Elsevier

HOMO

Volume 58, Issue 1, 26 March 2007, Pages 75-89
HOMO

Recommendations for the forensic diagnosis of sex and age from skeletons

https://doi.org/10.1016/j.jchb.2005.07.002Get rights and content

Abstract

In both diagnostic fields a two-stage strategy is recommended: to first use “field” methods that are quick and easy but more imprecise and then “laboratory” methods that are time consuming but more precise. In preparing skeletal work, individuality of a skeleton should be checked, traces of diseases sought and time since death assessed. For sexing non-adults, the field methods are tooth mineralisation, long bone length and a few morphological skull and pelvis characteristics, for adults it is the morphology of pelvis and skull, and for both age groups the advanced laboratory method is molecular biology. For ageing non-adults the methods are mineralisation of teeth, long bone length and epiphysis development. For ageing adults the advanced laboratory method is aspartic acid racemisation. Less accurate laboratory methods are cement ring counts and histology of bones and teeth. Quick morphological methods using the pubic symphysis and other traits in combinations follow. Finally, cranial sutures and tooth number give a quick and rough impression. For the selection of a method and the assessment of its value the stochastic error produced for the reference sample is the decisive criterion; it should also be used to assess the reliability of a single diagnosis. Prerequisites for all work with skeletons are not only a complete knowledge of the relevant biology as well as specific techniques but also initial detailed instructions and with forensic applications, personal experience.

Zusammenfassung

Für beide diagnostischen Aufgaben wird ein Vorgehen in zwei Stufen vorgeschlagen: zuerst die Anwendung von „Feld“-Methoden, die zwar schnell und einfach sind, aber auch ungenauer, und dann die „Labor“-Methoden, die mehr Zeit brauchen, aber genauer sind. Bei der Vorbereitung der Arbeit an einem Skelett sollte die Zusammengehörigkeit der Knochen geprüft, Spuren von Krankheiten gesucht und die Liegezeit eingegrenzt werden. Für die Geschlechtsbestimmung Nichterwachsener sind die Feldmethoden Zahnmineralisation, Längsknochenlängen und einige wenige Schädel- und Beckenmerkmale, für Erwachsene ist es die Morphologie von Becken und Schädel, und für beide ist die fortgeschrittene Labormethode Molekularbiologie. Für die Altersbestimmung bei Erwachsenen ist die Razemisierung der Asparaginsäure die fortgeschrittene Labormethode; weniger genaue Labormethoden sind Zementringzählung und Histologie von Knochen und Zähnen; es folgen die schnellen morphologischen Methoden an der Beckensymphyse, auch in Kombination mit anderen Indikatoren; schließlich können Schädelnähte und Zahnzahl einen schnellen und groben Überblick geben. Für die Auswahl einer Methode und die Einschätzung ihres Wertes ist der stochastische Fehler bei der Referenzgruppe das entscheidende Kriterium; das sollte auch benutzt werden, um die Genauigkeit einer einzelnen Diagnose einzuschätzen. Die Grundvoraussetzung für alle Arbeiten am Skelett ist nicht nur die vollständige Kenntnis der relevanten Biologie wie der spezifischen Techniken, sondern auch zu Beginn detaillierte Anleitung und bei forensischer Anwendung persönliche Erfahrung.

Introduction

We present here recommendations from a large group of practising forensic anthropologists since they may be useful for other practitioners. It is a comprehensive review of existing methods, evaluated for their practical use.

In the last few years, the number of works aimed at standardising, professionalising and institutionalising various aspects of forensic activity has increased rapidly. An important element of those works is their practical recommendations, which at the same time help to establish whether issued opinions have been drawn according to rules of the profession (lege artis). The series began with recommendations for forensic chemistry (Bonte et al., 1997). The next was the first classical work, which concerned identification based on images (Other-Ref: Buhmann et al., 1999a, Other-Ref: Buhmann et al., 1999b, Other-Ref: Buhmann et al., 1999c, Other-Ref: Buhmann et al., 1999d, Other-Ref: Buhmann et al., 1999e), followed by recommendations for age diagnoses in living individuals without documentary proof of age (Schmeling et al., 2001a, Schmeling et al., 2001b, Schmeling et al., 2001c, Schmeling et al., 2001d, Schmeling et al., 2001e, Schmeling et al., 2001f, Schmeling et al., 2001g, Schmeling et al., 2001h, Schmeling et al., 2001i, Schmeling et al., 2003; Ritz-Timme et al., 2002; Lockemann et al., 2004). The present recommendations, drawn up by the study group on forensic age diagnostics (AGFAD, Arbeitsgruppe Forensische Altersdiagnostik) of the German Society of Legal Medicine (DGRM, Deutsche Gesellschaft für Rechtsmedizin), are a further link in that chain. A major precursor was recommendations for historic skeletons (Ferembach et al., 1979).

The present recommendations differ from the existing AGFAD proposals in as much as they include the diagnosis of sex. This is necessary for practical as well as for logical reasons: the age of a skeleton is always determined in conjunction with its sex; and the two diagnoses are mutually dependent. There are sex-related age indicators and age-related sex indicators.

For more detailed literature on sex and age diagnostics, the following overviews are recommended (in order of importance): Krogman and Işcan (1986); Knussmann (1988); Saunders and Katzenberg (1992) and Kemkes-Grottenthaler (2002). There are, in addition, many other method guidelines, but caution is advised when applying them. Reference should always be made to trusted monographic reviews and, above all, to the original literature, before making a diagnosis. This article is not intended as a manual, but recommends directions and procedures, consequently not all relevant literature is quoted. These recommendations may also be used for evaluations, including quality checks in court.

Section snippets

Preparatory work

Initially, an assessment of the individuality of the skeletal elements studied should be carried out, that is a check to see if all the skeletal parts belong to the same individual. Criteria to be used include joint articulation and fit at fracture edges, appearance of muscle attachments and size indicators (Rösing and Pischtschan, 1995; Ubelaker, 2002). Moreover, molecular biological polymorphisms may be used in special cases and for the purpose of cross-checking and confirming results.

In

Sex

The numerous available methods can easily be divided into those that are less work-intensive thus giving results rapidly, but showing high error rates, and those that require greater effort and more sophisticated equipment, but are more reliable. Based on this division, a two-stage approach is recommended. The first stage is to apply simple field methods; the second stage is to draw on sophisticated laboratory methods. In the case of the present recommendations, simple methods mean

Morphology: sub-adults

In humans most differences between the sexes do not become apparent until after puberty. Morphological methods are therefore less reliable for younger age groups. The distinctiveness of sex-specific features in a skeleton is an indicator for the accuracy of diagnosis. One study even sought to quantify this (Rösing et al., 1995). It follows that molecular biological examination is required more frequently for children. The best available (although not really precise in terms of the statistical

Morphology: adults

The following section deals first with the pelvis, then with the cranium and finally with other regions and methods, based on findings established so far. However, it is worth recalling that biological sex is such an influential and vital a characteristic that it can actually be diagnosed from many other structures, as well.

Molecular biology

The methods of molecular biology render more precise results than morphological assessment. Where subsequent cross-checks have proven possible, the results of blind tests very often match true sex. Moreover, unlike morphological methods, molecular methods are free of the many systematic influences that are often so hard to evaluate. For extraction of short DNA fragments from skeletal remains, experience gained with pre-historic bones may be used (Meyer et al., 2000). However, the advantages are

Age

Methods available for estimating the age of a skeleton can also be divided into two categories: simple but inaccurate methods on the one hand, and complex but accurate methods on the other. The latter include determination of aspartic acid racemisation, bone and tooth histology and the counting of growth layers in dental cement. The simple methods are used as a first stage of examination, whereas the more complex methods are applied in the second stage. The decision whether the second stage

Sub-adults

When examining the remains of children, the method of choice should be the mineralisation status of the teeth. Eruption through the alveolar margin should not be used as an indicator, because it varies considerably. More valuable indicators are the different stages of mineralisation, such as complete development of the crown and root of the tooth.

Liversidge (1993) has defined standard measures for deciduous teeth. With regard to the permanent teeth, it is recommended to use the standards

Adults

The ageing of adults is still a relatively well-founded biological process correlating with time. The indicators of age include the general level of wear (quantifiable in teeth and joints), osteoclasis (well studied for the spongiosa of the epiphyses of the long bones), histological alteration (in teeth and bones), alteration of joints (arthrosis, spondylosis, changes in pubic symphysis), apposition of new material (tooth cement rings) and chemical decomposition (racemisation of aspartic acid).

Conclusions

Methods for examining skeletons in a forensic setting are mainly based on methods originally developed for historical skeletons (but, recent material was often used to develop these methods). In such materials diagnoses can rarely be cross-checked, and there is also less pressure with regard to precision and quantification as compared to forensics. These recommendations are therefore also valid for historical skeletons.

Given the high complexity of sex and age determination, the examiner of an

References (91)

  • M. Steyn et al.

    Geometric morphometric analysis of the greater sciatic notch in South Africans

    Homo

    (2004)
  • G. Acsádi et al.

    History of Human Life Span and Mortality

    (1970)
  • K.W. Alt et al.

    Odontometrische Geschlechtsbestimmung. Evaluierung frühmittelalterlicher Bestattungen

    Rechtsmedizin

    (1995)
  • M.A. Bidmos et al.

    Sex determination from the talus of South African whites by discriminant function analysis

    Am. J. Forensic Med. Pathol.

    (2003)
  • J.-P. Bocquet-Appel et al.

    Estimateurs en paléodémographie

    L’homme

    (1977)
  • J.-P. Bocquet et al.

    Estimation de l’âge au décès des squelettes d’adultes par régressions multiples

    Contrib. Estudo Anthropol. Port.

    (1979)
  • Bonte, W., Daldrup, T., Grüner, O., Heifer, U., Iffland, R., Schütz, H., Wehner, H.-D., 1997. Richtlinien für die...
  • S.M. Borgognini Tarli et al.

    Annotated Bibliography on Sexual Dimorphism in Primates

    (1990)
  • Buhmann, D., Helmer, R.P., Jaeger, U., Jürgens, H.W., Knussmann, R., Rösing, F.W., Schmidt, H.D., Szilvássy, J.,...
  • Buhmann, D., Helmer, R.P., Jaeger, U., Jürgens, H.W., Knussmann, R., Rösing, F.W., Schmidt, H.D., Szilvássy, J.,...
  • Buhmann, D., Helmer, R.P., Jaeger, U., Jürgens, H.W., Knussmann, R., Rösing, F.W., Schmidt, H.D., Szilvássy, J.,...
  • Buhmann, D., Helmer, R.P., Jaeger, U., Jürgens, H.W., Knussmann, R., Rösing, F.W., Schmidt, H.D., Szilvássy, J.,...
  • Buhmann, D., Helmer, R.P., Jaeger, U., Jürgens, H.W., Knussmann, R., Rösing, F.W., Schmidt, H.D., Szilvássy, J.,...
  • A. Coussens et al.

    Sexual dimorphism in the robusticity of long bones of infants and young children

    Anthropol. Rev.

    (2002)
  • A. Demirjian et al.

    New systems for dental maturity based on seven and four teeth

    Ann. Hum. Biol.

    (1976)
  • L.E. Ditch et al.

    A multivariate dental sexing technique

    Am. J. Phys. Anthropol.

    (1972)
  • D. Ferembach et al.

    Empfehlungen für die Alters- und Geschlechtsdiagnose am Skelett

    Homo

    (1979)
  • M. Graw et al.

    A simple morphological method for gender determination at the petrous portion of the os temporalis

    Forensic Sci. Int.

    (2003)
  • G. Gustafson

    Åldersbestämningar på tänder

    Odontol. Tidskr.

    (1947)
  • K. Haavikko

    The formation and alveolar and clinical eruption of the permanent teeth, an orthopantomographic study

    Proc. Finn. Dent. Soc.

    (1970)
  • Herdeg, B., 1992. Die Zahnentwicklung beim Menschen. Kritische Analyse der bisherigen Zahlen und Zitierreihen....
  • M.Y. Işcan et al.

    Age estimation from the rib by phase analysis: white males

    J. Forensic Sci.

    (1984)
  • P. Kagerer et al.

    On the validity of individual age-at-death diagnosis by incremental line counts in human dental cementum. Technical considerations

    Anthropol. Anz.

    (2001)
  • B. Kahl et al.

    Aktualisierung der Dentitionstabelle von I Schour und M Massler von 1941

    Fortschr. Kieferorthop.

    (1988)
  • D. Katz et al.

    Age determination of the male os pubis

    Am. J. Phys. Anthropol.

    (1986)
  • D. Katz et al.

    Race differences in pubic symphyseal aging patterns in the male

    Am. J. Phys. Anthropol.

    (1989)
  • A. Kemkes-Grottenthaler

    Aging through the ages: historical perspectives on age indicator methods

  • E.R. Kerley

    The microscopic determination of age in human bone

    Am. J. Phys. Anthropol.

    (1965)
  • K.F. Kreitner et al.

    Bone age determination based on the study of the medial extremity of the clavicle

    Eur. Radiol.

    (1998)
  • W.M. Krogman et al.

    The Human Skeleton in Forensic Medicine

    (1986)
  • S.I. Kvaal et al.

    A non-destructive dental method for age estimation

    J. Forensic Odontostomatol.

    (1994)
  • Lange, M., Schutkowski, H., Hummel, H., Herrmann, B., 1987. A Bibliography on Cremation. PACT 19, Conseil de l’Europe,...
  • G. Lindemaier et al.

    Lebensalter und Zahnzahl – ein Hilfsmittel zur Identifizierung unbekannter Leichen

    Beitr. Gerichtl. Med.

    (1989)
  • Cited by (0)

    View full text