Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-29T00:17:16.542Z Has data issue: false hasContentIssue false

Multilocus genotyping of Cryptosporidium and Giardia in non-outbreak related cases of diarrhoea in human patients in Belgium

Published online by Cambridge University Press:  27 July 2009

T. GEURDEN*
Affiliation:
Laboratory of Veterinary Parasitology, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
B. LEVECKE
Affiliation:
Laboratory of Veterinary Parasitology, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, B-2018 Antwerp, Belgium
S. M. CACCIÓ
Affiliation:
Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
A. VISSER
Affiliation:
Laboratory of Veterinary Parasitology, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
G. DE GROOTE
Affiliation:
C.R.I. Medical Laboratory, Industriepark Zwijnaarde 3b, B-9052 Zwijnaarde, Belgium
S. CASAERT
Affiliation:
Laboratory of Veterinary Parasitology, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
J. VERCRUYSSE
Affiliation:
Laboratory of Veterinary Parasitology, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
E. CLAEREBOUT
Affiliation:
Laboratory of Veterinary Parasitology, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
*
*Corresponding author: Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium. Tel: +32 9 264 73 93. Fax: +32 9 264 74 96. E-mail: thomas.geurden@UGent.be

Summary

Stool samples from Belgian patients suffering from abdominal pain and/or diarrhoea were examined for Cryptosporidium and Giardia. Cryptosporidium-positive samples were genotyped using the 70 kDa heat shock protein and the 60 kDa glycoprotein (GP60) genes: C. hominis was identified in 54·2% and C. parvum in 45·8% of the samples. Sequencing at the GP60 locus indicated that subgenotype IbA10G2 of C. hominis and subgenotype IIaA15G2R1 of C. parvum were the most prevalent, although several other subgenotypes were identified. For Giardia, sequencing at the β-giardin, triose phosphate isomerase (TPI) and glutamate dehydrogenase (GDH) genes revealed assemblage B as the most prevalent (74·4%) in human patients. A high degree of heterogeneity was found, especially on the β-giardin gene, and to a lesser extent on the GDH gene. Furthermore, using a novel species-specific PCR based on the TPI gene, mixed infections with both assemblage A and B were detected in a large number (32·4%) of human patients, which might have important epidemiological implications.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alves, M., Xiao, L., Antunes, F. and Matos, O. (2006). Distribution of Cryptosporidium subtypes in humans and domestic and wild ruminants in Portugal. Parasitology Research 99, 287292.CrossRefGoogle ScholarPubMed
Amar, C. F. L., Dear, P. H., Pedraza-Diaz, S., Looker, N., Linnane, E. and McLauchlin, J. (2002). Sensitive PCR-restriction fragment length polymorphism assay for detection and genotyping of Giardia duodenalis in human feces. Journal of Clinical Microbiology 40, 446452.CrossRefGoogle ScholarPubMed
Caccio, S. M., Thompson, R. C. A., McLauchlin, J. and Smith, H. V. (2005). Unravelling Cryptosporidium and Giardia epidemiology. Trends in Parasitology 21, 430437.CrossRefGoogle ScholarPubMed
Cacciò, S. M. and Ryan, U. (2008 a). Molecular epidemiology of giardiasis. Molecular and Biochemical Parasitology 160, 7580.CrossRefGoogle ScholarPubMed
Cacciò, S. M., Beck, R., Lalle, M., Marinculic, A. and Pozio, E. (2008 b). Multilocus genotyping of Giardia duodenalis reveals striking differences between assemblages A and B. International Journal for Parasitology 38, 15231531.CrossRefGoogle ScholarPubMed
Claerebout, E., Casaert, S., Dalemans, A.-C., De Wilde, N., Levecke, B., Vercruysse, J. and Geurden, T. (2008). Giardia and other intestinal parasites in different dog populations in Northern Belgium. Veterinary Parasitology 161, 4146.CrossRefGoogle ScholarPubMed
Feltus, D. C., Giddings, C. W., Schneck, B. L., Monson, T., Warshauer, D. and McEvoy, J. M. (2006). Evidence supporting zoonotic transmission of Cryptosporidium spp. in Wisconsin. Journal of Clinical Microbiology 44, 43034308.CrossRefGoogle ScholarPubMed
Gatei, W., Das, P., Dutta, P., Sen, A., Cama, V., Lal, A. A. and Xiao, L. (2007). Multilocus sequence typing and genetic structure of Cryptosporidium hominis from children in Kolkata, India. Infection, Genetics and Evolution 7, 197205.CrossRefGoogle ScholarPubMed
Geurden, T., Claerebout, E., Vercruysse, J. and Berkvens, D. (2004). Estimation of diagnostic test characteristics and prevalence of Giardia duodenalis in dairy calves in Belgium using a Bayesian approach. International Journal for Parasitology 34, 11211127.CrossRefGoogle ScholarPubMed
Geurden, T., Geldhof, P., Levecke, B., Martens, C., Berkvens, D., Casaert, S., Vercruysse, J. and Claerebout, E. (2008). Mixed Giardia duodenalis assemblage A and E infections in calves. International Journal for Parasitology 38, 259264.CrossRefGoogle Scholar
Griffiths, J. K. (1998). Human cryptosporidiosis: epidemiology, transmission, clinical disease, treatment, and diagnosis. Advances in Parasitology 40, 3785.CrossRefGoogle ScholarPubMed
Guerrant, R. L. (1997). Cryptosporidiosis: an emerging highly infectious threat. Emerging Infectious Diseases 3, 5158.CrossRefGoogle ScholarPubMed
Homan, W. L., Gilsing, M., Bentala, H., Limper, L. and van Knapen, F. (1998). Characterization of Giardia duodenalis by polymerase-chain-reaction fingerprinting. Parasitology Research 84, 707714.CrossRefGoogle ScholarPubMed
Homan, W. L. and Mank, T. G. (2001). Human giardiasis: genotype linked differences in clinical symptomatology. International Journal for Parasitology 31, 822826.CrossRefGoogle ScholarPubMed
Hoque, M. E., Hope, V. T., Kjellstrom, T., Scragg, R. and Lay-Yee, R. (2002). Risk of giardiasis in Aucklanders: a case-control study. International Journal of Infectious Diseases 6, 191197.CrossRefGoogle ScholarPubMed
Hoque, M. E., Hope, V. T., Scragg, R. and Kjellström, T. (2003). Children at risk of giardiasis in Auckland: a case-control analysis. Epidemiology and Infection 131, 655662.CrossRefGoogle Scholar
Hunter, P. R., Hughes, S., Woodhouse, S., Syed, Q., Verlander, N. Q., Chalmers, R. M., Morgan, K., Nichols, G., Beeching, N. and Osborn, K. (2004). Sporadic cryptosporidiosis case-control study with genotyping. Emerging Infectious Diseases 10, 12411249.CrossRefGoogle ScholarPubMed
Lalle, M., Pozio, E., Capelli, G., Bruschi, F., Crotti, D. and Caccio, S. M. (2005). Genetic heterogenity at the ß-giardin locus among human and animal isolates of Giardia duodenalis and identification of potentially zoonotic subgenotypes. International Journal for Parasitology 35, 207213.CrossRefGoogle Scholar
Peng, M. M., Matos, O., Gatei, W., Das, P., Stantic-Pavlinic, M., Bern, C., Sulaiman, I. M., Glaberman, S., Lal, A. A. and Xiao, L. (2001). A comparison of Cryptosporidium subgenotypes from several geographic regions. Journal of Eukaryotic Microbiology (Suppl.) 28S31S.Google ScholarPubMed
Spano, F., Putignani, L., McLaughlin, J., Casemore, D. P. and Crisanti, A. (1997). PCR-RFLP analysis of the Cryptosporidium occyst wall protein (COWP) gene discriminates between C. wrairi and C. parrum, and between C. parrum isolates of human and animal origin. FEMS Microbiology Letters 150, 209217.CrossRefGoogle Scholar
Sulaiman, I. M., Fayer, R., Bern, C., Gilman, R. H., Trout, J. M., Schantz, P. M., Das, P., Lal, A. A. and Xiao, L. (2003). Triosephosphate isomerase gene characterization and potential zoonotic transmission of Giardia duodenalis. Emerging Infectious Diseases 9, 14441452.CrossRefGoogle ScholarPubMed
Sulaiman, I. M., Hira, P. R., Zhou, L., Al-Ali, F. M., Al-Shelahi, F. A., Shweiki, H. M., Iqbal, J., Khalid, N. and Xiao, L. (2005). Unique endemicity of cryptosporidiosis in children in Kuwait. Journal of Clinical Microbiology 43, 28052809.CrossRefGoogle ScholarPubMed
Thompson, R. C. A. and Monis, P. T. (2004). Variation in Giardia: implications for taxonomy and epidemiology. Advances in Parasitology 58, 69137.CrossRefGoogle ScholarPubMed
van der Giessen, J. W., de Vries, A., Roos, M., Wielinga, P., Kortbeek, L. M. and Mank, T. G. (2006). Genotyping of Giardia in Dutch patients and animals: a phylogenetic analysis of human and animal isolates. International Journal for Parasitology 36, 849858.CrossRefGoogle ScholarPubMed
Wielinga, C. M. and Thompson, R. C. (2007). Comparative evaluation of Giardia duodenalis sequence data. Parasitology 134, 17951821.CrossRefGoogle ScholarPubMed
Wielinga, P. R., de Vries, A., van der Goot, T. H., Mank, T., Mars, M. H., Kortbeek, L. M. and van der Giessen, J. W. (2008). Molecular epidemiology of Cryptosporidium in humans and cattle in The Netherlands. International Journal for Parasitology 38, 809817.CrossRefGoogle ScholarPubMed
Xiao, L., Zhou, L., Santin, M., Yang, W. and Fayer, R. (2007). Distribution of Cryptosporidium parvum subtypes in calves in eastern United States. Parasitology Research 100, 701706.CrossRefGoogle ScholarPubMed
Zintl, A., Proctor, A. F., Read, C., Dewaal, T., Shanaghy, N., Fanning, S. and Mulcahy, G. (2008). The prevalence of Cryptosporidium species and subtypes in human faecal samples in Ireland. Epidemiology and Infection 12, 18.Google Scholar