Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-27T09:35:19.428Z Has data issue: false hasContentIssue false

Isolation and characterization of the components of the sodium pump

Published online by Cambridge University Press:  17 March 2009

Peter Leth Jørgensen
Affiliation:
Institute of Physiology, University of Aarhus, Denmark

Extract

A satisfactory understanding of the functions of the sodium pump, the system responsible for the active transport of sodium and potassium, require the isolation and characterization of its protein and lipid components which are integrated in the structure of the cell membrane. The enzyme system (Na+ + K+)-ATPase, is located in membrane fragments and behaves in the test tube like the transport system in the intact cell membrane (Skou,1957) Purified preparations of this enzyme will contain some, if not all, of the components of the sodium pump.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albers, R. W. (1967). Biochemical aspects of active transport. A. Rev. Biochem. 36, 727.CrossRefGoogle Scholar
Albers, R. W. & Koval, G. J. (1973). Na, K-ATPase of Electrophorus electric organ. VIII.Monovalent cations regulating phosphatase activity. J. biol. Chem. 248, 777.Google Scholar
Albers, R. W., Koval, J. & Siegel, G. J. (1968). Interaction of ouabain and other cardioactive steroids with Na, K-ATPase. Mol. Pharmacol. 4, 324.Google Scholar
Alexander, D. R. & Rodknight, R. (1970). Separation at neutral pH of a 32P labelled membrane protein associated with the Na+ + Mg2+ ion activated ATPase from ox brain. Biochem. J. 119, 44P.Google Scholar
Ascari, A. & Rao, S. N. (1972). Na, K-ATPase complex, effect of anticomplex antibody on the partial reactions catalysed by the complex. Biochem. biophys. Res. Commun. 49, 1323.Google Scholar
Atkinson, A., Gatenby, A. D. & Lowe, A. G. (1971). Subunit structure of the Na, K-dependent transport ATPase. Nature (New Biol.) 233, 145.Google Scholar
Banerjee, S. P., Dwosh, I. L., Khanna, V. K. & Sen, A. K. (1970). Solubilization of guinea pig kidney Na, K-ATPase with Lubrol and Triton-X-100. Biochim. biophys. Acta 211, 345.Google Scholar
Banerjee, S. P. & Wong, S. M. E. (1972). Effect of potassium on sodium dependent ADP—ATP exchange activity in kidney microsomes. J. biol. Chem. 247, 5409.CrossRefGoogle Scholar
Barnett, R. E. (1970). Effect of monovalent cations on the ouabain inhibition of the Na, K-ATPase. Biochemistry, N.Y. 9, 4644.Google Scholar
Baker, P. F. & Willis, J. S. (1972). Binding of the cardiac glycoside ouabain to intact cells. Physiol. 224, 441.Google Scholar
Bastide, F., Meissner, G., Fleischer, S. & Post, R. L. (1973). Similarity of the active site of phosphorylation of the ATPase for transport of Na and K in kidney to that for transport of Ca in the sarcoplasmic reticulum of muscle. J. biol. Chem. 248, 8485.CrossRefGoogle Scholar
Boardman, L. J., Lamb, J. F. & McCall, D. (1972). Uptake of ouabain and Na pump turnover rates in cells cultured in ouabain. J. Physiol. 225, 619.CrossRefGoogle Scholar
Bonting, S. L. (1970). Na, K-ATPase and cation transport. In Membranes and Ion Transport, vol. I (ed. Bittar, E. E.), p. 257. New York: Wiley.Google Scholar
Capaldi, R. A. & Vanderkooi, G. (1972). The low polarity of many membrane proteins.Proc. natn. Acad. Sd. U.S.A. 69, 930.Google Scholar
Carsten, M. E. (1963). Actin, its amino-acid composition and its reaction with iodoacetate. Biochemistry, N.Y. 2, 32.Google Scholar
Chan, P. C. (1967). Reversible effect of SDS on human erythrocyte membrane ATPase. Biochim.biophys. Acta 135, 53.CrossRefGoogle Scholar
Charnock, J. S., Cook, D. A., Almeida, A. F. & To, R. (1973). Activationenergy and phospholipid requirements of membrane bound ATPase. Archs Biochem. Biophys. 159, 393.CrossRefGoogle Scholar
Charnock, J. S., Cook, D. A. & Opit, L. J. (1971). Role of energized state of Na, K-ATPase in the sodium pump. Nature (New Biol.) 233, 171.Google Scholar
Charnock, J. S. & Post, R. L. (1963). The preparation and properties of a cation stimulated ATPase from kidney cortex. Aust. J. exp. Biol. med. Sci. 41, 547.Google Scholar
Chignell, C. F. & Titus, E. (1969). Identification of components of Na, K-ATPase by double isotopic labelling and electrophoresis. Proc. natn. Acad. Sci. U.S.A. 64, 324.Google Scholar
Clausen, T. & Hansen, O. (1974). Ouabain binding and Na—K transport in rat muscle cells and adipocytes. Biochim. biophys. Acta 345, 387.Google Scholar
Coleman, R. (1973). Membrane-bound enzymes and membrane ultrastructure. Biochim. biophys. Acta 300, I.Google Scholar
Collins, R. C. & Albers, R. W. (1972). The phosphoryl acceptor protein of Na, K-ATPase from various tissues. J. Neurochem. 19, 1209.Google Scholar
Dhams, A. S. & Boyer, P. D. (1973). Occurrence and characteristics of 18O-exchange reactions catalysed by Na, K-ATPase. J. biol. Chem. 248, 3155.CrossRefGoogle Scholar
DeDuve, C. & Baudhuin, P. (1965). Perioxisomes, microbodies and related particles. Physiol. Rev. 46, 323.Google Scholar
Ellory, J. C. & Keynes, R. D. (1969). Binding of tritiated digoxin to human red cell ghosts. Nature 221, 776.Google Scholar
Emmelot, P. & Bos, C. J. (1968). On the lipid dependence of some phosphohydrolases of isolated rat liver plasma membranes. Biochim. biophys. Acta 150, 341.Google Scholar
Erdmann, E. & Schoner, W. (1973 a). Ouabain receptor interactions in Na, K-ATPase preparations from different tissues and species. Biochim.biophys. Acta 307, 386.Google Scholar
Erdmann, E. & Schoner, W. (1973 b). On the stability of the ouabain receptor against physical treatment, hydrolases and SH reagents. Biochim. biophys. Acta 330, 316.Google Scholar
Fahn, S., Koval, G. J. & Albers, R. W. (1966). Na, K-ATPase of Electrophorus electric organ. I. An associated Na-activated transphosphorylation. J. biol. Chem. 241, 1882.CrossRefGoogle Scholar
Formby, B. (1973). The effect of DOC on rat brain microsomes and microsomal Na, K-ATPase. Brain Res. 52, 345.Google Scholar
Fukushima, Y. & Tonomura, Y. (1973). Two kinds of high energy phosphorylated intermediate with and without bound ADP in the reaction of Na, K-ATPase. J. Biochem. Tokyo 74, 135.Google Scholar
Gaylor, J. L. & Delwicke, C. V. (1969). Removal of nonionic detergents from proteins by chromatography on sephadex LH-zo. Anal. Biochem. 28, 361.Google Scholar
Gitler, C. (1972). Plasticity of biological membranes. A. Rev. Biophys. Bioeng. I, 51.Google Scholar
Glynn, I. M. (1968). Membrane ATPase and cation transport. Br. med. Bull. 24, 165.Google Scholar
Glynn, I. M. & Karlish, S. J. D. (1974). A. Rev. Physiol. (in the Press).Google Scholar
Glynn, I. M., Karlish, S. J. D., Cavieres, J. D., Ellory, J. C., Lew, V. L. & Jørgensen, P. L. (1974). The effects of antiserum to Na, K-ATPase on the ion transporting and hydrolytic activities of the enzyme. Ann. N.Y. Acad. Sci. (in the Press).CrossRefGoogle Scholar
Goldman, S. S. & Albers, R. W. (1973). Na, K-ATPase of Electrophorus electric organ. IX.The role of phospholipids. J. blot. Chem. 248, 867.Google Scholar
Grisham, C. M. & Barnett, R. E. (1972). The interrelationship of membrane and protein structure in the functioning of Na, K-ATPase. Biochim. biophys. Acta 266, 613.Google Scholar
Guidotti, G. (1972). Membrane proteins. A. Rev. Biochem. 41, 731.CrossRefGoogle Scholar
Hannes, E. G. & Hilborn, D. A. (1971). Steady state kinetics of soluble and membrane-bound mitochondrial ATPase. Biochim. biophys. Acta 233, 580.Google Scholar
Hansen, O. (1971). The relationship between G-strophanthin binding capacity and ATPase activity in plasma membrane fragments from ox brain. Biochim. biophys. Acta 233, 122.Google Scholar
Hansen, O., Jensen, J. & Nørby, J. G. (1971). Mutual exclusion of ATP, ADP and G-strophantin binding to Na, K-ATPase. Nature (New Blol.) 234, 122.Google Scholar
Hansen, O. & Skou, J. C. (1973). The influence of the concentration of Mg, P1, K, Na, and tris on (Mg+P1) supported G-strophanthin binding to Na, K-ATPase from ox brain. Biochim. biophys. Acta 311, 51.Google Scholar
Harris, W. E., Swanson, P. D. & Stahl, W. L.Ouabain binding sites and the Na, K-ATPase of brain microsomal membranes. Biochim. biophys. Acta 298, 680–9.Google Scholar
Hart, W. M. & Titus, E. O. (1973) Sulfhydryl groups of Na, K-ATPase. Protection by physiological ligands and exposure by phosphorylation. J. biol. Chem. 248, 4674.Google Scholar
Hasselbach, W., Makinose, M. & Migala, A. (1973). Calcium transport and ATP turnover in the sarcoplasmic membrane. In Mechanisms in Bloenergetics (ed. Azzone, G. F. et al. ), p. 219. New York: Academic Press.Google Scholar
Hegyvary, C. & Post, R. L. (1971). Binding of ATP to Na, K-ATPase. J. blot. Chem. 246, 5234.Google Scholar
Hendler, E. D., Torretti, J. & Epstein, F. H. (1971). The distribution of Na, K-ATPase in medulla and cortex of the kidney. J. clin. Invest. 50, 1329.Google Scholar
Hendler, E. D., Torretti, J., Kupor, L. & Epstein, F. H. (1972). Effectsof adrenalectomy and hormonal replacement on Na, K-ATPase in renal tissue. Am. J. Physiol. 222, 754.CrossRefGoogle Scholar
Hoffman, J. F. & Ingram, C. J. (1969). Cation transport and the binding of ouabain to intact human red blood cells. Proc. First mt. Symp. on Metabolism and Permeability of Erythrocytes and Thrombocytes. p. 420. Stuttgart: Thieme.Google Scholar
Hokin, L. E. & Dahl, J. L. (1972). The sodium—potassium adenosinetriphosphatase. In Metabolic Transport, vol. VI (ed. Hokin, L. E), p. 269. New York: Academic Press.Google Scholar
Hokin, L. E., Dahl, J. L., Deupree, J. D., Dixon, J. F., Hackney, J. F. & Perdue, F. (1973). Studies on the characterization of Na, K-ATPase. X. Purification of the enzyme from the rectal gland of Squalus Acanthias. J. biol. Chem. 248, 2593.Google Scholar
Hokin, L. E. & Hexum, T. D. (1972). Studies on the characterization of Na, K-ATPase. IX.On the role of phospholipids in the enzyme. Archs Biochem. Biophys. 151, 453.Google Scholar
Jacobs, E. E., Kirkpatrick, F. H., Andrews, E. C., Cunningham, W. & Crane, F. L. (1966). Lipid-free soluble cytochrome oxidase. Purification, properties and reaction characteristics.Biochern. biophys. Res. Commun. 25, 96.Google Scholar
Jampol, L. M. & Epstein, F. H. (1970). Na, K-ATPase and osmotic regulation by fishes. Am. J. Physiol. 218, 607.CrossRefGoogle Scholar
Jørgensen, P. L. (1968). The effect of adrenalectomy and the supply of sodium on Na, K-ATPasein rat kidney. Biochim. biophys. Acta 151, 212.Google Scholar
Jørgensen, P. L. (1969). Effect of aldosterone on the activity of Na, K-ATPase in kidneys of adrenalectomized rats. Biochim. biophys. Acta 192, 326.Google Scholar
Jørgensen, P. L. (1972 a). Purification of Na, K-ATPase from the outer medulla of mammalian kidney. In Role of Membranes in Secretory Processes (ed. Bolis, L., Keynes, R. D. and Wilbrandt, W.), p. 247. Amsterdam: North Holland.Google Scholar
Jørgensen, P. L. (1972 b). The role of aldosterone in the regulation of Na, K-ATPase inrat kidney. J. Steroid. Biochem. 3, 181.Google Scholar
Jørgensen, P. L. (1974 a). Purification of Na, K-ATPase from the outer medulla of mammalian kidney after selective removal of membrane components by SDS. Biochim. biophys. Acta. 356, 36.Google Scholar
Jørgensen, P. L. (1974 b). Estimation of the purity of Na, K-ATPase and of the molecular weight and polypeptide content per enzyme unit in preparations from the outer medulla of rabbit kidney. Biochim. biophys. Acta. 356, 53.Google Scholar
Jørgensen, P. L. (1974 c). Isolation of Na, K-ATPase. Methods in Enzymology, 32 (in the Press).CrossRefGoogle Scholar
Jørgensen, P. L. (1974 d). Techniques for the study of steroid effects on Na, K-ATPase. Methods in Enzymology, 36 (in the Press).Google Scholar
Jørgensen, P. L. (1974 e). Mechanism of the inhibition of the sodium pump by antibody to Na, K-ATPase. Ann. N.Y. Acad. Sci. (in the Press).Google Scholar
Jørgensen, P. L., Hansen, O., Glynn, I. M. & Cavieres, J. D. (1973). Antibodies to pig kidney Na, K-ATPase inhibit the Na pump in humanred cells provided they have access to the inner surface of the cell membrane. Biochim. biophys. Acta 291, 795.Google Scholar
Jørgensen, P. L. & Skou, J. C. (1969). Preparation of highly active Na, K-ATPase from the outer medulla of rabbit kidney. Biochem. Biophys. Res. Commun. 37, 39.Google Scholar
Jørgensen, P. L. & Skou, J. C. (1971). The influence of detergents on the activity of Na, K-ATPase in preparations from the outer medulla of rabbit kidney. Biochim. biophys. Acta 233, 366.Google Scholar
Jørgensen, P. L., Skou, J. C. & Solomonson, L. P. (1971). Preparation by zonal centrifugation of highly active Na, K-ATPase from the outer medulla of rabbit kidney. Biochim. biophys. Acta 233, 381.Google Scholar
Kagawa, Y. (1972). Reconstruction of oxidative phosphorylation. Biochim. Biophys. Acta 265, 297.Google Scholar
Kahlenberg, A., Dulak, N. C., Dixon, J. F., Galsworthy, P. R. & Hokin, L. E. (1969). Studies on the characterization of Na, K-ATPase.V. Partial purification of the Lubrol solubilized beefbrain enzyme. Archs Biochem. Biophys. 131, 253.Google Scholar
Kahlenberg, A., Galsworthy, P. R. & Hokin, L. E. (1967). Na, K-ATPase: acylphosphate ‘intermediate’ shown to be glutamyl-phosphate. Science, N.Y. 157, 434.Google Scholar
Karlsson, K. A., Samuelson, B. E. & Steen, G. O. (1971). Lipid pattern and Na, K-ATPase activity in the salt gland of duck before and after adaptation to hypertonic saline. J. Membrane. Biol. 5, 169.Google Scholar
Katz, A. I. & Epstein, F. H. (1967). The physiological role of Na, K-ATPase in the active transport of cations across biological membranes. Israel J. Med. Sci. 3, 155.Google Scholar
Kawai, K., Nakao, M., Nakao, T. & Fujita, M. (1973). Purification and properties of Na, K-ATPase. III. Comparison of lipid and protein components of Na, K-ATPase preparations at various purification steps from pig brain. J. Biochem., Tokyo 73, 979.Google Scholar
Kepner, G. R. & Macey, R. I. (1968). Membrane enzyme systems, molecular size determinations by radiation inactivation. Biochim. biophys. Acta 163 188.Google Scholar
Kimelberg, H. K. & Papahadjopoulos, D. (1972). Phospholipid requirements for Na, K-ATPase: head-group specificity and fatty acid fluidity. Biochim. biophys. Acta 282, 277.Google Scholar
Kinsolving, C. R., Post, R. L. & Beaver, D. L. (1963). Na, K-ATPase activity in kidney. J. cell. comp. Physiol. 62, 85.CrossRefGoogle Scholar
Knowles, A. F. & Penefsky, H. S. (1972). The subunit structure of beef heart mitochondrial ATPase. Physical and chemical properties of isolated subunits. J. biol. Chem. 247, 6624.Google Scholar
Kreibich, G., Hubbard, A. L. & Sabatini, D. D. (1974). On the spatial arrangement of proteins in microsomal membranes from rat liver. J. Cell. Biol. 60, 616.Google Scholar
Kyte, J. (1971 a). Purification of Na, K-ATPase from canine renal medulla. J. biol. Chem. 246, 4157.Google Scholar
Kyte, J. (1971 b). Phosphorylation of a purified Na, K-ATPase. Biochem. biophys. Res.Commun. 43, 1259.Google Scholar
Kyte, J. (1972 a). Titration of the cardiac glycoside binding site of the Na, K-ATPase. J. biol. Chem. 247, 7634.Google Scholar
Kyte, J. (1972 b). Properties of the two polypeptides of Na, K-ATPase. J. biol. Chem. 247, 7642.CrossRefGoogle Scholar
Landowne, D. & Ritchie, J. M. (1970). The binding of ouabain to mammalian non-myelinatednerve fibers. J. Physiol. 207, 529.Google Scholar
Lane, L. K., Copenhaver, J. H., Lindenmayer, G. E. & Schwartz, A. (1973). Purification and characterization of and ouabain binding to the transport ATPase from outer medulla of canine kidney. J. biol. Chem. 248, 7197.CrossRefGoogle Scholar
Lowey, S., Slayter, H. S., Weeds, A. G. & Baker, H. (1969). Substructureof the myosin molecule. I. Subfragments of myosin by enzymic degradation. J. molec. Biol. 42, 1.Google Scholar
MacLennan, D. H., Seeman, P., Iles, G. H. & Yip, C. C. (1971). Membraneformation by the ATPase of sarcoplasmic retidulum. J. biol. Chem. 246, 2702.Google Scholar
MacLennan, D. H., Yip, C. C., Iles, G. H. & Seeman, P. (1973). Isolationof sarcoplasmic reticulum proteins. Cold Spring Harb. Symp. quant. Biol 37, 469.Google Scholar
Martonosi, A. & Halpin, R. A. (1971). Sarcoplasmic reticulum. X. The protein composition of sarcoplasmic reticulum membranes. Archs Biochem. Biophys. 144, 66.Google Scholar
Matsui, H. & Schwartz, A. (1968). Mechanism of cardiac glycoside inhibition of the Na, K-ATPase from cardiac tissue. Biochim. biophys. Acta 151, 655.Google Scholar
Maunsbach, A. B. & Jørgensen, P. L., (1974). Ultrastructure of purified preparations of Na, K-ATPase from the outer medulla of the rabbit kidney. Proc. Eighth mt. Congr. Electr. Microsc. Australia (in the Press).Google Scholar
McConnell, D. C., Tzagoloff, A., MaClennan, D. H. & Green, D. E. (1966). Formation of membranes by purified cytochrome oxidase. J. biol. Chem. 241, 2373.CrossRefGoogle Scholar
Mizuno, N., Nagano, K., Nakao, T., Tashima, Y., Fujita, M. & Nakao, M. (1968). Approximation of molecular weight of Na, K-ATPase. Biochim. biophys. Acta 168,311.Google Scholar
Møller, O. J. (1971). Activation by freezing of Na, K-ATPase in a microsomal fraction from oxkidney cortex. Expl Cell Res. 68, 347.Google Scholar
Nagai, K. & Yoshida, H. (1966). Biphasic effects of nucleotides on potassium- dependent phosphatase. Biochim. biophys. Acta 128, 410Google Scholar
Nagano, K., Mizuno, N., Fujita, M., Tashima, Y., Nakao, T. & Nakao, M. (1967). On the possible role of the phosphorylated intermediate in the reaction mechanism of Na, K-ATPase. Biochim. biophys. Acta 143, 239.Google Scholar
Nakao, M., Nagano, K., Nakao, T., Mizuno, N., Tashima, Y., Fujita, M., Maeda, H. &Matsudaria, H. (1967). Molecular weight of Na, K-ATPase approximated by the radiation inactivation method. Biochem. biophys. Res. Commun. 29, 588.Google Scholar
Nakao, T., Nakao, M., Mizuno, N., Komatsu, Y. & Fujita, M. (1973 a). Purification and some properties of Na, K-ATPase. I. Solubilization and stability of Lubrol extracts. J. Biochem., Tokyo 73, 609.Google Scholar
Nakao, T., Nakao, M., Nagai, F., Kawai, K., Fujihara, Y., Hara, Y. & Fujita, M. (1963 b). Purification and some properties of Na, K-ATPase. II. Preparation with highspecific activity obtained using aminoethylcellulose chromatography. J. Biochem., Tokyo 73, 781.Google Scholar
Ne'eman, Z., Kahane, I. & Razin, S. (1971). Reconstruction of biological membranes. Biochim. biophys. Acta 249, 169.Google Scholar
Nelson, C. A. (1971). The binding of detergents to proteins. J. biol. Chem. 246, 3895.Google Scholar
Nordlie, R. C., Arion, W. J. & Glende, E. A. (1965). Liver microsomal glucose-6-phosphatase, inorganic pyrophosphatase, and pyrophosphateglucose glucose phosphotransferase. J. biol. Chem. 240, 3479.Google Scholar
Nørby, J. G. & Jensen, J. (1971). Binding of ATP to brain microsomal ATPase.Biochem. biophys. Acta 233, 104.Google Scholar
Nørby, J. G. & Jensen, J. (1974). Binding of ATP to Na, K-ATPase. Ann. N.Y. Acad.Sci. (in the Press).Google Scholar
Papahadjopoulos, D., Cowden, M. & Kimelberg, H. (1973). Role of cholesterol in membranes. Effects on phospholipid-protein interactions, membrane permeability and enzymatic activity. Biochim. biophys. Acta 330, 8.Google Scholar
Philippot, J. & Authier, M. H. (1973). Study of human red blood cell membrane using SDS.II. Effects of cold storage, EDTA and small DOC concentrations on ATPase activities. Biochim. biophys. Acta 298,887.Google Scholar
Pitt-Rivers, R. & Impiombato, F. S. A. (1968). Biochem. J. 109, 825Google Scholar
Post, R. L. & Kume, S. (1973). Evidence for an aspartyl-phosphate residue at the active site of Na, K-ATPase. J. biol. Chem. 248, 6993.Google Scholar
Post, R. L., Kume, S. & Rogers, T. N. (1973). Alternating paths of phosphorylation of the Na and K pump of plasma membranes. In Mechanisms in Bioenergetics (ed. Azzone, G. F et al. ), p. 203. New York: Academic Press.Google Scholar
Post, R. L., Sen, A. K. & Rosenthal, A. S. (1965). A phosphorylated intermediatein ATP dependent Na and K transport across kidney membranes. J. biol. Chem. 240, 1437.Google Scholar
Ratanabanangkoon, K., Dixon, J. F. & Hokin, L. E. (1973). Studies on the characterization of Na, K-ATPase. XI. Comparison of kinetic properties of the purified with the impure membrane bound enzyme from Squalus Achantias. Archs Biochem. Biophys. 156, 342.Google Scholar
Razin, S. (1972). Reconstitution of biological membranes. Biochim. biophys. Acta 265 241.Google Scholar
Repke, K. R. H. & Schö, R. (1973). Flip-flop model of Na, K-ATPase function. Acta biol. med. germ. 31, 19.Google Scholar
Roelofsen, B. & VanDeenen, L. L. M. (1973). Lipid requirements of membrane-bound ATPase. Studies on human erythrocyte ghosts. Eur. J. Biochem. 40, 245.Google Scholar
Saito, M. (1969). Kinetic studies on Na, K-ATPase. A. Rep. Biol. Works, 17, 15. (Faculty of Science, Osaka University, Toyonaka, Osaka, Japan.)Google Scholar
Samson, F. E. & Quinn, D. J. (1967). Na, K-ATPase in rat brain development. J. Neurochem. 14, 421.Google Scholar
Schmidt, U. & Dubach, U. C. (1969). Activity of Na, K-ATPase in the rat nephron. Pflügers Arch. ges. Physiol. 306 219.Google Scholar
Schmidt, U. & Dubach, U. C. (1971). Sensitivity of N, K-ATPase activity in various structures of the rat nephron. Europ. J. Clin. Invest. I, 307.Google Scholar
Schmidt, U. & Dubach, U. C. (1974) Induction of Na, K-ATPase in the proximal and distal convolution of the rat nephron after uninefrectomy. Pflügers Arch. ges. Physiol. 346, 39.Google Scholar
Schnebli, H. P., Vatter, A. E. & Abrams, A. (1970). Membrane ATPase from streptococcus faecalis. Preparation and homogeneity. J. biol. Chem. 245, 1115.Google Scholar
Schrier, S. L., Godin, D., Gould, R.G., Swyryd, B., Junga, I. & Seeger, M. (1971). Characterization of microvesicles produced by shearing of human erythrocyte membranes. Biochim. biophys. Acta 233, 26.Google Scholar
Schubert, D. (1970). Immunoglobulin biosynthesis. IV. Carbohydrate attachment to immunoglobulin subunits. J. molec. Biol. 51, 287.Google Scholar
Senior, A. E. (1973). The structure of mitochondrial ATPase. Biochim. biophys. Acta 301, 249.Google Scholar
Shamoo, E. A. & Albers, R. W. (1973). Na-selective ionophoric material derived from electric organ and kidney membranes. Proc. natn. Acad. Sci. U.S.A. 70, 1191.Google Scholar
Siegel, G. J. & Goodwin, B. B. (1972). Microsomal ouabain-binding factor in electroplax extracts. Proc. Soc. exp. Biol. Med. 140, 950.Google Scholar
Siegel, G. J. & Josephson, L. (1972). Ouabain reaction with microsomal Na, K-ATPase. Eur. J. Biochem. 25, 323.Google Scholar
Simpkins, H. & Hokin, L. E. (1973). Studies on the characterization of Na, K-ATPase. XIII. On the organization and role of phospholipids in the purified enzyme. Archs Biochem. Biophys. 159, 897.Google Scholar
Skou, J. C. (1957). The influence of some cations on an ATPase from peripheral nerves. Biochim. biophys. Acta 23, 394.Google Scholar
SKou, J. C. (1962). Preparation from mammalian brain and kidney of the enzyme system involved in transport of Na and K. Biochim. biophys. Acta 8, 314.Google Scholar
Skou, J. C. (1965). Enzymatic basis for active transport of Na and K across cell membrane. Physiol. Rev. 45, 596.Google Scholar
Skou, J. C., (1969). The role of membrane ATPase in the active transport of ions. In The Molecular Basis of Membrane Function (ed. Tosteson, D. C), p. 455. New Jersey: Prentice-Hall.Google Scholar
Skou, J. C. (1971). Sequence of steps in the Na, K-activated enzyme system in relation to Na and K transport. Current Topics in Bloenergetics 4, 357. New York: Academic Press.Google Scholar
Skou, J. C. (1972). The relationship of the Na, K-activated enzyme system to transport of Na and K across the cell membrane. Bioenergetics 4, 203.Google Scholar
Skou, J. C. (1974) Effect of ATP on the intermediary steps of the reaction of the Na, K-dependent enzyme system. III. Effect on the pNPPase activity of the system. Biochim. biophys. Acta 339, 258.Google Scholar
Stein, W. D., Lieb, W. R., Karlish, S. J. D. & Eilam, Y. (1973). A modelfor active transport of sodium and potassium ions as mediated by a tetrameric enzyme. Proc. natn. Acad. Sci. U.S.A. 70, 275.Google Scholar
Swanson, P. D., Bradford, H. F. & McIlwain, H. (1964). Stimulation and solubilization of the Na, K-ATPase of cerebral microsomes by surface-active agents. Biochem. J. 92, 235.CrossRefGoogle Scholar
Tanaka, R., Sakamoto, T. & Sakamoto, Y. (1971). Mechanism of lipid activation ofNa, K-ATPase and K-activated phosphatase of bovine cerebral cortex. J. Membrane Biol. 4, 42.Google Scholar
Tanaka, R. & Teruya, A. (1973). Lipid dependence of activity-temperature relationship of Na, K-ATPase. Biochim. biophys. Acta, 323, 584.Google Scholar
Taniguchi, K. & Iida, S. (1971). The binding of ouabain to Na, K-ATPase treated with phospholipase. Biochim. biophys. Acta 233, 831.Google Scholar
Taniguchi, K. & Iida, S. (1972). The effect of phospholipids on the apparent activation energy of Na, K-ATPase. Biochim. biophys. Acta 274, 536.Google Scholar
Tillack, T. W., Boland, R. & Martonosi, A. (1974). Ultrastructure of developing sarcoplasmic reticulum. J. biol. Chem. 249, 624.Google Scholar
Towle, D. W. & Copenhaver, J. H. (1970). Partial purification of a soluble Na, K-ATPase from rabbit kidney. Biochim. biophys. Acta 203, 124.Google Scholar
Uesugi, S., Dulak, N. C., Dixon, J. F., Hexum, T. D., Dahl, J. L., Perdue, J. F. & Hokin, L. E. (1971). Studies on the characterization of Na, K-ATPase. VI. Large scale partial purification and properties of a Lubrol-solubilized bovine brain enzyme. J. biol. Chem. 246, 531.Google Scholar
Verkleij, A. J., Zwaal, F. A., Roelofsen, B., Comfurius, P., Kastelijn, D. & Van, Deenen L. L. M. (1973). The asymmetric distribution of phospholipids in the human red cell membrane. Biochim. biophys. Acta 323, 178.Google Scholar
Weber, K. & Kuter, D. J. (1971). Reversible denaturation of enzymes by SDS. J. biol. Chem. 246, 4504.Google Scholar
Weltman, J. K. & Dowben, R. M. (1973). Relatedness among contractile and membrane proteins. Proc. natn. Acad. Sci. U.S.A. 70, 3230.Google Scholar
Whittam, R. & Wheeler, K. P. (1970). Transport across cell membranes. A. Rev. Physiol. 32, 21.Google Scholar
Williams, R. O. (1972). The phosphorylation and isolation of two erytrocyte membrane proteins. Biochem. biophys. Res. Commun. 47, 671.Google Scholar