 2013. Folate targeted PEGylated titanium dioxide nanoparticles as a nanocarrier for targeted paclitaxel drug delivery. Adv. Powder Technol. 24 (6), 947-954. Go to original source...
  62. Vijayakumar, S., Vinoj, G., Malaikozhundan, B., Shanthi, S., Vaseeharan, B., 2015. Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochim. Acta Part A. 137, 886- 891. Go to original source... Go to PubMed...
  63. WHO, 2005. Guidelines for laboratory and field-testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005. 13, 241-244.
  64. WHO, 2014 Malaria. Fact sheet no. 94.
  65. Wernsdorfer, G., Wernsdorfer, W.H., 2003. Malaria at the turn from the 2nd to the 3rd millenium. Wien. Klin. Wochenschr. 115 (3), 2-9.