Surgery for congenital heart disease
Biodegradable polymer with collagen microsponge serves as a new bioengineered cardiovascular prosthesis

https://doi.org/10.1016/j.jtcvs.2004.04.013Get rights and content
Under an Elsevier user license
open archive

Abstract

Objective

Biodegradable materials with autologous cell seeding have attracted much interest as potential cardiovascular grafts. However, pretreatment of these materials requires a complicated and invasive procedure that carries the risk of infection. To avoid these problems, we sought to develop a biodegradable graft material containing collagen microsponge that would permit the regeneration of autologous vessel tissue. The ability of this material to accelerate in situ cellularization with autologous endothelial and smooth muscle cells was tested with and without precellularization.

Methods

Poly(lactic-co-glycolic acid) as a biodegradable scaffold was compounded with collagen microsponge to form a vascular patch material. These poly(lactic-co-glycolic acid)–collagen patches with (n = 10) or without (n = 10) autologous vessel cellularization were used to patch the canine pulmonary artery trunk. Histologic and biochemical assessments were performed 2 and 6 months after the implantation.

Results

There was no thrombus formation in either group, and the poly(lactic-co-glycolic acid) scaffold was almost completely absorbed in both groups. Histologic results showed the formation of an endothelial cell monolayer, a parallel alignment of smooth muscle cells, and reconstructed vessel wall with elastin and collagen fibers. The cellular and extracellular components in the patch had increased to levels similar to those in native tissue at 6 months.

Conclusions

The poly(lactic-co-glycolic acid)–collagen microsponge patch with and without precellularization showed good histologic findings and durability. This patch shows promise as a bioengineered material for promoting in situ cellularization and the regeneration of autologous tissue in cardiovascular surgery.

Keywords

18

Cited by (0)