Elsevier

NeuroImage

Volume 59, Issue 3, 1 February 2012, Pages 2349-2361
NeuroImage

Technical Note
Activation likelihood estimation meta-analysis revisited

https://doi.org/10.1016/j.neuroimage.2011.09.017Get rights and content

Abstract

A widely used technique for coordinate-based meta-analysis of neuroimaging data is activation likelihood estimation (ALE), which determines the convergence of foci reported from different experiments. ALE analysis involves modelling these foci as probability distributions whose width is based on empirical estimates of the spatial uncertainty due to the between-subject and between-template variability of neuroimaging data. ALE results are assessed against a null-distribution of random spatial association between experiments, resulting in random-effects inference. In the present revision of this algorithm, we address two remaining drawbacks of the previous algorithm. First, the assessment of spatial association between experiments was based on a highly time-consuming permutation test, which nevertheless entailed the danger of underestimating the right tail of the null-distribution. In this report, we outline how this previous approach may be replaced by a faster and more precise analytical method. Second, the previously applied correction procedure, i.e. controlling the false discovery rate (FDR), is supplemented by new approaches for correcting the family-wise error rate and the cluster-level significance. The different alternatives for drawing inference on meta-analytic results are evaluated on an exemplary dataset on face perception as well as discussed with respect to their methodological limitations and advantages. In summary, we thus replaced the previous permutation algorithm with a faster and more rigorous analytical solution for the null-distribution and comprehensively address the issue of multiple-comparison corrections. The proposed revision of the ALE-algorithm should provide an improved tool for conducting coordinate-based meta-analyses on functional imaging data.

Highlights

► The permutation procedure of ALE is replaced by a faster and more accurate approach. ► Family-wise error correction and cluster-level inference are introduced into ALE. ► The current and revised implementation of ALE yields comparable results.

Introduction

Over the last decades, neuroimaging research has produced a vast amount of data localising the neural effects of cognitive and sensory processes in the brain of both healthy and diseased populations. In spite of their power to delineate the functional organisation of the human brain, however, neuroimaging also carries several limitations. The most important among these are the rather small sample sizes investigated, the consequently low reliability (Raemaekers et al., 2007) and the inherent subtraction logic which is only sensitive to differences between conditions (Price et al., 2005). Consequently, pooling data from different experiments, which investigate similar questions but employ variations of the experimental design, has become an important task. Such meta-analyses allow the identification of brain regions' locations that show a consistent response across experiments, collectively involving hundreds of subjects and numerous implementations of a particular paradigm (Laird et al., 2009a, Laird et al., 2009b). Community-wide standards of spatial normalisation and the reporting of peak activation locations in stereotaxic coordinates allow researchers to compare results across experiments when the primary data are unavailable or difficult to obtain (Poldrack et al., 2008).

Activation likelihood estimation (ALE; Laird et al., 2005, Turkeltaub et al., 2002) is probably the most common algorithm for coordinate-based meta-analyses (informative review see Wager et al., 2007b). The ALE algorithm is readily available to the neuroimaging community in form of the GingerALE desktop application (http://brainmap.org/ale). This approach treats activation foci reported in neuroimaging studies not as single points but as spatial probability distributions centred at the given coordinates. ALE maps are then obtained by computing the union of activation probabilities for each voxel. As in other algorithms for quantitative meta-analysis, the differentiation between true convergence of foci and random clustering (i.e., noise) is tested by a permutation procedure (Nichols and Hayasaka, 2003). Recently, we have proposed a revised algorithm for ALE analysis (Eickhoff et al., 2009), which models the spatial uncertainty – and thus probability distribution – of each focus using an estimation of the inter-subject and inter-laboratory variability typically observed in neuroimaging experiments, rather than using a pre-specified full-width half maximum (FWHM) for all experiments as originally proposed. In addition, it limits the meta-analysis to an anatomically constrained space specified by a grey matter mask and includes a new method of inference that calculates the above-chance clustering between experiments (i.e., random-effects analysis), rather than between foci (i.e., fixed-effects analysis).

An alternative approach to coordinate-based meta-analysis is kernel density analysis (KDA (Wager and Smith, 2003)). Both algorithms (KDE and ALE) are based on the idea of delineating those locations in the brain where the coordinates reported for a particular paradigm or comparison show an above-chance convergence. However, whereas ALE investigates where the location probabilities reflecting the spatial uncertainty associated with the foci of each experiment overlap in different voxels, KDE tests how many foci are reported close to any individual voxel. Recently, an algorithm for random-effects (RDFX) inference on KDE (termed multi-level kernel density estimation, MKDE) has been proposed (Wager et al., 2007b) which rests on a similar concept as the new random effects approach for ALE meta-analyses (Eickhoff et al., 2009). Both are based on summarising all foci reported for any given study in a single image [the “modelled activation” (MA) map in ALE and “comparison indicator maps” (CIM) in MKDE]. These are then combined across studies, and inference is subsequently sought on those voxels where MA maps (ALE) or CIMs (MKDE) overlap stronger as would be expected if there were a random spatial arrangement, i.e., no correspondence between studies.

The null-distributions for this inference on spatially continuous statistical maps computed by non-linear operations are estimated in both algorithms by using permutation procedures. More precisely, MDKE randomly redistributes the cluster centres throughout the grey matter of the brain, performs the same analysis as computed for the real data and uses the ensuing peak heights to derive FWE corrected voxel-level thresholds. This approach to statistical inference in voxel-wise meta-analysis data has the major advantage that the estimated null-distribution will reflect the spatial continuity of the statistical field of interest without requiring an exact parameterisation of the (non-linear) nature of its properties. That is, algorithms based on random relocation of foci within each experiment, generation of summary images per experiment and quantification of the convergence across these may empirically provide a good estimation on the distribution of statistical features of interest such as cluster size above a given threshold or maximum peak height (Wager et al., 2007b). Here we use this approach to derive a null-distribution of these two measures against which the results of the performed ALE analysis can then be compared for providing FWE or cluster-level corrected statistical inference.

A new approach to coordinate-based meta-analysis has very recently been proposed as signed difference map analysis (SDM; Radua et al., 2010, Radua and Mataix-Cols, 2009). SDM sums the voxel-wise activation probabilities of foci modelled as 3D Gaussian distributions like ALE, instead of counting closely activating experiments like MKDE. As opposed to ALE and MKDE, SDM emphasises foci that were derived from conservatively corrected analyses. Similar to MKDE, it avoids too high probability values through neighbouring foci in a same experiment by limiting maximum values. This feature has also very recently been introduced to ALE (Turkeltaub et al., in press) and was incorporated in the present work. Another novel feature of SDM consists in holding positive and negative values in a same map which prevents spurious overlap between those two categories of localization information rarely occurring in ALE. Analogous to MKDE and unrevised ALE implementations, significant convergence is distinguished from noise by computing a whole-brain null-distribution using a permutation procedure. Finally, SDM corrects results by FDR, unlike contemporary variants of ALE and MKDE. Taken together, ALE, MKDE and SDM all represent suitable methods for coordinate-based meta-analysis.

In the present report, we will address two remaining drawbacks of the widely used ALE algorithm. First, the null-distribution for statistical inference, reflecting a random spatial association between experiments is currently based on a permutation procedure. This approach, which has been part of all meta-analysis algorithms proposed up to now, however, has two disadvantages. First, drawing a sufficient estimate of the null-distribution may be rather time-consuming, given that a large number of permutations are required to sufficiently reflect the possible associations between experiments. If the test is underpowered, however, experimental ALE-values may exceed those observed under the null-distribution, indicating an insufficient estimation of its upper tail. Second, statistical inference on the ensuing p- or Z-maps is currently based on either uncorrected thresholds or correction for multiple comparisons using the false discovery rate (FDR) approach (Genovese et al., 2002). Whilst using uncorrected thresholds provides no protection against false positives in a situation of multiple comparisons, FDR is likewise not the optimal approach. It has rather been noted that in cases where the underlying signal is continuous (such as in neuroimaging meta-analyses), controlling the false discovery rate is not equivalent to controlling the false discovery rate of activations (Chumbley and Friston, 2009). FDR corrected inference is therefore not appropriate for inferences on the topological features (regions of activation) of a statistical map as derived from ALE meta-analysis. Finally, in order to avoid spurious clusters consisting of only a few voxels, both of these procedures are commonly combined with an (arbitrary) extent threshold, suppressing clusters that are smaller than, e.g., 50 contiguous supra-threshold voxels. However, this subjective approach neither corresponds to statistical testing nor allows inference on the significance of regional activations. To overcome these limitations and to provide a more valid framework for ALE meta-analyses, we here present an analytical approach for deriving the null-distribution reflecting a random spatial association between experiments and propose algorithms for family-wise error correction and cluster-level inference on ALE data.

Section snippets

Objective

Activation likelihood estimation (ALE) meta-analysis aims at determining above-chance convergence of activation probabilities between experiments (i.e., not between foci). To this end, ALE seeks to refute the null-hypothesis that the foci of experiments are spread uniformly throughout the brain. More specifically, ALE delineates where in the brain the convergence across all included imaging studies is higher than it would be expected if results were independently distributed (Eickhoff et al.,

Revised approach for computing the null-distribution

The analytical null-distributions for inference on both datasets were compared to those derived from the random sampling algorithm described by Eickhoff et al. (2009). For the latter approach we used between 106 and 1012 random samples. One of the most dramatic differences pertained to the computation time needed to compute the null-distribution. For the face perception dataset, 106 samples were computed in about a minute, 108 samples in about 30 min and 1010 samples about 24 h whilst 1012

Discussion

Here we outlined a revision of the activation likelihood estimation (ALE) algorithm for coordinate-based meta-analyses of neuroimaging experiments that address two potential shortcomings of the current implementation of this approach. These pertain to how the null-distribution reflecting the expected ALE values under the assumption of spatial independence is computed and to the methods for correcting the statistical inference for multiple comparisons. In summary, we demonstrated in an

Acknowledgments

We acknowledge funding by the Human Brain Project (R01-MH074457-01A1; PTF, ARL, SBE), the DFG (IRTG 1328; SBE, DB) and the Helmholtz Initiative on Systems-Biology “The Human Brain Model” (SBE).

References (49)

  • D.J. Holt et al.

    Increased medial temporal lobe activation during the passive viewing of emotional and neutral facial expressions in schizophrenia

    Schizophr. Res.

    (2006)
  • M.L. Kesler-West et al.

    Neural substrates of facial emotion processing using fMRI

    Brain Res. Cogn. Brain Res.

    (2001)
  • F. Kranz et al.

    Face perception is modulated by sexual preference

    Curr. Biol.

    (2006)
  • M.L. Kringelbach et al.

    Neural correlates of rapid reversal learning in a simple model of human social interaction

    Neuroimage

    (2003)
  • R.A. Poldrack et al.

    Guidelines for reporting an fMRI study

    Neuroimage

    (2008)
  • M. Raemaekers et al.

    Test-retest reliability of fMRI activation during prosaccades and antisaccades

    Neuroimage

    (2007)
  • M.L. Schroeter et al.

    Towards a nosology for frontotemporal lobar degenerations-a meta-analysis involving 267 subjects

    Neuroimage

    (2007)
  • P.E. Turkeltaub et al.

    Meta-analysis of the functional neuroanatomy of single-word reading: method and validation

    Neuroimage

    (2002)
  • P. Vuilleumier et al.

    Effects of attention and emotion on face processing in the human brain: an event-related fMRI study

    Neuron

    (2001)
  • B. Wild et al.

    Why are smiles contagious? An fMRI study of the interaction between perception of facial affect and facial movements

    Psychiatry Res.

    (2003)
  • M.A. Williams et al.

    Differential amygdala responses to happy and fearful facial expressions depend on selective attention

    Neuroimage

    (2005)
  • Y. Benjamini et al.

    Controlling the false discovery rate-a practical and powerful approach to multiple testing

    J. R. Stat. Soc. B. Methodol.

    (1995)
  • M. Dapretto et al.

    Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders

    Nat. Neurosci.

    (2006)
  • F. Dolcos et al.

    Brain systems mediating cognitive interference by emotional distraction

    J. Neurosci.

    (2006)
  • Cited by (1055)

    • Label-based meta-analysis of functional brain dysconnectivity across mood and psychotic disorders

      2024, Progress in Neuro-Psychopharmacology and Biological Psychiatry
    View all citing articles on Scopus
    View full text