Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-18T14:34:28.973Z Has data issue: false hasContentIssue false

2 - J. B. S. Haldane and the Malaria Hypothesis

Published online by Cambridge University Press:  10 August 2009

J. D. Weatherall
Affiliation:
Weatherall Institute of Molecular Medicine, University of Oxford, UK
Krishna R. Dronamraju
Affiliation:
Foundation for Genetic Research, Houston, Texas
Get access

Summary

In 1948, J. B. S. Haldane proposed that the selective agent for maintaining the high frequency of thalassemia in the Mediterranean races might be malaria. Thus was born what, in the human hemoglobin field at least, later became known as the malaria hypothesis. In this short essay, I examine the origins of this hypothesis, ask how it has stood the test of time, and summarize the broader field of research which it has spawned and which attempts to understand the genetic basis of variability in individual susceptibility to infection in general. Many of these issues have been reviewed in detail over recent years and are only summarized here.

THE MALARIA HYPOTHESIS

Although the first clinical descriptions of the thalassemias appeared in the 1920's, it only became apparent that these conditions follow a Mendelian recessive or co-dominant pattern of inheritance in the period immediately preceding World War II. At this time relatively simple methods for carrier screening became available and hence it was possible to carry out population studies to attempt to determine gene frequencies.

The extraordinarily high frequency of the genes for thalassemia puzzled population geneticists, particularly those who had become interested in mutation rates as a result of their studies of the survivors of the atomic bombs that had been dropped on Hiroshima and Nagasaki. Extensive studies of gene frequencies of thalassemia were carried out quite independently in the 1940's by workers in the United States and Italy (Neel and Valentine, 1947; Silvestroni and Bianco, 1947), but because of lack of communication during the war and its aftermath it was not until the early 1950's that this broad body of work could be integrated and assessed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitman, T. J., Cooper, L. D., Norsworthy, P. J., Wahid, F. N., Gray, J. K., Curtis, B. R., McKeigue, P. M., Kwiatkowski, D., Greenwood, B. M., & Snow, R. W. (2000). Malaria susceptibility and CD36 mutation. Nature, 405, 1015–16CrossRefGoogle ScholarPubMed
Allen, S. J., O'Donnell, A., Alexander, N. D. E., Alpers, M. P., Peto, T. E. A., Clegg, J. B., & Weatherall, D. J. (1997). α+-thalassemia protects children against disease due to malaria and other infections. Proceedings of the National Academy of Sciences, USA, 94, 14,736–41CrossRefGoogle ScholarPubMed
Allen, S. J., O'Donnell, A., Alexander, N. D. E., Mgone, C. S., Peto, T. E. A., Clegg, J. B., Alpers, M. P., & Weatherall, D. J. (1999). Prevention of cerebral malaria in children in Papua New Guinea by Southeast Asian ovalocytosis band 3. American Journal of Tropical Medicine and Hygiene, 60, 1056–60CrossRefGoogle ScholarPubMed
Allison, A. C. (1965). Population genetics of abnormal hemoglobins and glucose-6-phosphate dehydrogenase deficiency. In Abnormal Hemoglobins in Africa (ed. by J. H. P. Jonxis), p. 365. Blackwell Scientific Publications, Oxford
Bellamy, R., Kwiatkowski, D., & Hill, A. V. (1998). Absence of an association between intercellular adhesion molecule 1, complement receptor 1 and interleukin 1 receptor antagonist gene polymorphisms and severe malaria in a West African population. Transaction of the Royal Society of Tropical Medicine and Hygiene, 92, 312–16CrossRefGoogle Scholar
Bunyaratvej, A., Butthep, P., Yuthavong, Y., Fucharoen, S., Khusmith, S., Yoksan, S., & Wasi, P. (1986). Increased phagocytosis of Plasmodium falciparum-infected erythrocytes with hemoglobin E by peripheral blood monocytes. Acta Haematologica, 76, 155–8CrossRefGoogle ScholarPubMed
Carlson, J., Nash, G. B., Gabutti, V., Al-Yaman, F., & Wahlgren, M. (1994). Natural protection against severe Plasmodium falciparum malaria due to impaired rosette formation. Blood, 84, 3909–14Google ScholarPubMed
Chakravarti, A., Buetow, K. H., Antonarakis, S. E., Waber, P. G., Boehm, C. D., & Kazazian, H. H. (1984). Nonuniform recombination within the human β-globin gene cluster. American Journal of Human Genetics, 36, 1239–58Google ScholarPubMed
Cooke, G. S., & Hill, A. V. S. (2001). Genetics of susceptibility to human infectious disease. Nature Reviews Genetics, 2, 967–77CrossRefGoogle ScholarPubMed
Currat, M., Trabuchet, G., Rees, D., Perrin, P., Harding, R. M., Clegg, J. B., Langaney, A., & Excoffier, L. (2002). Molecular analysis of the β-globin gene cluster in the Niokholo Mandenka population reveals a recent origin of the βS Senegal mutation. American Journal of Human Genetics, 70, 207–23CrossRefGoogle Scholar
Dean, M., Carrington, M., Winkler, C., Huntley, G. A., Smith, M. W., Allikmets, R., Goedert, J. J., Buchbinder, S. P., Vittinghoff, E., and Gomperts, E. (1996). Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science, 273, 1856–62CrossRefGoogle ScholarPubMed
Fernandez-Reyes, D., Craig, A. G., Kyes, S. A., Peshu, N., Snow, R. W., Berendt, A. R., Marsh, K., & Newbold, C. I. (1997). A high frequency African coding polymorphism in the N-terminal domain of ICAM-1 predisposing to cerebral malaria in Kenya. Human Molecular Genetics, 6, 1357–60CrossRefGoogle ScholarPubMed
Flint, J., Harding, R. M., Boyce, A. J., & Clegg, J. B. (1998). The population genetics of the hemoglobinopathies. In Baillière's Clinical Haematology; ‘Hemoglobinopathies’ (ed. by D. R. Higgs, & D. J. Weatherall), pp. 1–51. Baillière Tindall and W. B. Saunders, London
Flint, J., Harding, R. M., Clegg, J. B., & Boyce, A. J. (1993). Why are some genetic diseases common? Distinguishing selection from other processes by molecular analysis of globin gene variants. Human Genetics, 91, 91–117Google ScholarPubMed
Flint, J., Hill, A. V. S., Bowden, D. K., Oppenheimer, S. J., Sill, P. R., Serjeantson, S. W., Bana-Koiri, J., Bhatia, K., Alpers, M. P., & Boyce, A. J. (1986). High frequencies of α thalassemia are the result of natural selection by malaria. Nature, 321, 744–9CrossRefGoogle ScholarPubMed
Foote, S. J., Burt, R. A., Baldwin, S. M., & 5 colleagues (1997). Mouse loci for malaria-induced mortality and the control of parasitaemia. Nature Genetics, 17, 380–1CrossRefGoogle ScholarPubMed
Fortin, A., Belouchi, A., Tam, M. F., & 4 colleagues (1997). Genetic control of blood parasitaemia in mouse malaria maps to chromosome 8. Nature Genetics, 17, 382–3CrossRefGoogle ScholarPubMed
Friedman, M. J. (1978). Erythrocytic mechanism of sickle cell resistance to malaria. Proceedings of the National Academy of Sciences, USA, 75, 1994CrossRefGoogle ScholarPubMed
Ganczakowski, M., Town, M., Bowden, D. K., Vulliamy, T. J., Kaneko, A., Clegg, J. B., Weatherall, D. J., & Luzzatto, L. (1995). Multiple glucose 6-phosphate dehydrogenase-deficient variants correlate with malaria endemicity in the Vanuatu archipelago (Southwestern Pacific). American Journal of Human Genetics, 56, 294–301Google Scholar
Genton, B., Al-Yaman, F., Mgone, C. S., Alexander, N., Paniu, M. M., & Alpers, M. P. (1995). Ovalocytosis and cerebral malaria. Nature, 378, 564–5CrossRefGoogle ScholarPubMed
Haldane, J. B. S. (1949a). The rate of mutation of human genes. Proceedings of the VIII International Congress of Genetics Hereditas, 35, 267–73Google Scholar
Haldane, J. B. S. (1949b). Disease and evolution. Ricera Sci., 19, 2Google Scholar
Hartl, D. L., Volkman, S. K., Nielsen, K. M., Barry, A. E., Day, K. P., Wirth, D. F., & Winzeler, E. A. (2002). The paradoxical population genetics of Plasmodium falciparum. Trends in Parasitology, 18, 266–71CrossRefGoogle ScholarPubMed
Hill, A. V. S., Allsopp, C. E. M., Kwiatkowski, D., Anstey, N. M., Twunmasi, P., Rowe, P. A., Bennett, S., Brewster, D., McMichael, A. J., & Greenwood, B. M. (1991). Common west African HLA antigens are associated with protection from severe malaria. Nature, 352, 595–600CrossRefGoogle ScholarPubMed
Hill, A. V. S., Elvin, J., Willis, A., Aidoo, M., Allsopp, C. E. M., Gotch, F. M., Gao, X. M., Takiguchi, M., Greenwood, B. M., & Townsend, A. R. M. (1992). Molecular analysis of the asscoiation of HLA-B53 and resistance to severe malaria. Nature, 360, 434–9CrossRefGoogle Scholar
Knight, J. C., Udalova, J., Hill, A. V., Greenwood, B. M., Peshu, N., Marsh, K., & Kwiatkowski, D. (1999). A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria. Nature Genetics, 22, 145–50CrossRefGoogle ScholarPubMed
Lederberg, J. (1999). J. B. S. Haldane (1949) on infectious disease and evolution. Genetics, 153, 1–3Google Scholar
Luzzatto, L., Mehta, A., & Vulliamy, T. (2001). Glucose 6-phosphate dehydrogenase. In The Metabolic and Molecular Basis of Inherited Disease (ed. by C. R. Scriver, A. L. Beaudet, W. S. Sly, D. Valle, B. Childs, & B. Vogelstein), pp. 3367–98. McGraw Hill, New York
Luzzi, G. A., Merry, A. H., Newbold, C. I., Marsh, K., Pasvol, G., & Weatherall, D. J. (1991). Surface antigen expression on Plasmodium falciparum-infected erythrocytes is modified in α- and β-thalassemia. Journal of Experimental Medicine, 173, 785–91CrossRefGoogle ScholarPubMed
Marquet, S., Abel, L., Hillaire, D., & Dessein, A. (1999). Full results of the genome-wide scan which localises a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31–q33. European Journal of Human Genetics, 7, 88–97CrossRefGoogle ScholarPubMed
McGuire, W., Hill, A. V. S., Allsopp, C. E. M., Greenwood, B. M., & Kwiatkowski, D. (1994). Variation in the TNF-α promoter region is associated with susceptibility to cerebral malaria. Nature, 371, 508–11CrossRefGoogle ScholarPubMed
Mgone, C. S., Koki, G., Paniu, M. M., Kono, J., Bhatia, K. K., Genton, B., Alexander, N. D. E., & Alpers, M. P. (1996). Occurrence of the erythrocyte band 3 (AE1) gene deletion in relation to malaria endemicity in Papua New Guinea. Transaction of the Royal Society of Tropical Medicine and Hygiene, 90, 228–31CrossRefGoogle ScholarPubMed
Miller, L. H., Mason, S. J., Clyde, D. F., & McGinniss, M. H. (1976). The resistance factor to Plasmodium vivax in blacks. New England Journal of Medicine, 295, 302–4CrossRefGoogle ScholarPubMed
Modiano, D., Luoni, G., Sirima, B. S., Simporé, J., Verra, F., Konaté, A., Rastrelli, E., Olivieri, A., Calissano, C., & Paganotti, G. M. (2001). Hemoglobin C protects against clinical Plasmodium falciparum malaria. Nature, 414, 305–8CrossRefGoogle ScholarPubMed
Modiano, D., Petrarca, V., Sirima, B. S., Nebié, I., Diallo, D., Esposito, F., & Coluzzi, M. (1996). Different response to Plasmodium falciparum malaria in West African sympatric ethnic groups. Proceedings of the National Academy of Sciences, USA, 93, 13,206–11CrossRefGoogle ScholarPubMed
Nagel, R. L. (2001). Malaria and hemoglobinopathies. In Disorders of Hemoglobin (ed. by M. H. Steinberg, B. G. Forget, D. R. Higgs, & R. L. Nagel), pp. 832–60. Cambridge University Press, Cambridge, UK
Neel, J. V., & Valentine, W. N. (1947). Further studies on the genetics of thalassemia. Genetics, 32, 38–63Google ScholarPubMed
O'Shaughnessy, D. F., Hill, A. V. S., Bowden, D. K., Weatherall, D. J., Clegg, J. B.et al. (1990). Globin genes in Micronesia: origins and affinities of Pacific Island peoples. American Journal of Human Genetics, 46, 144–55Google ScholarPubMed
Pain, A., Urban, B. C., Kai, O., Casals-Pascual, C., Shafi, J., Marsh, K., & Roberts, D. J. (2001). A non-sense mutation in the Cd36 gene is associated with protection from severe malaria. Lancet, 357, 1502–3CrossRefGoogle ScholarPubMed
Pasvol, G., Weatherall, D. J., & Wilson, R. J. (1980). The increased susceptibility of young red cells to invasion by the malarial parasite Plasmodium falciparum. British Journal of Haematology, 45, 285–95CrossRefGoogle ScholarPubMed
Pasvol, G., Weatherall, D. J., & Wilson, R. J. M. (1978). A mechanism for the protective effect of hemoglobin S against P. falciparum. Nature, 274, 701CrossRefGoogle ScholarPubMed
Rich, S. M., & Ayala, F. J. (2000). Population structure and recent evolution of Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA, 97, 6994–7001CrossRefGoogle ScholarPubMed
Roth, E. F. Jr., Friedman, M., Ueda, Y., Tellez, L., Trager, W., & Nagel, R. L. (1978). Sickling rates of human AS red cells infected in vitro with Plasmodium falciparum malaria. Science, 202, 650–2CrossRefGoogle ScholarPubMed
Ruwende, C., Khoo, S. C., Snow, R. W., Yates, S. N. R., Kwiatkowski, D., Gupta, S., Warn, P., Allsopp, C. E. M., Gilbert, S. C., & Peschu, N. (1995). Natural selection of hemi- and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature, 376, 246–9CrossRefGoogle ScholarPubMed
Silvestroni, E. (1949). Microcitemia e malattie a substrato microcitemico; falcemia e malattie falcemiche. 50° Congresso della Societa di Medicina Internationale. Roma: 1949
Silvestroni, E., & Bianco, I. (1947). Sulla frequenza dei porta tori di malatia di morbo di Codey e primi observazioni sulla frequenza dei portatore di microcitemia nel Ferrarese e inakune regioni limitrofe. Bollettinoe Atti della Accademia Medica di Roma, 72, 32Google Scholar
Tishkoff, S. A., Varkonyi, R., Cahinhinan, N., Abbes, S., Argyropoulos, G., Destro-Bisol, G., Drousiotou, A., Dangerfield, B., Lefranc, G., & Loiselet, J. (2001). Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science, 293, 455–62CrossRefGoogle ScholarPubMed
Tournamille, C., Colin, Y., Cartron, J. P., & Van Kim, C. (1995). Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nature Genetics, 10, 224–8CrossRefGoogle ScholarPubMed
Udomsangpetch, R., Sueblinvong, T., Pattanapanyasat, K., Dharmkrong-at, A., Kittilayawong, A., & Webster, H. K. (1993). Alteration in cytoadherence and rosetting of Plasmodium falciparum-infected thalassemic red blood cells. Blood, 82, 3,752–9Google ScholarPubMed
Volkman, S. K., Barry, A. E., Lyons, E. J., Nielsen, K. M., Thomas, S. M., Choi, M., Thakore, S. S., Day, K. P., Wirth, D. F., & Hartl, D. L. (2001). Recent origin of Plasmodium falciparum from a single progenitor. Science, 293, 482–4CrossRefGoogle ScholarPubMed
Weatherall, D. J., & Clegg, J. B. (2001a). Inherited hemoglobin disorders: an increasing global health problem. Bulletin of the World Health Organization, 79, 704–12Google Scholar
Weatherall, D. J., & Clegg, J. B. (eds.) (2001b). The Thalassemia Syndromes. (4 ed.) Blackwell Science, Oxford
Weatherall, D. J., & Clegg, J. B. (2002). Genetic variability in response to infection. In Malaria and after, Paeds and Immunity, 3, 331–7CrossRefGoogle ScholarPubMed
Williams, T. N., Maitland, K., Bennett, S., Ganczakowski, M., Peto, T. E. A., Newbold, C. I., Bowden, D. K., Weatherall, D. J., & Clegg, J. B. (1996). High incidence of malaria in α-thalassemic children. Nature, 383, 522–5CrossRefGoogle Scholar
Williams, T. N., Weatherall, D. J., & Newbold, C. I. (2002). The membrane characteristics of Plasmodium falciparum-infected and -uninfected heterozygous αo thalassemic erythrocytes. British Journal of Haematology, 118, 663–70CrossRefGoogle Scholar
Wilson, A. G., Symons, J. A., McDowell, T. L., McDevitt, H. O., & Duff, G. W. (1997). Effects of a polymorphism in the human tumor necrosis factor α promoter on transcriptional activation. Proceedings of the National Academy of Sciences, USA, 94, 3195–9CrossRefGoogle ScholarPubMed
Yuthavong, Y., Butthep, P., Bunyaratvej, A., Fucharoen, S., & Khurmith, S. (1988). Impaired parasite growth and increased susceptibility to phagocytosis of Plasmodium falciparum infected alpha-thalassemia and hemoglobin Constant Spring red blood cells. American Journal of Clinical Pathology, 89, 521–5CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×