Original Research Article
Optimizing radiosurgery with photons for ocular melanoma

https://doi.org/10.1016/j.phro.2018.06.001Get rights and content
Under a Creative Commons license
open access

Abstract

Background and purpose

Photon radiotherapy has been established for the treatment of ocular melanoma (OM). Here we investigate the planning qualities of two different planning approaches, a combination of dynamic conformal arcs (DCA) complemented with multiple non-coplanar static intensity-modulated (IMRT) fields (DCA-IMRT), and volumetric modulated arc therapy (VMAT) in combination with automated planning (AP).

Materials and methods

Thirteen consecutive patients treated for ocular melanoma with curative intent on a Linac-based radiosurgery system were analyzed. Fractionated stereotactic radiosurgery (fSRS) was applied using 50 Gy in 5 fractions using the combination of DCA-IMRT. Plans were reviewed and the thirteen cases were compared to plans obtained with optimized automated VMAT based on a set of 28 distinct patients treated with DCA-IMRT who were selected to generate the AP model for the prediction of dose volume constraints.

Results

Overall, plan quality of DCA-IMRT was superior to AP with VMAT. PTV coverage did not exceed 107% in any case treated with DCA-IMRT, compared to seven patients with VMAT. The median PTV covered by >95% was 98.3% (91.9%–99.7%) with DCA-IMRT, compared to 95.1% (91.5%–97.9%) (p < 0.01) with VMAT. The median mean dose delivered to the treated eye was 22.4 Gy (12.3 Gy–33.3 Gy) with DCA-IMRT compared to 27.2 Gy (15.5 Gy–33.7 Gy) (p < 0.01). Dose to the ipsilateral lacrimal gland and the ipsilateral optic nerve were comparable for DCA-IMRT and VMAT, however, the dose to the lens was lower with DCA-IMRT compared to VMAT.

Conclusions

The combination of multiple arcs complemented with multiple IMRT fields sets the gold standard for fSRS of ocular melanoma for photon therapy.

Keywords

Melanoma
Uveal melanoma
Choroidal melanoma
Ocular melanoma
Stereotactic
Radiosurgery
SBRT
IMRT
VMAT
HybridArc
Automated planning

Cited by (0)