Monoiodoacetic acid induces arthritis and synovitis in rats in a dose- and time-dependent manner: proposed model-specific scoring systems

https://doi.org/10.1016/j.joca.2016.02.005Get rights and content
Under a Creative Commons license
open access

Summary

Objective

In a rat monoiodoacetic acid (MIA)-induced arthritis model, the amount of MIA commonly used was too high, resulting in rapid bone destruction. We examined the effect of MIA concentrations on articular cartilage and infrapatellar fat pad (IFP). We also established an original system for “macroscopic cartilage and bone score” and “IFP inflammation score” specific to the rat MIA-induced arthritis model.

Design

Male Wistar rats received a single intra-articular injection of MIA in the knee. The amount of MIA was 0.1, 0.2, 0.5, and 1 mg respectively. Articular cartilage was evaluated at 2–12 weeks. IFP was also observed at 3–14 days.

Results

Macroscopically, low MIA doses induced punctate depressions on the cartilage surface, and cartilage erosion proceeded slowly over 12 weeks, while higher MIA doses already induced cartilage erosion at 2 weeks, followed by bone destruction. MIA macroscopic cartilage and bone score, OARSI histological score, and Mankin score increased in a dose- and time-dependent manner. The IFP inflammation score peaked at 5 days in low dose groups, then decreased, while in high dose groups, the IFP score continued to increase over 14 days due to IFP fibrosis.

Conclusions

Punctate depressions, cartilage erosion, and bone destruction were observed in the MIA-induced arthritis model. The macroscopic cartilage and bone scoring enabled the quantification of cartilage degeneration and demonstrated that MIA-induced arthritis progressed in a dose- and time-dependent manner. IFP inflammation scores revealed that 0.2 mg MIA induced reversible synovitis, while 1 mg MIA induced fibrosis of the IFP body.

Keywords

Monoiodoacetic acid
Cartilage degeneration
Synovitis
Rat
Osteoarthritis
Scoring system

Cited by (0)