Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T04:21:20.778Z Has data issue: false hasContentIssue false

27 - EBV gene expression and regulation

from Part II - Basic virology and viral gene effects on host cell functions: gammaherpesviruses

Published online by Cambridge University Press:  24 December 2009

Lawrence S. Young
Affiliation:
Cancer Research UK Institute for Cancer Studies, University of Birmingham Edgbaston, UK
John R. Arrand
Affiliation:
Cancer Research UK Institute for Cancer Studies, University of Birmingham Edgbaston, UK
Paul G. Murray
Affiliation:
Cancer Research UK Institute for Cancer Studies, University of Birmingham Edgbaston, UK
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

Epstein–Barr virus (EBV) is an extremely efficient virus infecting the majority of the world's adult population (Rickinson and Kieff, 2001). Following primary infection, EBV persists in the infected host as a lifelong asymptomatic infection. Early in the course of primary infection, EBV infects B-lymphocytes, although it is not known where B-lymphocytes are infected and whether this involves epithelial cells of the upper respiratory tract. To achieve long-term persistence in vivo, EBV colonizes the memory B-cell pool where it establishes latent infection, which is characterized by the expression of a limited subset of virus genes, known as the “latent” genes (Thorley-Lawson, 2001). There are several well-described forms of EBV latency, each of which is utilized by the virus at different stages of the virus life cycle and which are also reflected in the patterns of latency observed in the various EBV-associated malignancies (Rickinson and Kieff, 2001; Young and Murray, 2003). Furthermore, during its life cycle EBV must periodically enter the replicative cycle in order to generate infectious virus for transmission to other susceptible hosts, although it is also not clear whether this occurs in B-lymphocytes or in other cell types of the oropharynx (Rickinson and Kieff, 2001).

This chapter describes the EBV latency and replicative programs utilized by the virus as a means to understand how the virus infects and then establishes persistence in the host.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 461 - 489
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, G. J., Inman, G. J., Parker, B. D., Rowe, D. T., and Farrell, P. J. (1992). Cell growth effects of Epstein–Barr virus leader protein. J. Gen. Virol., 73, 1547–1551.CrossRefGoogle ScholarPubMed
Allday, M. J. and Farrell, P. J. (1994). Epstein–Barr virus nuclear antigen EBNA3C/6 expression maintains the level of latent membrane protein 1 in G1-arrested cells. J. Virol., 68, 3491–3498.Google ScholarPubMed
Arrand, J. R. (1992). Prospects for a vaccine against Epstein–Barr virus. Cancer J., 5, 188–193.Google Scholar
Artavanis-Tsakonas, S., Matsuno, K., and Fortini, M. E. (1995). Notch signaling. Science, 268, 225–232.CrossRefGoogle ScholarPubMed
Babcock, G. J. and Thorley-Lawson, D. A. (2000). Tonsillar memory B cells, latently infected with Epstein–Barr virus, express the restricted pattern of latent genes previously found only in Epstein–Barr virus-associated tumours. Proc. Natl Acad. Sci. USA, 97, 12250–12255.CrossRefGoogle Scholar
Babcock, G. J., Decker, L. L., Volk, M., and Thorley-Lawson, D. A. (1998). EBV persistence in memory B cellsin vivo. Immunity, 9, 395–404.CrossRefGoogle ScholarPubMed
Baer, R., Bankier, A. T., Biggin, M. D.et al. (1984). DNA sequence and expression of the B95–8 Epstein–Barr virus genome. Nature, 310, 207–211.CrossRefGoogle ScholarPubMed
Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism and function. Cell, 116, 281–297.CrossRefGoogle ScholarPubMed
Baumann, M., Feederle, R., Kremmer, E., and Hammerschmidt, W. (2000). Cellular transcription factors recruit viral replication proteins to activate the Epstein–Barr virus origin of lytic DNA replication, oriLyt. EMBO J., 18, 6095–6105.CrossRefGoogle Scholar
Baylis, S. A., Purifoy, D. J., and Littler, E. (1989). The characterisation of the EBV alkaline deoxyribonuclease cloned and expressed in E. coli. Nucl Acids Res., 17, 7609–7622.CrossRefGoogle Scholar
Bejarano, M. T. and Masucci, M. G. (1998). Interleukin-10 abrogates the inhibition of Epstein–Barr virus-induced B-cell transformation by memory T-cell responses. Blood, 92, 4256–4262.Google ScholarPubMed
Bellows, D. S., Howell, M., Pearson, C., Hazlewood, S. A., and Hardwick, J. M. (2002). Epstein–Barr virus BALF1 is a BCL-2-like antagonist of the herpesvirus antiapoptotic BCL-2 proteins. J. Virol., 76, 2469–2479.CrossRefGoogle ScholarPubMed
Biggin, M. D., Farrell, P. J., and Barrell, B. (1984). Transcription and DNA sequence of the BamHI L fragment of B95–8 Epstein–Barr virus. EMBO J., 3, 1083–1090.Google ScholarPubMed
Biggin, M. D., Bodescot, M., Perricaudet, M., and Farrell, P. J. (1987). Epstein–Barr virus gene expression in P3HR-1-superinfected Raji cells. J. Virol., 61, 3120–3132.Google Scholar
Bonnet, M., Guinebretiere, J. M., Kremmer, E.et al. (1999). Detection of Epstein-Barr virus in invasive breast cancers. J. Natl Cancer Inst., 91, 1376–1381.CrossRefGoogle ScholarPubMed
Borza, C. M. and Hutt-Fletcher, L. M. (1998). Epstein–Barr virus recombinant lacking expression of glycoprotein gp150 infects B cells normally but is enhanced for infection of epithelial cells. J. Virol., 72, 7577–7582.Google ScholarPubMed
Borza, C. M. and Hutt-Fletcher, L. M. (2002). Alternate replication in B-cells and epithelial cells switches tropism of Epstein–Barr virus. Nat. Med., 8, 594–599.CrossRefGoogle ScholarPubMed
Brooks, J. M., Croom-Carter, D., Leese, A., Tierney, R. J., Habeshaw, G., and Rickinson, A. B. (2000). Cytotoxic T-lymphocyte responses to a polymorphic Epstein–Barr virus epitope identify healthy carriers with co-resident viral strains. J. Virol., 74, 1801–1809.CrossRefGoogle Scholar
Brooks, L., Yao, Q. Y., Rickinson, A. B., and Young, L. S. (1992). Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1, and LMP2 transcripts. J. Virol., 66, 2689–2697.Google ScholarPubMed
Bryant, H. and Farrell, P. J. (2002). Signal transduction and transcription factor modification during reactivation of Epstein–Barr virus from latency. J. Virol., 76, 10290–10298.CrossRefGoogle ScholarPubMed
Cai, X., Schäfer, A., Lu, S.et al. (2006). Epstein–Barr virus microRNAs are evolutionarily conserved and differentially expressed. PloS Pathogens, 2, e23.CrossRefGoogle ScholarPubMed
Caldwell, R. G., Wilson, J. B., Anderson, S. J., and Longnecker, R. (1998). Epstein–Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity, 9, 405–411.CrossRefGoogle ScholarPubMed
Cameron, K. R., Stamminger, T., Craxton, M., Bodemer, W., Honess, R. W., and Fleckenstein, B. (1987). The 160,000-Mr virion protein encoded at the right end of the herpesvirus saimiri genome is homologous to the 140,000-Mr membrane antigen encoded at the left end of the Epstein–Barr virus genome. J. Virol., 61, 2063–2070.Google ScholarPubMed
Carbone, A., Gloghini, A., Zagonel, V.et al. (1995). The expression of CD26 and CD40 ligand is mutually exclusive in human T-cell non-Hodgkin's lymphomas/leukaemias. Blood, 86, 4617–4626.Google Scholar
Chan, K. H., Gu, Y. L., Ng, F.et al. (2003). EBV specific antibody-based and DNA-based assays in serologic diagnosis of nasopharyngeal carcinoma. Int. J. Cancer, 105, 706–709.CrossRefGoogle ScholarPubMed
Chen, H., Smith, P., Ambinder, R. F., and Hayward, S. D. (1999). Expression of Epstein–Barr virus BamHI-A rightward transcripts in latently infected B cells from peripheral blood. Blood, 93, 3026–3032.Google ScholarPubMed
Chen, H., Lee, J. M., Zong, Y. S.et al. (2001). Linkage between STAT regulation and Epstein–Barr virus gene expression in tumours. J. Virol., 75, 2929–2937.CrossRefGoogle Scholar
Chen, H., Hutt-Fletcher, L. M., Cao, L., and Hayward, S. D. (2003). A positive autoregulatory loop of LMP1 expression and STAT activation in epithelial cells latently infected with Epstein–Barr virus. J. Virol., 77, 4139–4148.CrossRefGoogle ScholarPubMed
Chen, M. R., Hsu, T. Y., Lin, S. W., Chen, J. Y., and Yang, C. S. (1991). Cloning and characterisation of cDNA clones corresponding to transcripts from the BamHI G region of the Epstein–Barr virus genome and expression of BGLF2. J. Gen. Virol., 72, 3047–3055.CrossRefGoogle Scholar
Chen, M. R., Chang, S. J., Huang, H., and Chen, J. Y. (2000). A protein kinase activity associated with Epstein–Barr virus BGLF4 phosphorylates the viral early antigen EA-Din vitro. J. Virol., 74, 3093–3104.CrossRefGoogle ScholarPubMed
Cheng, W. M., Chan, K. H., Chen, H. L.et al. (2002). Assessing the risk of nasopharyngeal carcinoma on the basis of EBV antibody spectrum. Int. J. Cancer, 97, 489–492.CrossRefGoogle ScholarPubMed
Chevallier-Greco, A., Manet, E., Chavrier, P., Mosnier, C., Daillie, J., and Sergeant, A. (1986). Both Epstein–Barr virus (EBV)-encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO J., 5, 3241–3249.Google Scholar
Chiang, A. K., Tao, Q., Srivastava, G., and Ho, F. C. (1996). Nasal NK- and T-cell lymphomas share the same type of Epstein–Barr virus latency as nasopharyngeal carcinoma and Hodgkin's disease. Int. J. Cancer, 68, 285–290.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Cho, Y., Ramer, J., Rivailler, P.et al. (2001). An Epstein–Barr-related herpesvirus from marmoset lymphomas. Proc. Natl Acad. Sci. USA, 98, 1224–1229.CrossRefGoogle ScholarPubMed
Clemens, M. J., Laing, K. G., Jeffrey, I. W.et al. (1994). Regulation of the interferon-inducible eIF-2a-protein kinase by small RNAs. Biochimie, 76, 770–778.CrossRefGoogle ScholarPubMed
Cohen, J. I. and Lekstrom, K. (1999). Epstein–Barr virus BARF1 protein is dispensable for B-cell transformation and inhibits α-interferon secretion from mononuclear cells. J. Virol., 73, 7627–7632.Google ScholarPubMed
Connolly, Y., Littler, E., Sun, N.et al. (2001). Antibodies to the Epstein–Barr virus thymidine kinase: a characteristic marker for the serological detection of nasopharyngeal carcinoma. Int. J. Cancer, 91, 692–697.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Cook, I. D., Shanahan, F., and Farrell, P. J. (1994). Epstein–Barr virus SM protein. Virology, 205, 217–227.CrossRefGoogle ScholarPubMed
Countryman, J. and Miller, G. (1985). Activation of expression of latent Epstein–Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proc. Natl Acad. Sci. USA, 82.CrossRefGoogle ScholarPubMed
Countryman, J., Jenson, H., Seibl, R., Wolf, H., and Miller, G. (1987). Polymorphic proteins encoded within BZLF1 of defective and standard Epstein–Barr viruses disrupt latency. J. Virol., 61, 3672–3679.Google ScholarPubMed
Cui, C., Griffiths, A., Li, G.et al. (2006). Prediction and identification of Herpes simplex virus 1-encoded microRNAs. J. Virol., 80, 5499–5508.CrossRefGoogle ScholarPubMed
Cullen, B. R. (2006). Viruses and microRNAs. Nature Genet. Suppl., 38, S25–S30.CrossRefGoogle ScholarPubMed
Dambaugh, T., Hennessy, K., Chamnankit, L., and Kieff, E. (1984). U2 region of Epstein–Barr virus DNA may encode Epstein–Barr nuclear antigen 2. Proc. Natl Acad. Sci. USA, 81, 7632–7636.CrossRefGoogle ScholarPubMed
Dardari, R., Khyatti, M., Benider, A.et al. (2000). Antibodies to the Epstein–Barr virus transactivator protein (ZEBRA) as a valuable biomarker in young patients with nasopharyngeal carcinoma. Int. J. Cancer, 86, 71–75.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Dawson, C. W., Eliopoulos, A. G., Dawson, J., and Young, L. S. (1995). BHRF1, a viral homologue of the Bcl-2 oncogene, disturbs epithelial cell differentiation. Oncogene, 9, 69–77.Google Scholar
Dawson, C. W., Dawson, J., Jones, R., Ward, K., and Young, L. S. (1998). Functional differences between BHRF1, the EBV-encoded Bcl-2 homologue, and bcl-2 in human epithelial cells. J. Virol., 72, 9016–9024.Google Scholar
Dawson, C. W., Eliopoulos, A. G., Blake, S. M., Barker, R., and Young, L. S. (2000). Identification of functional differences between prototype Epstein–Barr virus-encoded LMP1 and a nasopharyngeal carcinoma-derived LMP1 in human epithelial cells. Virology, 272, 204–217.CrossRefGoogle Scholar
Dawson, C. W., Tramountanis, G., Eliopoulos, A. G., and Young, L. S. (2003). Epstein–Barr virus latent membrane protein 1 (LMP1) activates the PI3-K/Akt pathway to promote cell survival and induce actin filament remodelling. J. Biol. Chem., 278, 3694–3704.CrossRefGoogle Scholar
de Jesus, O., Smith, P. R., Spender, L. C.et al. (2003). Updated Epstein–Barr virus (EBV) DNA sequence and analysis of a promoter for the BART (CST, BARF0) RNAs of EBV. J. Gen. Virol., 84, 1443–1450.CrossRefGoogle ScholarPubMed
De Souza, Y. G., Greenspan, D., Felton, J. R., Hartzog, G. A., Hammer, M., and Greenspan, J. S. (1989). Localisation of Epstein–Barr virus DNA in the epithelial cells of oral hairy leukoplakia by in situ hybridisation of tissue sections. N. Engl. J. Med., 320, 1559–1560.Google Scholar
Deacon, E. M., Pallesen, G., Niedobitek, G.et al. (1993). Epstein–Barr virus and Hodgkin's disease: transcriptional analysis of virus latency in the malignant cells. J. Exp. Med., 177, 339–349.CrossRefGoogle ScholarPubMed
Decaussin, G., Sbih-Lammali, F., Turenne-Tessier, M., Bouguermouh, A., and Ooka, T. (2000). Expression of BARF1 gene encoded by Epstein–Barr virus in nasopharyngeal carcinoma biopsies. Cancer Res., 60, 5584–5588.Google ScholarPubMed
Deng, Z., Chen, C. J., Chamberlin, M.et al. (2003). The CBP bromodomain and nucleosome targeting are required for Zta-directed nucleosome acetylation and transcription activation. Mol. Cell Biol., 23, 2633–2644.CrossRefGoogle ScholarPubMed
Dolan, A., Addison, C., Gatherer, D., Davison, A. J., and McGeoch, D. J., (2006). The genome of Epstein-Barr virus type 2 strain AG876. Virology, 350, 164–170.CrossRefGoogle ScholarPubMed
Donaghy, G. and Jupp, R. (1995). Characterisation of the Epstein–Barr virus proteinase and comparison with the human cytomegalovirus proteinase. J. Virol., 69, 1265–1270.Google Scholar
Du, T. and Zamore, P. D. (2005). MicroPrimer: the biogenesis and function of microRNA. Development, 132, 4645–4652.CrossRefGoogle ScholarPubMed
Edson, C. M. and Thorley-Lawson, D. A. (1981). Epstein–Barr virus membrane antigens: characterisation, distribution, and strain differences. J. Virol., 39, 172–184.Google Scholar
Edwards, R. H., Seillier-Moiseiwitsch, F., and Raab-Traub, N. (1999). Signature amino acid changes in latent membrane protein 1 distinguish Epstein–Barr virus strains. Virology, 261, 79–95.CrossRefGoogle ScholarPubMed
Eliopoulos, A. G. and Young, L. S. (1998). Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1). Oncogene, 16, 1731–1742.CrossRefGoogle Scholar
Eliopoulos, A. G., Stack, M., Dawson, C. W.et al. (1997). Epstein–Barr virus-encoded LMP1 and CD40 mediate IL-6 production in epithelial cells via an NF-κB pathway involving TNF receptor-associated factors. Oncogene, 14, 2899–2916.CrossRefGoogle ScholarPubMed
Eliopoulos, A. G., Gallagher, N. J., Blake, S. M., Dawson, C. W., and Young, L. S. (1999). Activation of the p38 mitogen-activated protein kinase pathway by Epstein–Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J. Biol. Chem., 274, 16085–16096.CrossRefGoogle ScholarPubMed
Eliopoulos, A. G., Davies, C., and Blake, S. M. (2002). The oncogenic protein kinase Tpl-2/Cot contributes to Epstein–Barr virus-encoded latent infection membrane protein 1-induced NF-κB signaling downstream of TRAF2. J. Virol., 76, 4567–4579.CrossRefGoogle ScholarPubMed
Eliopoulos, A. G., Caamano, J. H., Flavell, J. R.et al. (2003). Epstein–Barr virus-encoded latent infection membrane protein 1 regulates the processing of p100 NFκB2 to p52 via an IKKγ/NEMO-independent signalling pathway. Oncogene, 22, 7557–7569.CrossRefGoogle Scholar
Ernberg, I. and Andersson, J. (1986). Acyclovir efficiently inhibits oropharyngeal excretion of Epstein–Barr virus in patients with acute infectious mononucleosis. J. Gen. Virol., 67, 2267–2272.CrossRefGoogle ScholarPubMed
Ernberg, I. and Klein, G. (1979). EB virus-induced antigens. In Epstein, M. A. and Achong, B. G. (eds.), The Epstein–Barr Virus. Springer-Verlag, pp. 39–60.CrossRefGoogle Scholar
Farina, A., Santarelli, R., Gonnella, R.et al. (2000). The BFRF1 gene of Epstein–Barr virus encodes a novel protein. J. Virol., 74, 3235–3244.CrossRefGoogle ScholarPubMed
Faulkner, G. C., Burrows, S. R., Khanna, R., Moss, D. J., Bird, A. G., and Crawford, D. H. (1999). X-linked agammaglobulinemia patients are not infected with Epstein–Barr virus: implications for the biology of the virus. J. Virol., 73, 1555–1564.Google Scholar
Feederle, R., Kost, M., Baumann, M.et al. (2000). The Epstein–Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J., 19, 3080–3089.CrossRefGoogle ScholarPubMed
Feng, P., Chan, S. H., Soo, M. Y.et al. (2001). Antibody response to Epstein–Barr virus Rta protein in patients with nasopharyngeal carcinoma: a new serologic parameter for diagnosis. Cancer, 92, 1872–1880.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Fielding, C. A., Sandvej, K., Mehl, A. M., Brennan, P., Jones, M., and Rowe, M. (2001) Epstein–Barr virus LMP-1 natural sequence variants differ in their potential to activate cellular signaling pathways. J. Virol., 75, 9129–9141.CrossRefGoogle ScholarPubMed
Fingeroth, J. D., Weis, J. J., Tedder, T. F., Strominger, J. L., Biro, P. A., and Fearon, D. T. (1984). Epstein–Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc. Natl Acad. Sci. USA, 81, 4510–4514.CrossRefGoogle Scholar
Fixman, E. D., Hayward, G. S., and Hayward, S. D. (1992). Trans-acting requirements for replication of Epstein–Barr virus. J. Virol., 66, 5030–5039.Google ScholarPubMed
Flemington, E. K. (2001). Herpesvirus lytic replication and the cell cycle: arresting new developments. J. Virol., 75, 4475–4481.CrossRefGoogle ScholarPubMed
Fones-Tan, A., Chan, S. H., Tsao, S. Y.et al. (1994). Enzyme-linked immunosorbent assay (ELISA) for IgA and IgG antibodies to Epstein–Barr-virus ribonucleotide reductase in patients with nasopharyngeal carcinoma. Int. J. Cancer, 59, 739–742.Google Scholar
Fronko, G. E., Long, W. K., Wu, B., Papadopoulos, T., and Henderson, E. E. (1989). Relationship between methylation status and expression of an Epstein–Barr virus (EBV) capsid antigen gene. Biochem. Biophys. Res. Commun., 159, 263–270.CrossRefGoogle ScholarPubMed
Fruehling, S. and Longnecker, R. (1997). The immunoreceptor tyrosine-based activation motif of Epstein–Barr virus LMPA2 is essential for blocking BCR-mediated signal transduction. J. Virol., 235, 241–251.CrossRefGoogle ScholarPubMed
Fujii, K., Yokoyama, N., Kiyono, T.et al. (2000). The Epstein–Barr virus pol catalytic subunit physically interacts with the BBLF4-BSLF1-BBLF2/3 complex. J. Virol., 74, 2550–2557.CrossRefGoogle ScholarPubMed
Furnari, F. B., Zacny, V., Quinlivan, E. B., Kenney, S. and Pagano, J. (1994). RAZ, an Epstein–Barr virus transdominant repressor that modulates the viral reactivation mechanism.
Gao, Z., Krithivas, A., Finan, J. E.et al. (1998). The Epstein–Barr virus lytic transactivator Zta interacts with the helicase–primase replication proteins. J. Virol., 72, 8559–8567.Google ScholarPubMed
Gires, O., Zimber-Strobl, U., Gonnella, R.et al. (1997). Latent membrane protein 1 of Epstein–Barr virus mimics a constitutively active receptor molecule. EMBO J., 16, 6131–6140.CrossRefGoogle ScholarPubMed
Gires, O., Kohlhuber, F., Kilger, E.et al. (1999). Latent membrane protein 1 of Epstein–Barr virus interacts with JAK3 and activates STAT proteins. EMBO J., 18, 3064–3073.CrossRefGoogle ScholarPubMed
Glaser, G., Vogel, M., Wolf, H., and Niller, H. H. (1998). Regulation of the Epstein–Barr viral immediate early BRLF1 promoter through a distal NF1 site. Arch. Virol., 143, 1967–1983.CrossRefGoogle ScholarPubMed
Gong, M. and Kieff, E. (1990). Intracellular trafficking of two major Epstein–Barr virus glycoproteins, gp350/220 and gp110. J. Virol., 64, 1507–1516.Google ScholarPubMed
Gong, M., Ooka, T., Matsuo, T., and Kieff, E. (1987). Epstein–Barr virus glycoprotein homologous to herpes simplex virus gB. J. Virol., 61, 499–508.Google ScholarPubMed
Grundhoff, A., Sullivan, C. S., and Ganem, D. (2006). A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA, 12, 733–750.CrossRefGoogle ScholarPubMed
Gratama, J. W., Oosterveer, M. A., Lepoutre, J. M.et al. (1990). Serological and molecular studies of Epstein–Barr virus infection in allogeneic marrow graft recipients. Transplantation, 49, 725–730.CrossRefGoogle ScholarPubMed
Gregory, C. D., Rowe, M., and Rickinson, A. B. (1990). Different Epstein–Barr virus-B cell interactions in phenotypically distinct clones of a Burkitt's lymphoma cell line. J. Gen. Virol., 71, 1481–1495.CrossRefGoogle ScholarPubMed
Griffiths-Jones, S., Grocock, R. J., Dongen, S., Bateman, A., and Enright, A. J. (2006). mirBase: microRNA sequences, targets and gene nomenclature. Nucl. Acids Res., 34, D140–D144.CrossRefGoogle ScholarPubMed
Grossman, S. R., Johannsen, E., Tong, R., Yalamanchili, R., and Kieff, E. (1994). The Epstein–Barr virus nuclear antigen 2 transactivator is directed to response elements by the Jκ recombination signal binding protein. Proc. Natl Acad. Sci. USA, 91, 7568–7572.CrossRefGoogle Scholar
Gruffat, H., Batisse, J., Pich, D.et al. (2002a). Epstein–Barr virus mRNA export factor EB2 is essential for production of infectious virus. J. Virol., 76, 9635–9644.CrossRefGoogle Scholar
Gruffat, H., Manet, E., and Sergeant, A. (2002b). MEF2-mediated recruitment of class II histone deacetylase at the EBV immediate early gene BZLF1 links latency and chromatin remodelling. EMBO Rep., 3, 141–146.CrossRefGoogle Scholar
Gonnella, R., Farina, A., Santarelli, R.et al. (2005). Characterization and intracellular localization of the Epstein-Barr virus protein BFLF2: Interactions with BFRF1 and with the nuclear lamina. J. Virol., 79, 3713–3727.CrossRefGoogle ScholarPubMed
Gu, S., Huang, T., Miaio, Y.et al. (1991). A preliminary study on the immunogenicity in rabbits and in human volunteers of a recombinant vaccinnia virus expressing Epstein–Barr virus membrane antigen. Chin. Med. Sci. J., 6, 241–243.Google ScholarPubMed
Gulley, M. L., Pulitzer, D. R., Eagan, P. A., and Schneider, B. G. (1996). Epstein–Barr virus infection is an early event in gastric carcinogenesis and is independent of bcl-2 expression and p53 accumulation. Hum. Pathol., 27, 20–27.CrossRefGoogle ScholarPubMed
Gupta, A., Gartner, J. J., Sethupathy, P., Hatzigeorgiou, A. G., and Fraser, N. W. (2006). Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature, 442, 82–85.CrossRefGoogle ScholarPubMed
Haan, K. M., Lee, S. K., and Longnecker, R. (2001). Different functional domains in the cytoplasmic tail of glycoprotein B are involved in Epstein–Barr virus-induced membrane fusion. Virology, 290, 106–114.CrossRefGoogle ScholarPubMed
Hammerschmidt, W. and Sugden, B. (1988). Identification and characterisation of oriLyt, a lytic origin of DNA replication of Epstein–Barr virus. Cell, 55, 427–433.CrossRefGoogle Scholar
Hammerschmidt, W. and Sugden, B. (1989). Genetic analysis of immortalising functions of Epstein–Barr virus in human B lymphocytes. Nature, 340, 393–397.CrossRefGoogle Scholar
Harada, S. and Kieff, E. (1997). Epstein–Barr virus nuclear protein LP stimulates EBNA-2 acidic domain-mediated transcriptional activation. J. Virol., 71, 6611–6618.Google ScholarPubMed
Hardwick, J. M., Lieberman, P. M., and Hayward, S. D. (1988). A new Epstein–Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. J. Virol., 62, 2274–2284.Google ScholarPubMed
Henderson, S., Rowe, M., Gregory, C.et al. (1991). Induction of bcl-2 expression by Epstein–Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell, 65, 1107–1115.CrossRefGoogle ScholarPubMed
Henderson, S., Huen, D. S., Rowe, M., Dawson, C. W., Johnson, G., and Rickinson, A. (1993). Epstein–Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc. Natl Acad. Sci. USA, 90, 8479–8483.CrossRefGoogle Scholar
Henle, W., Henle, G., Ho, H. C.et al. (1970). Antibodies to Epstein–Barr virus in nasopharyngeal carcinoma, other head and neck neoplasms and control groups. J. Natl Cancer Inst., 44, 225–231.Google ScholarPubMed
Herrold, R. E., Marchini, A., Fruehling, S., and Longnecker, R. (1996) Glycoprotein 110, the Epstein–Barr virus homolog of herpes simplex virus glycoprotein B, is essential for Epstein–Barr virus replication in vivo. J. Virol., 70, 2049–2054.Google ScholarPubMed
Higuchi, M., Kieff, E., and Izumi, K. M. (2002). The Epstein–Barr virus latent membrane protein 1 putative Janus Kinase 3 (JAK3) binding domain does not mediate JAK3 association or activation in B-lymphoma or lymphoblastoid cell lines. J. Virol., 76, 455–459.CrossRefGoogle ScholarPubMed
Hinderer, W., Lang, D., Rothe, M., Vornhagen, R., Sonneborn, H. H., and Wolf, H. (1999). Serodiagnosis of Epstein–Barr virus infection by using recombinant viral capsid antigen fragments and autologous gene fusion. J. Clin. Microbiol., 37, 3239–3244.Google ScholarPubMed
Hitt, M. M., Allday, M. J., Hara, T.et al. (1989). EBV gene expression in an NPC-related tumour. EMBO J., 8, 2639–2651.Google Scholar
Hochberg, D., Middeldorp, J. M., Catalina, M., Sullivan, J. L., Luzuriaga, K., and Thorley-Lawson, D. A. (2004). Demonstration of the Burkitt's lymphoma Epstein–Barr virus phenotype in dividing latently infected memory cellsin vivo. Proc. Natl Acad. Sci. USA, 101, 239–244.CrossRefGoogle ScholarPubMed
Hofelmayr, R., Strobl, L. J., Stein, C., Laux, G., Marschall, G., Bornkamm, G. W. and Zimber-Strobl, U. (1999). Activated mouse Notch1 transactivates Epstein–Barr virus nuclear antigen 2-regulated viral promoters. J. Virol., 73, 2770–2780.Google ScholarPubMed
Hofelmayr, H., Strobl, L. J., Marschall, G., Bornkamm, G. W., and Zimber-Strobl, U. (2001). Activated Notch1 can transiently substitute for EBNA2 in the maintenance of proliferation of LMP1-expressing immortalised B cells. J. Virol., 75, 2033–2040.CrossRefGoogle Scholar
Hong, G. K., Delecluse, H-J., Gruffat, H.et al. (2004). The BRRF1 early gene of Epstein-Barr virus encodes a transcription factor that enhances induction of lytic infection by BRLF1. J. Virol. 78, 4983–4992.CrossRefGoogle ScholarPubMed
Huen, D. S., Henderson, S. A., Croom-Carter, D., and Rowe, M. (1995). The Epstein–Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-κB and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene, 10, 549–560.Google ScholarPubMed
Humme, S., Reisbach, G., Feederle, R. et al. (2003). The EBV nuclear antigen enhances B cell immortalization several thousandfold. Proc. Natl Acad. Sci. USA, 100, 10989–10994.CrossRefGoogle ScholarPubMed
Hutt-Fletcher, L. M. and Lake, C. M. (2001). Two Epstein–Barr virus glycoprotein complexes. Curr. Top. Microbiol. Immunol., 258, 51–64.Google ScholarPubMed
Ikeda, M., Ikeda, A., Longan, L. C., and Longnecker, R. (2000). The Epstein–Barr virus latent membrane protein 2A PY motif recruits WW domain-containing ubiquitin-protein ligases. Virology, 268, 178–191.CrossRefGoogle ScholarPubMed
Izumi, K. M., Cahir McFarland, E. D., Riley, E. A., Rizzo, D., Chen, Y., and Kieff, E. (1999). The residues between the two transformation effector sites of Epstein–Barr virus latent membrane protein 1 are not critical for B-lymphocyte growth transformation. J. Virol., 73, 9908–9916.Google Scholar
Jackman, W. T., Mann, K. A., Hoffmann, H. J., and Spaete, R. R. (1999). Expression of Epstein–Barr virus gp350 as a single chain glycoprotein for an EBV subunit vaccine. Vaccine, 17, 660–668.CrossRefGoogle ScholarPubMed
Jansson, A., Masucci, M. G., and Rymo, L. (1992). Methylation of discrete sites within the enhancer region regulates the activity of the Epstein–Barr virus BamHI W promoter in Burkitt lymphoma lines. J. Virol., 66, 62–69.Google ScholarPubMed
Janz, A., Oezel, M., Kurzeder, C.et al. (2000). Infectious Epstein–Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J. Virol., 74, 10142–10152.CrossRefGoogle ScholarPubMed
Jenkins, P., Binne, U., and Farrell, P. J. (2000). Histone acetylation and reactivation of Epstein–Barr virus from latency. J. Virol., 74, 710–720.CrossRefGoogle ScholarPubMed
Jiang, W. Q., Szekely, L., Wendel-Hansen, V., Ringertz, N., Klein, G., and Rosen, A. (1991). Colocalisation of the retinoblastoma protein and the Epstein–Barr virus-encoded nuclear antigen EBNA-5. Exp. Cell Res., 197, 314–318.CrossRefGoogle Scholar
Johannsen, E., Luftig, M., Chase, M. R.et al. (2004). Proteins of purified Epstein–Barr virus. Proc. Natl Acad. Sci. USA 101, 16286–16291.CrossRefGoogle ScholarPubMed
Jones, R. J., Smith, L. J., Dawson, C. W., Haigh, T., Blake, N. W., and Young, L. S. (2003). Epstein–Barr virus nuclear antigen 1 (EBNA1) induced cytotoxicity in epithelial cells is associated with EBNA1 degradation and processing. Virology, 313, 663–676.CrossRefGoogle Scholar
Joseph, A. M., Babcock, G. J., and Thorley-Lawson, D. A. (2000). Cells expressing the Epstein–Barr virus growth program are present in and restricted to the naive B-cell subset of healthy tonsils. J. Virol., 74, 9964–9971.CrossRefGoogle ScholarPubMed
Kaiser, C., Laux, G., Eick, D., Jochner, N., Bornkamm, G. W., and Kempkes, B. (1999). The proto-oncogene c-myc is a direct target gene of Epstein-Barr virus nuclear antigen 2. Virology, 73, 4481–4484.Google ScholarPubMed
Karajannis, M. A., Hummel, M., Anagnostopoulos, I., and Stein, H. (1997). Strict lymphotropism of Epstein–Barr virus during acute infectious mononucleosis in non-immunocompromised individuals. Blood, 89, 2856–2862.Google Scholar
Kato, K., Kawaguchi, Y., Tanaka, M.et al. (2001). Epstein–Barr virus-encoded protein kinase BGLF4 mediates hyperphosphorylation of cellular elongation factor 1delta (EF-1delta): EF-1delta is universally modified by conserved protein kinases of herpesviruses in mammalian cells. J. Gen. Virol., 82, 1467–1473.CrossRefGoogle ScholarPubMed
Kawanishi, M. (1997). Epstein–Barr virus BHRF1 protein protects intestine 407 epithelial cells from apoptosis induced by tumour necrosis factor a and anti-Fas antibody. J. Virol., 71, 3319–3322.Google ScholarPubMed
Kelly, G., Bell, A., and Rickinson, A. B. (2002). Epstein–Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA1. Nat. Med., 8, 1098–1104.CrossRefGoogle Scholar
Kennedy, G., Komano, J., and Sugden, B. (2003) Epstein–Barr virus provides a survival factor to Burkitt's lymphomas. Proc. Natl Acad. Sci. USA, 100, 14269–14274.CrossRefGoogle ScholarPubMed
Khanim, F., Yao, Q. Y., Niedobitek, G., Sihota, S., Rickinson, A. B., and Young, L. S. (1996). Analysis of Epstein–Barr virus gene polymorphisms in normal donors and in virus-associated tumours from different geographic locations. Blood, 88, 3491–3501.Google ScholarPubMed
Khanim, F., Dawson, C. W., Meseda, C. A., Dawson, J., Mackett, M., and Young, L. S. (1997). BHRF1, a viral homologue of the Bcl-2 oncogene, is conserved at both the sequence and functional level in different Epstein–Barr virus isolates. J. Gen. Virol., 78, 2987–2999.CrossRefGoogle ScholarPubMed
Kieff, E., and Rickinson, A. B. (2001). Epstein–Barr virus and its replication. In Knipe, D. M. and Howley, P. M. (eds.), Fields Virology. Philadelphia: Lippincott Williams & Wilkins, pp. 2511–2574.
Kieser, A., Kilger, E., Gires, O., Ueffing, M., Kolch, W., and Hammerschmidt, W. (1997). Epstein–Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. EMBO J., 16, 6478–6485.CrossRefGoogle ScholarPubMed
Kilger, E., Kieser, A., Baumann, M., and Hammerschmidt, W. (1998). Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J., 17, 1700–1709.CrossRefGoogle ScholarPubMed
Kim, V. N. and Nam, J-W. (2006). Genomics of microRNA. Trends Genet., 22, 165–173.CrossRefGoogle ScholarPubMed
Kitagawa, N., Goto, M., Kurozumi, K.et al. (2000). Epstein-Barr virus-encoded poly(A)(-) RNA supports Burkitt's lymphoma growth through interleukin-10 induction. EMBO J., 19, 6742–6750.CrossRefGoogle ScholarPubMed
Knox, P. G., Li, Q. X., Rickinson, A. B., and Young, L. S. (1996). In vitro production of stable Epstein–Barr virus-positive epithelial cell clones which resemble the virus: Cell interaction observed in nasopharyngeal carcinoma. Virology, 215, 40–50.CrossRefGoogle ScholarPubMed
Koffa, M. D., Clements, J. B., Izaurralde, E.et al. (2001). Herpes simplex virus ICP27 protein provides viral mRNAs with access to the cellular mRNA export pathway. EMBO J., 20, 5769–5778.CrossRefGoogle ScholarPubMed
Komano, J., Maruo, S., Kurozumi, K., Oda, T., and Takada, K. (1999). Oncogenic role of Epstein–Barr virus-encoded RNAs in Burkitt's lymphoma cell line Akata. J. Virol., 73, 9827–9831.Google ScholarPubMed
Kraus, R. J., Perrigoue, J. G., and Mertz, J. E. (2003). ZEB negatively regulates the lytic switch BZLF1 gene promoter of Epstein–Barr virus. J. Virol., 77, 199–207.CrossRefGoogle ScholarPubMed
Kudoh, A., Daikoku, T., and Sugaya, Y. (2004). Inhibition of S-phase cyclin-dependent kinase activity blocks expression of Epstein-Barr virus immediate–early and early genes, preventing viral lytic replication. J. Virol., 78, 104–115.CrossRefGoogle ScholarPubMed
Kudoh, A., Fujita, M., Kiyono, T.et al. (2003). Reactivation of lytic replication from B cells latently infected with Epstein-Barr virus occurs with high S-phase cyclin-dependent kinase activity while inhibiting cellular DNA replication. J. Virol., 77, 851–861.CrossRefGoogle Scholar
Laherty, C. D., Hu, H. M., Opipari, A. W., Wang, F., and Dixit, V. M. (1992). The Epstein–Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor κB. J. Biol. Chem., 267, 24157–24160.Google Scholar
Laing, K. G., Elia, A., Jeffrey, I. W.et al. (2002). In vivo effects of the Epstein–Barr virus small RNA EBER-1 on protein synthesis and cell growth regulation. Virology, 297, 253–269.CrossRefGoogle ScholarPubMed
Lake, C. M. and Hutt-Fletcher, L. M. (2000). Epstein–Barr virus that lacks glycoprotein gN is impaired in assembly and infection. J. Virol., 74, 11162–11172.CrossRefGoogle ScholarPubMed
Lake, C. M., Molesworth, S. J., and Hutt-Fletcher, L. M. (1998). The Epstein–Barr virus (EBV) gN homolog BLRF1 encodes a 15-kilodalton glycoprotein that cannot be authentically processed unless it is coexpressed with the EBV gM homolog BBRF3. J. Virol., 72, 5559–5564.Google ScholarPubMed
Lee, M. A. and Yates, J. L. (1992). BHRF1 of Epstein–Barr virus, which is homologous to human proto-oncogene bcl2, is not essential for transformation of B cells or for virus replicationin vitro. J. Virol., 66, 1899–1906.Google ScholarPubMed
Lees, J. F., Arrand, J. R., Pepper, S. D., Stewart, J. P., Mackett, M., and Arrand, J. R. (1993). The Epstein–Barr Virus candidate vaccine antigen (gp340/220) is highly conserved between virus types A and B. Virology, 195, 578–586.CrossRefGoogle ScholarPubMed
Lerner, M. R., Andrews, N. C., Miller, G., and Steitz, J. A. (1981). Two small RNAs encoded by Epstein–Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc. Natl Acad. Sci. USA, 78, 805–809.CrossRefGoogle ScholarPubMed
Levitskaya, J., Coram, M., Levitsky, V., Imreh, S., Steigerwald-Mullen, P., and Masucci, M. G. (1995). Inhibition of antigen processing by the internal repeat region of the Epstein–Barr virus nuclear antigen-1. Nature, 375, 685–688.CrossRefGoogle ScholarPubMed
Li, S. N., Chang, Y. S., and Liu, S. T. (1996). Effect of a 10-amino acid deletion on the oncogenic activity of latent membrane protein 1 of Epstein–Barr virus. Oncogene, 12, 2129–2135.Google ScholarPubMed
Liao, G., Wu, F. Y., and Hayward, S. D. (2001). Interaction with the Epstein–Barr virus helicase targets Zta to DNA replication compartments. J. Virol., 75, 8792–8802.CrossRefGoogle ScholarPubMed
Lieberman, P. M., Hardwick, J. M., Sample, J., Hayward, G. S., and Hayward, S. D. (1990). The Zta transactivator involved in induction of lytic cycle gene expression in Epstein-Barr virus-infected lymphocytes binds to both AP-1 and ZRE sites in target promoter and enhancer regions. J. Virol., 64, 1143–1155.Google Scholar
Liu, M. Y., Wu, Y. L., Chen, L. S., Hsu, T. Y., Chen, J. Y., and Yang, C. S. (1994). Serological responses of patients with nasopharyngeal carcinoma to an N-terminal Epstein–Barr virus DNA polymerase protein expressed in prokaryotic cells. J. Biomed. Sci., 1, 119–124.CrossRefGoogle Scholar
Liu, P. and Speck, S. H. (2003). Synergistic autoactivation of the Epstein-Barr virus immediate-early BRLF1 promoter by Rta and Zta. Virology, 10, 199–206.CrossRefGoogle Scholar
Liu, P., Liu, S., and Speck, S. H. (1998). Identification of a negative cis element within the ZII domain of the Epstein–Barr virus lytic switch BZLF1 gene promoter. J. Virol., 72, 8230–8239.Google ScholarPubMed
Lo, K.-W. and Huang, D. P. (2002). Genetic and epigenetic changes in nasopharyngeal carcinoma. Semin. Cancer Biol., 12, 451–462.CrossRefGoogle ScholarPubMed
Longnecker, R. (2000). Epstein-Barr virus latency: LMP2, a regulator or means for Epstein–Barr virus persistence?Adv. Cancer Res., 79, 175–200.CrossRefGoogle ScholarPubMed
Longnecker, R. and Kieff, E. (1990). A second Epstein–Barr virus membrane protein (LMP2) is expressed in latent infection and co-localises with LMP1. J. Virol., 64, 2319–2326.Google Scholar
Mackett, M., Conway, M. J., Arrand, J. R., Haddad, R. S., and Hutt-Fletcher, L. M. (1990). Characterisation and expression of a glycoprotein encoded by the Epstein–Barr virus BamHI I fragment. J. Virol., 64, 2545–2552.Google Scholar
Manet, E., Gruffat, H., Trscol-Biemont, M. C.et al. (1989). Epstein–Barr virus bicistronic mRNAs generated by facultative splicing code for two transcriptional transactivators. EMBO J., 8, 1819–1826.Google Scholar
Marchini, A., Tomkinson, B., Cohen, J. I., and Kieff, E. (1991). BHRF1, the Epstein–Barr virus gene with homology to Bc12, is dispensable for B-lymphocyte transformation and virus replication. J. Virol., 65, 5991–6000.Google ScholarPubMed
Miller, C. L., Burkhardt, A. L., Lee, J. H.et al. (1995). Integral membrane protein 2 of Epstein–Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity, 2, 155–166.CrossRefGoogle ScholarPubMed
Miller, W. E., Cheshire, J. L., Baldwin, A. S. J., and Raab-Traub, N. (1998). The NPC derived C15 LMP1 protein confers enhanced activation of NKκB and induction of the EGFR in epithelial cells. Oncogene, 16, 1869–1877.CrossRefGoogle Scholar
Modrow, S., Hoflacher, B., and Wolf, H. (1992). Identification of a protein encoded in the EB-viral open reading frame BMRF2. Arch. Virol., 127, 379–386.CrossRefGoogle ScholarPubMed
Moghaddam, A., Rosenzweig, M., Lee-Parritz, D., Annis, B., Johnson, R. P., and Wang, F. (1997). An animal model for acute and persistent Epstein–Barr virus infection. Science, 276, 2030–2033.CrossRefGoogle ScholarPubMed
Montalvo, E. A., Cottam, M., Hill, S., and Wang, Y.-C. (1995). YY1 binds to and regulates cis-acting negative elements in the Epstein–Barr virus BZLF1 promoter. J. Virol., 69, 4158–4165.Google ScholarPubMed
Moody, C. A., Scott, R. S., Tao, S., and Sixbey, J. W. (2003). Length of Epstein–Barr virus termini as a determinant of epithelial cell clonal emergence. J. Virol., 77, 8555–8561.CrossRefGoogle ScholarPubMed
Moore, K. W., Vieira, P., Fiorentino, D. F., Trounstine, M. L., Khan, T. A., and Mosmann, T. R. (1990). Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein–Barr virus gene BCRFI. Science, 248, 1230–1234.CrossRefGoogle ScholarPubMed
Moore, K. W., Waal Malefyt, T., Coffman, R. L., and O'Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol., 19, 683–765.CrossRefGoogle ScholarPubMed
Murray, P. G., Lissauer, D., Junying, J.et al. (2003). Reactivity with a monoclonal antibody to Epstein–Barr virus (EBV) nuclear antigen 1 defines a subset of aggressive breast cancers in the absence of the EBV genome. Cancer Res., 63, 2338–2343.Google ScholarPubMed
Nanbo, A., Inoue, K., Adachi-Takasawa, K., and Takada, K. (2002). Epstein–Barr virus RNA confers resistance to interferon-a-induced apoptosis in Burkitt's lymphoma. EMBO J., 21, 954–965.CrossRefGoogle ScholarPubMed
Nemerow, G. R., Houghten, R. A., Moore, M. D., and Cooper, N. R. (1989). Identification of an epitope in the major envelope protein of Epstein–Barr virus that mediates viral binding to the B lymphocyte EBV receptor (CR2). Cell, 56, 369–377.CrossRefGoogle Scholar
Neuhierl, B., Feederle, R., Hammerschmidt, W., and Delecluse, H. J. (2002). Glycoprotein gp110 of Epstein–Barr virus determines viral tropism and efficiency of infection. Proc. Natl Acad. Sci. USA, 99, 15036–15041.CrossRefGoogle Scholar
Niedobitek, G., Hamilton-Dutoit, S. J., Herbst, H.et al. (1989). Identification of Epstein–Barr virus-infected cells in tonsils of acuteinfectious mononucleosis by in situ hybridisation. Hum. Pathol., 20, 796–799.CrossRefGoogle Scholar
Niedobitek, G., Young, L. S., Sam, C. K., Brooks, L., Prasad, U., and Rickinson, A. B. (1992). Expression of Epstein–Barr virus genes and of lymphocyte activation molecules in undifferentiated nasopharyngeal carcinomas. Am. J. Pathol., 140, 879–887.Google ScholarPubMed
Niedobitek, G., Agathanggelou, A., Rowe, M.et al. (1995). Heterogeneous expression of Epstein–Barr virus latent proteins in endemic Burkitt's lymphoma. Blood, 86, 659–665.Google ScholarPubMed
Niedobitek, G., Baumann, I., Brabletz, T.et al. (2000). Hodgkin's disease and peripheral T-cell lymphoma: composite lymphoma with evidence of Epstein–Barr virus infection. J. Pathol., 191, 394.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Nitsche, F., Bell, A., and Rickinson, A. B. (1997). Epstein–Barr virus leader protein enhances EBNA-2-mediated transactivation of latent membrane protein 1 expression: A role for the W1W2 repeat domain. J. Virol., 71, 6619–6628.Google ScholarPubMed
Nonkwelo, C., Skinner, J., Bell, A., Rickinson, A. B., and Sample, J. (1996). Transcription start sites downstream of the Epstein–Barr virus (EBV) Fp promoter in early-passage Burkitt lymphoma cells define a fourth promoter for expression of the EBV EBNA-1 protein. J. Virol., 70, 623–627.Google ScholarPubMed
Nuebling, C. M. and Mueller-Lantzsch, N. (1989). Identification and characterisation of an Epstein–Barr virus early antigen that is encoded by the NotI repeats. J. Virol., 63, 4609–4615.Google Scholar
Olsen, L. C., Aasland, R., Wittwer, C. U., Krokan, H. E., and Helland, D. E. (1989). Molecular cloning of human uracil-DNA glycosylase, a highly conserved DNA repair enzyme. EMBO J., 8, 3121–3125.Google ScholarPubMed
Pallesen, G., Hamilton-Dutoit, S. J., Rowe, M., and Young, L. S. (1991). Expression of Epstein–Barr virus latent gene products in tumour cells of Hodgkin's disease. Lancet, 337, 320–322.CrossRefGoogle ScholarPubMed
Papworth, M. A., Dijk, A. A., Benyon, G. R., Allen, T. D., Arrand, J. R., and Mackett, M. (1997). The processing, transport and heterologous expression of Epstein–Barr virus gp110. J. Gen. Virol., 78, 2179–2189.CrossRefGoogle ScholarPubMed
Parker, G. A., Crook, T., Bain, M., Sara, E. A., Farrell, P. J., and Allday, M. J. (1996). Epstein–Barr virus nuclear antigen (EBNA)3C is an immortalizing oncoprotein with similar properties to adenovirus E1A and papillomavirus E7. Oncogene, 13, 2541–2549.Google ScholarPubMed
Parker, B. D., Bankier, A., Satchwell, S., Barrell, B., and Farrell, P. J. (1990). Sequence and transcription of Raji Epstein–Barr virus DNA spanning the B95-8 deletion region. Virology, 179 339–346.CrossRefGoogle ScholarPubMed
Pellett, P. E., Jenkins, F. J., Ackermann, M., Sarmiento, M., and Roizman, B. (1986). Transcription initiation sites and nucleotide sequence of a herpes simplex virus 1 gene conserved in the Epstein–Barr virus genome and reported to affect the transport of viral glycoproteins. J. Virol., 60, 1134–1140.Google ScholarPubMed
Pertuiset, B., Boccara, M., Cebrian, J.et al. (1989). Physical mapping and nucleotide sequence of a herpes simplex virus type 1 gene required for capsid assembly. J. Virol., 63, 2169–2179.Google ScholarPubMed
Pfeffer, S., Zavolan, M., Grasser, F. A.et al. (2004). Identification of virus-encoded microRNAs. Science, 304, 734–736.CrossRefGoogle ScholarPubMed
Pizzo, P. A., Magrath, I. T., Chattopadhyay, S. K., Biggar, R. J., and Gerber, P. (1978). A new tumour-derived transforming strain of Epstein-Barr virus. Nature, 272, 629–631.CrossRefGoogle ScholarPubMed
Pudney, V. A., Leese, A. M., Rickinson, A. B., and Hislop, A. D. (2005). CD8+ immunodominance among Epstein-Barr virus lytic cycle antigens directly reflects the efficiency of antigen presentation in lytically infected cells. J. Exp. Med., 201, 349–360.CrossRefGoogle ScholarPubMed
Raab-Traub, N. and Flynn, K. (1986). The structure of the termini of the Epstein–Barr virus as a marker of clonal cellular proliferation. Cell, 47, 883–889.CrossRefGoogle ScholarPubMed
Rabson, M., Gradoville, L., Heston, L., and Miller, G. (1982). Non-immortalising P3J-HR-1 Epstein–Barr virus: a deletion mutant of its transforming parent, Jijoye. J. Virol., 44, 834–844.Google ScholarPubMed
Radkov, S. A., Bain, M., Farrell, P. J., West, M., Rowe, M., and Allday, M. J. (1997). Epstein–Barr virus EBNA3C represses Cp, the major promoter for EBNA expression, but has no effect on the promoter of the cell gene CD21. J. Virol., 71, 8552–8562.Google ScholarPubMed
Radkov, S. A., Touitou, R., Brehm, A., Rowe, M., West, M., Kouzarides, T. and Allday, M. J. (1999). Epstein–Barr virus nuclear antigen 3C interacts with histone deacetylase to repress transcription. J. Virol., 73, 5688–5697.Google ScholarPubMed
Ragoczy, T. and Miller, G. (1999). Role of the Epstein–Barr virus Rta protein in activation of distinct classes of viral lytic genes. J. Virol., 73, 9858–9866.Google Scholar
Ragoczy, T. and Miller, G. (2001). Autostimulation of the Epstein–Barr virus BRLF1 promoter is mediated through consensus Sp1 and Sp3 binding sites. J. Virol., 75, 5240–5251.CrossRefGoogle ScholarPubMed
Reischl, U., Gerdes, C., Motz, M., and Wolf, H. (1996). Expression and purification of an Epstein–Barr virus encoded 23-kDa protein and charcterisation of its immunological properties. J. Virol. Meth., 57, 71–85.CrossRefGoogle Scholar
Ressing, M. E., Keating, S. E., Leeuwen, D.et al. (2005). Impaired transporter associated with antigen processing-dependent peptide transport during productive EBV infection. J. Immunol., 174 6829–6838.CrossRefGoogle ScholarPubMed
Rickinson, A. B. and Kieff, E. (2001). Epstein–Barr virus. In Knipe, D. M. and Howley, P. M. (eds.), Fields Virology. Lippincott Williams and Wilkins, Philadelphia, pp. 2575–2627.Google Scholar
Rickinson, A. B., Rowe, M., Hart, I. J.et al. (1984). T-cell-mediated regression of “spontaneous” and of Epstein–Barr virus-induced B-cell transformation in vitro: studies with cyclosporin A. Cell. Immunol., 87, 646–658.CrossRefGoogle ScholarPubMed
Rivailler, P., Cho, Y., and Wang, F. (2002). Complete genomic sequence of an Epstein–Barr virus-related herpesvirus naturally infecting a new world primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J. Virol., 76, 12055–12068.CrossRefGoogle ScholarPubMed
Roberts, M. L. and Cooper, N. R. (1998). Activation of a ras-MAPK-dependent pathway by Epstein–Barr virus latent membrane protein 1 is essential for cellular transformation. Virology, 240, 93–99.CrossRefGoogle ScholarPubMed
Robertson, E. S. (1997). The Epstein–Barr virus EBNA3 protein family as regulators of transcription. EBV Rep., 4, 143–150.Google Scholar
Roizman, B., and Knipe, D. M. (2001). Herpes simplex viruses and their replication. In Knipe, D. M. and Howley, P. M. (eds.), Fields Virology. Lippincott Williams & Wilkins, Philadelphia, pp. 2399–2459.
Rooney, C. M., Rowe, D. T., Ragot, T., and Farrell, P. J. (1989). The spliced BZLF1 gene of Epstein–Barr virus (EBV) transactivates an early EBV promoter and induces the virus productive cycle. J. Virol., 63, 3109–3116.Google ScholarPubMed
Rowe, M., Rowe, D. T., Gregory, C. D.et al. (1987). Differences in B cell growth phenotype reflect novel patterns of Epstein–Barr virus latent gene expression in Burkitt's lymphoma cells. EMBO J., 6, 2743–2751.Google Scholar
Ruf, I. K., Rhyne, P. W., Yang, C., Cleveland, J. L., and Sample, J. T. (2000). Epstein–Barr virus small RNAs potentiate tumourigenicity of Burkitt lymphoma cells independently of an effect on apoptosis. J. Virol., 74, 10223–10228.CrossRefGoogle Scholar
Sakai, T., Taniguchi, Y., Tamura, K.et al. (1998). Functional replacement of the intracellular region of the Notch1 receptor by Epstein–Barr virus nuclear antigen 2. J. Virol., 72, 6034–6039.Google ScholarPubMed
Salek-Ardakani, S., Stuart, A. D., Arrand, J. E., Lyons, S., Arrand, J. R., and Mackett, M. (2001). High level expression and purification of the Epstein–Barr virus encoded cytokine viral interleukin 10: efficient removal of endotoxin. Cytokine, 17, 1–13.CrossRefGoogle Scholar
Sam, C. K., Brooks, L. A., Niedobitek, G., Young, L. S., Prasad, U., and Rickinson, A. B. (1993). Analysis of Epstein–Barr virus infection in nasopharyngeal biospies from a group at high risk of nasopharyngeal carcinoma. Int. J. Cancer, 53, 957–962.CrossRefGoogle Scholar
Sample, J., Young, L., Martin, B.et al. (1990). Epstein–Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B and EBNA-3C genes. J. Virol., 64, 4084–4092.Google ScholarPubMed
Sample, J. T., Henson, E., and Sample, C. (1992). The Epstein–Barr virus nuclear protein 1 promoter active in type 1 latency is autoregulated. J. Virol., 66, 4654–4661.Google ScholarPubMed
Saridakis, V., Sheng, Y., Sarkari, F.et al. (2005) Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1: implications for EBV-mediated immortalization. Mol. Cell., 18 25–36.CrossRefGoogle ScholarPubMed
Schepers, A., Pich, D., Manketz, J., and Hammerschmidt, W. (1993). Cis-acting elements in the lytic origin of replication of Epstein–Barr virus. J. Virol., 67, 4237–4245.Google ScholarPubMed
Schmaus, S., Wolf, H., and Schwarzmann, F. (2004). The reading frame BPLF1 of Epstein–Barr virus: a homologue of herpes simplex protein VP16. Virus Genes, 29, 267–277.CrossRefGoogle ScholarPubMed
Scholle, F., Bendt, K. M., and Raab-Traub, N. (2000). Epstein–Barr virus LMP2A transforms epithelial cells, inhibits cell differentiation, and activates Akt. J. Virol., 74, 10681–10689.CrossRefGoogle ScholarPubMed
Segouffin, C., Gruffat, H., and Sergeant, A. (1996). Repression of RAZ of Epstein–Barr virus bZIP transcription factor EB1 is dimerization independent. J. Gen. Virol., 77, 1529–1536.CrossRefGoogle ScholarPubMed
Semmes, O. J., Chen, L., Sarisky, R. T., Gao, Z., Zhong, L., and Hayward, S. D. (1998). Mta has properties of an RNA export protein and increases cytoplasmic accumulation of Epstein–Barr virus replication gene mRNA. J. Virol., 72, 9526–9534.Google ScholarPubMed
Serio, T. R., Kolman, J. L., and Miller, G. (1997). Late gene expression from the Epstein–Barr virus BcLF1 and BFRF3 promoters does not require DNA replication in cis. J. Virol., 71, 8726–8734.Google Scholar
Serio, T. R., Cahill, N., Prout, M. E., and Miller, G. (1998). A functionally distinct TATA box required for late progression through the Epstein–Barr virus life cycle. J. Virol., 72, 8338–8343.Google ScholarPubMed
Sheng, W., Decaussin, G., Sumner, S., and Ooka, T. (2001). N-terminal domain of BARF1 gene encoded by Epstein–Barr virus is essential for malignant transformation of rodent fibroblasts and activation of BCL-2. Oncogene, 20, 1176–1185.CrossRefGoogle ScholarPubMed
Sheng, W., Decaussin, G., Ligout, A., Takada, K., and Ooka, T. (2003). Malignant transformation of Epstein–Barr virus-negative Akata cells by introduction of the BARF1 gene carried by Epstein–Barr virus. J. Virol., 77, 3859–3865.CrossRefGoogle ScholarPubMed
Silins, S. L. and Sculley, T. B. (1994). Modulation of vimentin, the CD40 activation antigen and Burkitt's lymphoma antigen (CD77) by the Epstein–Barr virus nuclear antigen EBNA-4. Virology, 202, 16–24.CrossRefGoogle ScholarPubMed
Sinclair, A. J. and Farrell, P. J. (1995). Host cell requirements for efficient infection of quiescent primary B lymphocytes by Epstein–Barr virus. J. Virol., 69, 5461–5468.Google ScholarPubMed
Sinclair, A. J., Brimmell, M., Shanahan, F., and Farrell, P. J. (1991). Pathways of activation of the Epstein–Barr virus productive cycle. J. Virol., 65, 2237–2244.Google ScholarPubMed
Sinclair, A. J., Palmero, I., Peters, G., and Farrell, P. J. (1994). EBNA-2 and EBNA-LP cooperate to cause G0 and G1 transition during immortalisation of resting human B lymphocytes by Epstein–Barr virus. EMBO J., 13, 3321–3328.Google Scholar
Sitki-Green, D., Covington, M., and Raab-Traub, N. (2003). Compartmentalization and transmission of multiple Epstein–Barr virus strains in asymptomatic carriers. J. Virol., 77, 1840–1847.CrossRefGoogle Scholar
Smith, P. R., de Jesus, O., Turner, D.et al. (2000). Structure and coding content of CST (BART) family RNAs of Epstein–Barr virus. J. Virol., 74, 3082–3092.CrossRefGoogle ScholarPubMed
Sommer, P., Kremmer, E., Bier, S.et al. (1996). Cloning and expression of the Epstein–Barr virus-encoded dUTPase: patients with acute, reactivated or chronic virus infection develop antibodies against the enzyme. J. Gen. Virol., 77, 2795–2805.CrossRefGoogle ScholarPubMed
Speck, S., Chatila, T., and Flemington, E. K. (1997). Reactivation of Epstein–Barr virus: regulation and function of the BZLF1 gene. Trends Microbiol., 5, 399–405.CrossRefGoogle ScholarPubMed
Speck, S. H. and Strominger, J. L. (1989). Transcription of Epstein–Barr virus in latently infected, growth-transformed lymphocytes. Adv. Viral Oncol., 8, 133–150.Google Scholar
Srivastava, G., Wong, K. Y., Chiang, A. K., Lam, K. Y., and Tao, Q. (2000). Coinfection of multiple strains of Epstein–Barr virus in immunocompetent normal individuals: reassessment of the viral carrier state. Blood, 95, 2443–2445.Google ScholarPubMed
Stolzenberg, M. C., Debouze, S., Ng, M.et al. (1996). Purified recombinant EBV desoxyribonuclease in serological diagnosis of nasopharyngeal carcinoma. Int. J. Cancer, 66, 337–341.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Strobl, L. J., Hofelmayr, H., Marschall, G., Brielmeier, M., Bornkamm, G. W., and Zimber-Strobl, U. (2000). Activated Notch1 modulates gene expression in B cells similarly to Epstein–Barr viral nuclear antigen 2. J. Virol., 74, 1727–1735.CrossRefGoogle Scholar
Strockbine, L. D., Cohen, J. I., Farrah, T.et al. (1998). The Epstein–Barr virus BARF1 gene encodes a novel, soluble colony-stimulating factor-1 receptor. J. Virol., 72, 4014–4021.Google ScholarPubMed
Stuart, A. D., Stewart, J. P., Arrand, J. R., and Mackett, M. (1995). The Epstein–Barr virus encoded cytokine viral interleukin-10 enhances transformation of human B lymphocytes. Oncogene, 11, 1711–1719.Google ScholarPubMed
Sugano, N., Chen, W., Roberts, M. L., and Cooper, N. R. (1997). Epstein–Barr virus binding to CD21 activates the initial viral promoter via NF-κB induction. J. Exp. Med., 186, 731–737.CrossRefGoogle ScholarPubMed
Sugawara, Y., Mizugaki, Y., Uchida, T.et al. (1999). Detection of Epstein–Barr virus (EBV) in hepatocellular carcinoma tissue: a novel EBV latency characterised by the absence of EBV-encoded small RNA expression. Virology, 256, 196–202.CrossRefGoogle Scholar
Swaminathan, S., Tomkinson, B., and Kieff, E. (1991). Recombinant Epstein–Barr virus with small RNA (EBER) genes deleted transforms lymphocytes and replicatesin vivo. Proc. Natl Acad. Sci. USA, 88, 1546–1550.CrossRefGoogle ScholarPubMed
Swaminathan, S., Hesselton, R., Sullivan, J., and Kieff, E. (1993). Epstein–Barr virus recombinants with specifically mutated BCRF1 genes. J. Virol., 67, 7406–7413.Google ScholarPubMed
Sylla, B. S., Hung, S. C., Davidson, D. M.et al. (1998). Epstein–Barr virus-transforming protein latent infection membrane protein 1 activates transcription factor NF-κB through a pathway that includes the NF-κB-inducing kinase and the IκB kinases IKKα and IKKβ. Proc. Natl Acad. Sci. USA, 95, 10106–10111.CrossRefGoogle ScholarPubMed
Szekely, L., Selivanova, G., Magnusson, K. P., Klein, G., and Wiman, K. G. (1993). EBNA-5, an Epstein–Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc. Natl Acad. Sci. USA, 90, 5455–5459.CrossRefGoogle ScholarPubMed
Szyf, M., Elasson, L., Mann, V., Klein, G., and Razin, A. (1985). Cellular and viral DNA hypomethylation associated with induction of Epstein–Barr virus lytic cycle. Proc. Natl Acad. Sci. USA, 82, 8090–8094.CrossRefGoogle ScholarPubMed
Tanner, J., Weis, J., Fearon, D. T., Whang, Y., and Kieff, E. (1987). Epstein–Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell, 50, 203–213.CrossRefGoogle Scholar
Tao, Q., Robertson, K. D., Manns, A., Hildesheim, A., and Ambinder, R. F. (1998). Epstein–Barr virus (EBV) in endemic Burkitt's lymphoma: Molecular analysis of primary tumour tissue. Blood, 91, 1373–1381.Google Scholar
Tarodi, B., Subramanian, T., and Chinnadurai, G. (1994). Epstein–Barr virus BHRF1 protein protects against cell death induced by DNA-damaging agents and heterologous viral infection. Virology, 201, 404–407.CrossRefGoogle ScholarPubMed
Thomas, C., Dankesreiter, A., Wolf, H., and Schwarzmann, F. (2003). The BZLF1 promoter of Epstein–Barr virus is controlled by E box-/HI-motif-binding factors during virus latency. J. Gen. Virol., 84, 959–964.CrossRefGoogle Scholar
Thorley-Lawson, D. A. (2001). Epstein–Barr virus: exploiting the immune system. Nat. Rev. Immunol., 1, 75–82.CrossRefGoogle ScholarPubMed
Thorley-Lawson, D. A. and Poodry, C. A. (1982). Identification and isolation of the main component (gp350–gp220) of Epstein–Barr virus responsible for generating neutralising antibodiesin vivo. J. Virol., 43, 730–736.Google Scholar
Toczyski, D. P., Matera, A. G., Ward, D. C., and Steitz, J. A. (1994). The Epstein–Barr virus (EBV) small RNA EBER1 binds and relocalises ribosomal protein L22 in EBV-infected human B lymphocytes. Proc. Natl Acad. Sci. USA, 91, 3463–3467.CrossRefGoogle Scholar
Tsurumi, T., Kobayashi, A., Tamai, K.et al. (1996). Epstein–Barr virus single-stranded DNA-binding protein: purification, characterisation, and action on DNA synthesis by the viral DNA polymerase. Virology, 222, 352–364.CrossRefGoogle Scholar
Tugizov, S. M., Berline, J. W., and Palefsky, J. M. (2003). Epstein–Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat. Med., 9, 307–314.CrossRefGoogle ScholarPubMed
Uchida, J., Yasui, T., Takaoka-Shichijo, Y.et al. (1999). Mimicry of CD40 signals by Epstein–Barr virus LMP1 in B lymphocyte responses. Science, 286, 300–303.CrossRefGoogle ScholarPubMed
Beek, J., Brink, A. A., Vervoort, M. B.et al. (2003). In vivo transcription of the Epstein–Barr virus (EBV) BamHI-A region without associated in vivo BARF0 protein expression in multiple EBV-associated disorders. J. Gen. Virol., 84, 2647–2659.CrossRefGoogle ScholarPubMed
van Grunsven, W. M., van Heerde, E. C., Haard, H. J., Spaan, W. J., and Middeldorp, J. M. (1993). Gene mapping and expression of two immunodominant Epstein–Barr virus capsid proteins. J. Virol., 67, 3908–3916.Google ScholarPubMed
Walling, D. M. and Raab-Traub, N. (1994). Epstein–Barr virus intrastrain recombination in oral hairy leukoplakia. J. Virol., 68, 7909–7913.Google ScholarPubMed
Walling, D. M., Brown, A. L., Etienne, W., Keitel, W. A., and Ling, P. D. (2003). Multiple Epstein–Barr virus infections in healthy individuals. J. Virol., 77, 6546–6550.CrossRefGoogle ScholarPubMed
Wang, F., Gregory, C., Sample, C.et al. (1990). Epstein–Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J. Virol., 64, 2309–2318.Google Scholar
Wei, M. X. and Ooka, T. (1989). A transforming function of the BARF1 gene encoded by Epstein–Barr virus. EMBO J., 8, 2897–2903.Google ScholarPubMed
Wei, M. X., Moulin, J. C., Decaussin, G., Berger, F., and Ooka, T. (1994). Expression and tumourigenicity of the Epstein–Barr virus BARF1 gene in human Louckes B-lymphocyte cell line. Cancer Res., 54, 1843–1848.Google Scholar
Wei, M. X., de Turenne-Tessier, M., Decaussin, G., Benet, G., and Ooka, T. (1997). Establishment of a monkey kidney epithelial cell line with the BARF1 open reading frame from Epstein–Barr virus. Oncogene, 14, 3073–3081.CrossRefGoogle ScholarPubMed
Wilson, J. B., Bell, J. L., and Levine, A. J. (1996). Expression of Epstein–Barr virus nuclear antigen1 induces B cell neoplasia in transgenic mice. EMBO J., 15, 3117–3126.Google Scholar
Wu, F. Y., Chen, H., Wang, S. E.et al. (2003). CCAAT/Enhancer binding protein a interacts with ZTA and mediates ZTA-induced p21CIP-1 accumulation and G1 cell cycle arrest during the Epstein–Barr virus lytic cycle. J. Virol., 2003, 1481–1500.CrossRefGoogle Scholar
Yao, Q. Y., Ogan, P., Rowe, M., Wood, M., and Rickinson, A. B. (1989). Epstein–Barr virus infected B cells persist in the circulation of acyclovir-treated virus carriers. Int. J. Cancer, 43, 67–71.CrossRefGoogle ScholarPubMed
Yao, Q. Y., Rowe, M., Martin, B., Young, L. S., and Rickinson, A. B. (1991). The Epstein–Barr virus carrier state: dominance of a single growth transforming isolate in the blood and in the oropharynx of healthy virus carriers. J. Gen. Virol., 72, 1579–1590.CrossRefGoogle ScholarPubMed
Yao, Q. Y., Tierney, R. J., Croom-Carter, D.et al. (1996a). Isolation of inter-typic recombinants of Epstein–Barr virus from T cell immunocompromised individuals. J. Virol., 70, 4895–4903.Google Scholar
Yao, Q. Y., Tierney, R. J., Croom-Carter, D.et al. (1996b). Frequency of multiple Epstein–Barr virus infections in T cell-immunocompromised individuals. J. Virol., 70, 4884–4894.Google Scholar
Yao, Q. Y., Croom-Carter, D., Tierney, R. J.et al. (1998). Epidemiology of infection with Epstein–Barr virus types 1 and 2: lessons from the study of a T-cell-immunocompromised haemophilic cohort. J. Virol., 72, 4352–4363.Google Scholar
Yokoyama, N., Fujii, K., Hirata, M.et al. (1999). Assembly of the Epstein–Barr virus BBLF4, BSLF1 and BBLF2/3 proteins and their interactive properties. J. Gen. Virol., 80, 2879–2887.CrossRefGoogle ScholarPubMed
Young, L. S. and Murray, P. G. (2003). Epstein–Barr virus and oncogenesis: from latent genes to tumours. Oncogene, 22, 5108–5121.CrossRefGoogle ScholarPubMed
Young, L. S., Yao, Q. Y., Rooney, C. M., et al. (1987). New type B isolates of Epstien–Barr virus from Burkitt's lymphoma and from normal individuals in endemic areas. J. Gen. Virol., 68, 2853–2862.CrossRefGoogle Scholar
Young, L. S., Dawson, C. W., Clark, D.et al. (1988). Epstein–Barr virus gene expression in nasopharyngeal carcinoma. J. Gen. Virol., 69, 1051–1065.CrossRefGoogle ScholarPubMed
Zalani, S., Holley-Guthrie, E. and Kenney, S. (1995). The Zif268 cellular transcription factor activates expression of the Epstein–Barr virus immediate-early BRLF1 promoter. J. Virol., 69, 3816–3823.Google ScholarPubMed
Zalani, S., Coppage, A., Holley-Guthrie, E., and Kenney, S. (1997). The cellular YY1 transcription factor binds a cis-acting, negative regulating element in the Epstein–Barr virus BRLF1 promoter. J. Virol., 71, 3268–3274.Google ScholarPubMed
Zeng, Y., Gong, C. H., Jan, M. G., Fun, Z., Zhang, L. G., and Li, H. Y. (1983). Detection of Epstein–Barr virus IgA/EA antibody for diagnosis of nasopharyngeal carcinoma by immunoautoradiography. Int. J. Cancer, 31, 599–601.CrossRefGoogle ScholarPubMed
Zeng, Y., Middeldorp, J. M., Madjar, J. J., and Ooka, T. (1997). A major DNA binding protein encoded by BALF2 open reading frame of Epstein–Barr virus (EBV) forms a complex with other EBV DNA-binding proteins: DNAase, EA-D, and DNA polymerase. Virology, 239, 285–295.CrossRefGoogle Scholar
Zeng, M. S., Li, D. J., Liu, Q. L.et al. (2005). Genomic sequence analysis of Epstein–Barr virus strain GD1 from a nasopharyngeal carcinoma patient. J. Virol., 79, 15323–15330.CrossRefGoogle ScholarPubMed
Zimmermann, J. and Hammerschmidt, W. (1995). Structure and role of the terminal repeats of Epstein–Barr virus in processing and packaging of virion DNA. J. Virol., 69, 3147–3155.Google ScholarPubMed
zur Hausen, H., Brink, A. A., Craanen, M. E., Middeldorp, J. M., Meijer, C. J., and Brule, A. J. (2000). Unique transcription pattern of Epstein–Barr virus (EBV) in EBV-carrying gastric adenocarcinomas: expression of the transforming BARF1 gene. Cancer Res., 60, 2745–2748.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×