Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T23:27:28.086Z Has data issue: false hasContentIssue false

6 - The Enigma of Plasmodium vivax Malaria and Erythrocyte Duffy Negativity

Published online by Cambridge University Press:  10 August 2009

Peter A. Zimmerman
Affiliation:
The Center for Global Health and Diseases, Case Western Reserve University, School of Medicine, W147D, 2109 Adelbert Road, Cleveland, OH
Krishna R. Dronamraju
Affiliation:
Foundation for Genetic Research, Houston, Texas
Get access

Summary

INTRODUCTION

Humans have been plagued by malarial parasites for centuries and reference to maladies associated with malaria may be found in antiquities over the past 5,000 years (1). For much of this time the cause of the intermittent chills and fevers, splenomegaly, and mortality associated with malaria was unknown. However, with consistent identification of the brownish black pigment (hemozoin) found during autopsies of malaria victims from the early 1700s on, scientific discovery methodically began to dissect malarial parasites from the various secret hiding places of their complex life cycle. Alphonse Laveran first observed the tiny ring-stage parasites of the malaria blood-stage infection in 1880 (1), and Ronald Ross would reveal that the female anopheline mosquito was responsible for malaria transmission in 1897 (1). During the late 1800s and ending in 1922 individual discoveries illustrated that malaria in humans was caused by four distinct species of PlasmodiumP. falciparum, P. vivax, P. malariae, and P. ovale (2), and that fevers resulting from infection by these parasites would soon find their way into successful, albeit unorthodox, treatment of neurosyphilis.

The era of malaria therapy, launched in earnest by Julius Wagner von Jauregg in 1917 (3), paved the way for important advances in malaria research as observations resulting from thousands of treated patients provided the opportunity to study early stages of infection, development of immunity and characteristics of the immune response, and the efficacy of various antimalarial drugs (4).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bruce-Chwatt, L. J. (1988). History of malaria from prehistory to eradication. In Malaria, Principles and Practices of Malariology, Vol. 1 (Wensdorfer, W., and McGregor, I., Eds.), pp. 1–59. Churchill and Livingstone, Edinburgh
Coatney, G. R., Collins, W. E., Warren, McW., and Contacos, P. G. (1971). The Primate Malarias. National Institute of Allergy and Infectious Diseases, Bethesda, MD
Wagner–Jauregg, J. (1922). The treatment of general paresis by inoculation of malaria. J. Nerv. Ment. Dis. 55, 369–75CrossRefGoogle Scholar
Chernin, E. (1984). The malaria therapy of neurosyphilis. J. Parasitol. 70, 611–7CrossRefGoogle ScholarPubMed
Boyd, M. F., and Stratman-Thomas, W. K. (1993). Studies on benign tertian malaria. 4. On the refractoriness of negroes to inoculation with Plasmodium vivax. Am. J. Hyg. 18, 485–9Google Scholar
Young, M. D., Ellis, J. M., and Stubbs, T. H. (1946). Studies on imported malarias. 5. Transmission of foreign Plasmodium vivax by Anopheles quadrimaculatus. Am. J. Trop. Med. 26, 477–82CrossRefGoogle Scholar
Becker, F. T., Read, H. S., and Boyd, M. F. (1946). Variations in susceptibility to malaria. Am. J. Med. Sci. 211, 680–5CrossRefGoogle ScholarPubMed
Young, M. D., Eyles, D. E., Burgess, R. W., and Jeffery, G. M. (1955). Experimental testing of the immunity of negroes to Plasmodium vivax. J. Parasitol. 41, 315–8CrossRefGoogle ScholarPubMed
Darwin, C. (1859). The Origin of Species by Means of Natural Selection: or, The Preservation of Favored Races in the Struggle for Life. John Murray, London
Mayr, E., and Provine W. B. (Eds.) (1981). The Evolutionary Synthesis: Perspectives on the Unification of Biology. Harvard University Press, Cambridge, MA
Futuyma, D. J. (1998). Evolutionary Biology. Sinauer Associates, Sunderland, MA
Race, R. R., and Sanger, R. (1950). Blood Groups in Man. Blackwell Science, Oxford
Mourant, A. E., Kopec, A. C., and Domaniewska-Sobczak, K. (1976). The Distribution of the Human Blood Groups and Other Polymorphisms. Oxford University Press, London
Zimmerman, P. A., and 10 colleagues (1999). Emergence of FY*Anull in a Plasmodium vivax-endemic region of Papua New Guinea. Proc. Natl. Acad. Sci. USA 96, 13,973–7CrossRefGoogle Scholar
Parran, T. (1937). A Shadow on the Land, Reynal and Hitchcock, Inc., New York
Arnold, H. L. Jr. (1984). Landmark perspective: penicillin and early syphilis. Jama 251, 2011–2CrossRefGoogle ScholarPubMed
Sartin, J. S., and Perry, H. O. (1995). From mercury to malaria to penicillin: the history of the treatment of syphilis. J. Am. Acad. Dermatol. 32, 255–61CrossRefGoogle ScholarPubMed
Wagner-Jauregg, J. (1927). The treatment of dementia paralytica by malaria inoculation. The Nobel Foundation (http://www.nobel.se/medicine/laureates/1927/wagner-jauregg-lecture.html)
Dennie, C. C. (1962). A History of Syphilis. Charles C Thomas, Springfield, Ill
Kitchen, S. K. (1949). Symptomatology: general considerations. In Malariology; A Comprehensive Survey of All Aspects of This Group of Diseases from a Global Standpoint (Boyd, M. F., Ed.), pp. 966–94. W. B. Saunders, Philadelphia
Moore, J. E. (1941). The Modern Treatment of Syphilis. Charles C Thomas, Springfield, Ill
Gardner, M. J., and 44 colleagues (2002). Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511CrossRefGoogle ScholarPubMed
Holt, R. A., and 82 colleagues (2002). The genome sequence of the malaria mosquito Anopheles gambiae. Science 298, 129–49CrossRefGoogle ScholarPubMed
O'Leary, P. A. (1927). Treatment of neurosyphilis by malaria: report on the three years' observation of the first one hundred patients treated. J. Am. Med. Assoc. 89, 95–100CrossRefGoogle Scholar
Mayne, B. (1932). Note on experimental infection of Anopheles punctipennis with quartan malaria. Public Health Rep. 47, 1771–3CrossRefGoogle Scholar
Bray, R. S. (1958). The susceptibility of Liberians to the Madagascar strain of Plasmodium vivax. J. Parasitol. 44, 371–3CrossRefGoogle ScholarPubMed
Krotoski, W. A., and 10 colleagues (1982). Demonstration of hypnozoites in sporozoite-transmitted Plasmodium vivax infection. Am. J. Trop. Med. Hyg. 31, 1291–3CrossRefGoogle ScholarPubMed
Krotoski, W. A. (1985). Discovery of the hypnozoite and a new theory of malarial relapse. Trans. R. Soc. Trop. Med. Hyg. 79, 1–11CrossRefGoogle Scholar
Kitchen, S. K. (1938). The infection of reticulocytes by Plasmodium vivax. Am. J. Trop. Med. 18, 347–53CrossRefGoogle Scholar
Mons, B., and 5 colleagues (1988). Plasmodium vivax: in vitro growth and reinvasion in red blood cells of Aotus nancymai. Exp. Parasitol. 66, 183–8CrossRefGoogle ScholarPubMed
Galinski, M. R., Medina, C. C., Ingravallo, P., and Barnwell, J. W. (1992). A reticulocyte-binding protein complex of Plasmodium vivax merozoites. Cell 69, 1213–26CrossRefGoogle ScholarPubMed
Boyd, M. F. (1949). Historical review. In Malariology; A Comprehensive Survey of All Aspects of This Group of Diseases from a Global Standpoint (Boyd, M. F., Ed.), pp. 3–25. W. B. Saunders, Philadelphia
Boyd, M. F. (1942). Criteria of immunity and susceptibility in naturally induced vivax infections. Am. J. Trop. Med. 22, 217–30CrossRefGoogle Scholar
Kitchen, S. K., and Putnam, P. (1946). Observations on the character of paroxysm in vivax malaria. J. Natl. Malaria Soc. 5, 57–70Google Scholar
Nosten, F., and 8 colleagues (1999). Effects of Plasmodium vivax malaria in pregnancy. Lancet 354, 546–9CrossRefGoogle ScholarPubMed
Bloland, P., and 5 colleagues (1996). Rates and risk factors for mortality during the first two years of life in rural Malawi. Am. J. Trop. Med. Hyg. 55, 82–6CrossRefGoogle ScholarPubMed
Mendis, K., Sina, B. J., Marchesini, P., and Carter, R. (2001). The neglected burden of Plasmodium vivax malaria. Am. J. Trop. Med. Hyg. 64, 97–106CrossRefGoogle ScholarPubMed
Knowles, R., and White, R. S. (1930). Studies in the parasitology of malaria. Indian Med. Res. Memoirs 18, 436Google Scholar
Rosenberg, R., Andre, R. G., Ngampatom, S., Hatz, C., and Burge, R. (1990). A stable, oligosymptomatic malaria focus in Thailand. Trans. R. Soc. Trop. Med. Hyg. 84, 14–21CrossRefGoogle ScholarPubMed
McKenzie, F. E., and Bossert, W. H. (1997). Mixed-species Plasmodium infections of humans. J. Parasitol. 83, 593–600CrossRefGoogle ScholarPubMed
McKenzie, F. E., and Bossert, W. H. (1999). Multispecies Plasmodium infections of humans. J. Parasitol. 85, 12–8CrossRefGoogle ScholarPubMed
Bruce, M. C., and 6 colleagues (2000). Cross-species interactions between malaria parasites in humans. Science 287, 845–8CrossRefGoogle ScholarPubMed
Cohen, J. E. (1973). Heterologous immunity in human malaria. Q. Rev. Biol. 48, 467–89CrossRefGoogle ScholarPubMed
Richie, T. L. (1988). Interactions between malaria parasites infecting the same vertebrate host. Parasitology 96 (Pt 3), 607–39CrossRefGoogle ScholarPubMed
Mayxay, M., and 5 colleagues (2001). Identification of cryptic coinfection with Plasmodium falciparum in patients presenting with vivax malaria. Am. J. Trop. Med. Hyg. 65, 588–92CrossRefGoogle ScholarPubMed
Mason, D. P., and 9 colleagues (2001). Can treatment of P. vivax lead to an unexpected appearance of falciparum malaria? Southeast Asian J. Trop. Med. Public Health 32, 57–63Google Scholar
Luxemburger, C., and 5 colleagues (1997). The epidemiology of severe malaria in an area of low transmission in Thailand. Trans. R. Soc. Trop. Med. Hyg. 91, 256–62CrossRefGoogle Scholar
Smith, T., and 5 colleagues (2001). Prospective risk of morbidity in relation to malaria infection in an area of high endemicity of multiple species of Plasmodium. Am. J. Trop. Med. Hyg. 64, 262–7CrossRefGoogle Scholar
Gautret, P., Legros, F., Koulmann, P., Rodier, M. H., and Jacquemin, J. L. (2001). Imported Plasmodium vivax malaria in France: geographical origin and report of an atypical case acquired in Central or Western Africa. Acta Trop. 78, 177–81CrossRefGoogle ScholarPubMed
James, S. P. (1929). The disappearance of malaria from England. Proc. R. Soc. Med. 23, 71–87Google ScholarPubMed
Garnham, P. C. C. (1988). Malaria parasites of man: life-cycles and morphology (excluding ultrastructure). In Malaria, Principles and Practices of Malariology, Vol. 1 (Wensdorfer, W., and McGregor, I., Eds.), pp. 61–96. Churchill and Livingstone, Edinburgh
Li, J., and 5 colleagues (2001). Geographic subdivision of the range of the malaria parasite Plasmodium vivax. Emerging Infect. Dis. 7, 35–42CrossRefGoogle ScholarPubMed
Landsteiner, K. (1901). Agglutination phenomena in normal human blood. Wien. Klin. Wschr. 14, 1132–4Google Scholar
Cutbush, M., Mollison, P. L., and Parkin, D. M. (1950). A new human blood group. Nature 165, 188–9CrossRefGoogle Scholar
Ikin, E. W., Mourant, A. E., Pettenkofer, H. J., and Blumenthal, G. (1951). Discovery of the expected haemagglutinin, anti-Fyb. Nature 168, 1077CrossRefGoogle ScholarPubMed
Ikin, E. W., Mourant, A. E., and Pettenkofer, H. J. (1955). Discovery of the expected haemagglutinin, anti-Fyb. Nature 168, 1077CrossRefGoogle Scholar
Sanger, R., Race, R. R., and Jack, J. (1955). The Duffy blood groups of the New York Negroes: the phenotype Fy(a-b-). Brit. J. Haematol. 1, 370–4CrossRefGoogle Scholar
Race, R. R., Sanger, R., and Lehane, D. (1953). Quantitative aspects of the blood-group antigen Fya. Ann. Eugen. 17, 255CrossRefGoogle ScholarPubMed
Cavalli-Sforza, L. L., Menozzi, P., and Piazza, A. (1994). The History and Geography of Human Genes. Princeton University Press, Princeton
Lewis, G. E. Jr., and 5 colleagues (1988). Duffy phenotypes in Malaysian populations: correction of previous unusual findings. Trans. R. Soc. Trop. Med. Hyg. 82, 509–10CrossRefGoogle ScholarPubMed
Simmons, R. T., Gajdusek, D. C., Gorman, J. G., Kidson, C., and Hornabrook, R. W. (1967). Presence of the Duffy blood group gene Fyb demonstrated in Melanesians. Nature 213, 1148–9CrossRefGoogle Scholar
Malcolm, L. A., Woodfield, D. G., Blake, N. M., Kirk, R. L., and McDermid, E. M. (1972). The distribution of blood, serum protein and enzyme groups on Manus Island (Admiralty Islands, New Guinea). Hum. Hered. 22, 305–22CrossRefGoogle Scholar
Mourant, A. E., and 3 colleagues (1981). Red cell antigen, serum protein, and red cell enzyme polymorphisms in inhabitants of the Jimi Valley, Western Highlands, New Guinea. Hum. Genet. 59, 77–80CrossRefGoogle ScholarPubMed
Mourant, A. E., and 3 colleagues (1982). Red cell antigen, serum protein and red cell enzyme polymorphisms in Eastern Highlanders of New Guinea. Hum. Hered. 32, 374–84Google ScholarPubMed
Booth, P. B., and 6 colleagues (1982). Red cell antigen, serum protein and red cell enzyme polymorphisms in Karkar Islanders and inhabitants of the adjacent North Coast of New Guinea. Hum. Hered. 32, 385–403CrossRefGoogle ScholarPubMed
Long, J. C., and 6 colleagues (1986). Genetic characterization of Gainj- and Kalam-speaking peoples of Papua New Guinea. Am. J. Phys. Anthropol. 70, 75–96CrossRefGoogle ScholarPubMed
Simmons, R. T., and Cooke, D. R. (1969). Population genetic studies in Australian aborigines of the Northern Territory. Blood group genetic studies in the Malag of Elcho Island. Archaeol. Phys. Anthropol. Oceania 4, 252–9Google Scholar
Booth, P. B., Faogali, J. L., Kirk, R. L., and Blake, N. M. (1977). HLA types, blood groups, serum protein, and red cell enzyme types among Samoans in New Zealand. Hum. Hered. 27, 412–23CrossRefGoogle ScholarPubMed
Guderian, R., and Vargas, J. (1986). Duffy blood group distribution and the incidence of malaria in Ecuador. Trans. R. Soc. Trop. Med. Hyg. 80, 162–3CrossRefGoogle ScholarPubMed
Spencer, H. C., and 3 colleagues (1978). The Duffy blood group and resistance to Plasmodium vivax in Honduras. Am. J. Trop. Med. Hyg. 27, 664–70CrossRefGoogle ScholarPubMed
Miller, L. H., Mason, S. J., Clyde, D. F., and McGinniss, M. H. (1976). The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 295, 302–4CrossRefGoogle Scholar
Miller, L. H., Mason, S. J., Dvorak, J. A., McGinniss, M. H., and Rothman, I. K. (1975). Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science 189, 561–3CrossRefGoogle ScholarPubMed
Milam, D. F., and Coggeshall, L. T. (1938). Duration of Plasmodium knowlesi infections in man. Am. J. Trop. Med. 18, 331–8CrossRefGoogle Scholar
Moore, S., Woodrow, C. F., and McClelland, D. B. (1982). Isolation of membrane components associated with human red cell antigens Rh(D), (c), (E) and Fy. Nature 295, 529–31CrossRefGoogle Scholar
Hadley, T. J., David, P. H., McGinniss, M. H., and Miller, L. H. (1984). Identification of an erythrocyte component carrying the Duffy blood group Fya antigen. Science 223, 597–9CrossRefGoogle ScholarPubMed
Chaudhuri, A., and 6 colleagues (1989). Purification and characterization of an erythrocyte membrane protein complex carrying Duffy blood group antigenicity. Possible receptor for Plasmodium vivax and Plasmodium knowlesi malaria parasite. J. Biol. Chem. 264, 13,770–4Google ScholarPubMed
Albrey, J. A., and 6 colleagues (1971). A new antibody, anti-Fy3, in the Duffy blood group system. Vox Sang 20, 29–35CrossRefGoogle ScholarPubMed
Behzad, O., Lee, C. L., Gavin, J., and Marsh, W. L. (1973). A new anti-erythrocyte antibody in the Duffy system: anti-Fy4. Vox Sang 24, 337–42CrossRefGoogle ScholarPubMed
Colledge, K. I., Pezzulich, M., and Marsh, W. L. (1973). Anti-Fy5: an antibody disclosing a probable association between Rhesus and Duffy blood group genes. Vox Sang 24, 193–9CrossRefGoogle ScholarPubMed
Nichols, M. E., Rubinstein, P., Barnwell, J., Cordoba, Rodriguez S., and Rosenfield, R. E. (1987). A new human Duffy blood group specificity defined by a murine monoclonal antibody. Immunogenetics and association with susceptibility to Plasmodium vivax. J. Exp. Med. 166, 776–85CrossRefGoogle ScholarPubMed
Chaudhuri, A., and 5 colleagues (1993). Cloning of glycoprotein D cDNA, which encodes the major subunit of the Duffy blood group system and the receptor for the Plasmodium vivax malaria parasite. Proc. Natl. Acad. Sci. USA 90, 10,793–7CrossRefGoogle ScholarPubMed
Donahue, R. P., Bias, W. B., Remwick, J. H., and McKusick, V. A. (1968). Probable assignment of the Duffy blood group locus to chromosome 1 in man. Proc. Natl. Acad. Sci. USA 61, 949–55CrossRefGoogle ScholarPubMed
Dracopoli, N. C., and 9 colleagues (1991). The CEPH consortium linkage map of human chromosome 1. Genomics 9, 686–700CrossRefGoogle ScholarPubMed
Mathew, S., Chaudhuri, A., Murty, V. V., and Pogo, A. O. (1994). Confirmation of Duffy blood group antigen locus (FY) at 1q22–>q23 by fluorescence in situ hybridization. Cytogenet Cell Genet. 67, 68CrossRefGoogle ScholarPubMed
Iwamoto, S., Li, J., Omi, T., Ikemoto, S., and Kajii, E. (1996). Identification of a novel exon and spliced form of Duffy mRNA that is the predominant transcript in both erythroid and postcapillary venule endothelium. Blood 87, 378–85Google ScholarPubMed
Chaudhuri, A., Polyakova, J., Zbrzezna, V., and Pogo, A. O. (1995). The coding sequence of Duffy blood group gene in humans and simians: restriction fragment length polymorphism, antibody and malarial parasite specificities, and expression in nonerythroid tissues in Duffy-negative individuals. Blood 85, 615–21Google ScholarPubMed
Iwamoto, S., Omi, T., Kajii, E., and Ikemoto, S. (1995). Genomic organization of the glycoprotein D gene: Duffy blood group Fya/Fyb alloantigen system is associated with a polymorphism at the 44-amino acid residue. Blood 85, 622–6Google ScholarPubMed
Tournamille, C., Van Kim, C., Gane, P., Cartron, J. P., and Colin, Y. (1995). Molecular basis and PCR-DNA typing of the Fya/fyb blood group polymorphism. Hum. Genet. 95, 407–10CrossRefGoogle ScholarPubMed
Tournamille, C., Colin, Y., Cartron, J. P., and Van Kim, C. (1995). Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat. Genet. 10, 224–8CrossRefGoogle ScholarPubMed
Shimizu, Y., Kimura, M., Settheetham-Ishida, W., Duangchang, P., and Ishida, T. (1997). Serotyping of Duffy blood group in several Thai ethnic groups. Southeast Asian J. Trop. Med. Public Health 28, 32–5Google ScholarPubMed
Shimizu, Y., and 7 colleagues (2000). Sero- and molecular typing of Duffy blood group in Southeast Asians and Oceanians. Hum. Biol. 72, 511–8Google ScholarPubMed
Eugenio-Cavasini, C., Tarelho-Pereira, F. J., Luidi-Ribeiro, W., Wunderlich, G., and Urgano-Ferreira, M. (2001). Duffy blood group genotypes among malaria patients in Rondonia, Western Brazilian Amazon. Revista da Sociedade Brasileira de Medicina Tropical 34, 591–5CrossRefGoogle Scholar
Tournamille, C., and 7 colleagues (1998). Arg89Cys substitution results in very low membrane expression of the Duffy antigen/receptor for chemokines in Fy(x) individuals. Blood 92, 2147–56Google ScholarPubMed
Parasol, N., and 5 colleagues (1998). A novel mutation in the coding sequence of the FY*B allele of the Duffy chemokine receptor gene is associated with an altered erythrocyte phenotype. Blood 92, 2237–43Google ScholarPubMed
Olsson, M. L., and 7 colleagues (1998). The Fy(x) phenotype is associated with a missense mutation in the Fy(b) allele predicting Arg89Cys in the Duffy glycoprotein. Br. J. Haematol. 103, 1184–91CrossRefGoogle ScholarPubMed
Chown, B., Lewis, M., and Kaita, H. (1965). The Duffy blood group system in Caucasians: evidence for a new allele. Am. J. Hum. Genet. 17, 384–9Google ScholarPubMed
Mallinson, G., Soo, K. S., Schall, T. J., Pisacka, M., and Anstee, D. J. (1995). Mutations in the erythrocyte chemokine receptor (Duffy) gene: the molecular basis of the Fya/fyb antigens and identification of a deletion in the Duffy gene of an apparently healthy individual with the Fy(a-b-) phenotype. Br. J. Haematol. 90, 823–9CrossRefGoogle ScholarPubMed
Hadley, T. J., and 6 colleagues (1994). Postcapillary venule endothelial cells in kidney express a multispecific chemokine receptor that is structurally and functionally identical to the erythroid isoform, which is the Duffy blood group antigen. J. Clin. Invest. 94, 985–91CrossRefGoogle ScholarPubMed
Peiper, S. C., and 10 colleagues (1995). The Duffy antigen/receptor for chemokines (DARC) is expressed in endothelial cells of Duffy negative individuals who lack the erythrocyte receptor. J. Exp. Med. 181, 1311–7CrossRefGoogle ScholarPubMed
Chaudhuri, A., and 5 colleagues (1997). Detection of Duffy antigen in the plasma membranes and caveolae of vascular endothelial and epithelial cells of nonerythroid organs. Blood 89, 701–12Google ScholarPubMed
Horuk, R., and 6 colleagues (1996). The Duffy antigen receptor for chemokines: structural analysis and expression in the brain. J. Leukoc. Biol. 59, 29–38CrossRefGoogle Scholar
Murphy, P. M. (1996). Chemokine receptors: structure, function and role in microbial pathogenesis. Cytokine Growth Factor Rev. 7, 47–64CrossRefGoogle ScholarPubMed
Murphy, P. M. (2002). International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol. Rev. 54, 227–9CrossRefGoogle ScholarPubMed
Neote, K., Mak, J. Y., Kolakowski, L. F. Jr., and Schall, T. J. (1994). Functional and biochemical analysis of the cloned Duffy antigen: identity with the red blood cell chemokine receptor. Blood 84, 44–52Google ScholarPubMed
Chaudhuri, A., and 5 colleagues (1994). Expression of the Duffy antigen in K562 cells. Evidence that it is the human erythrocyte chemokine receptor. J. Biol. Chem. 269, 7835–8Google ScholarPubMed
Horuk, R., and 6 colleagues (1993). A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science 261, 1182–4CrossRefGoogle ScholarPubMed
Horuk, R., Wang, Z. X., Peiper, S. C., and Hesselgesser, J. (1994). Identification and characterization of a promiscuous chemokine-binding protein in a human erythroleukemic cell line. J. Biol. Chem. 269, 17,730–3Google Scholar
Chitnis, C. E., Chaudhuri, A., Horuk, R., Pogo, A. O., and Miller, L. H. (1996). The domain on the Duffy blood group antigen for binding Plasmodium vivax and P. knowlesi malarial parasites to erythrocytes. J. Exp. Med. 184, 1531–6CrossRefGoogle ScholarPubMed
Haynes, J. D., and 6 colleagues (1988). Receptor-like specificity of a Plasmodium knowlesi malarial protein that binds to Duffy antigen ligands on erythrocytes. J. Exp. Med. 167, 1873–81CrossRefGoogle ScholarPubMed
Adams, J. H., and 6 colleagues (1990). The Duffy receptor family of Plasmodium knowlesi is located within the micronemes of invasive malaria merozoites. Cell 63, 141–53CrossRefGoogle ScholarPubMed
Wertheimer, S. P., and Barnwell, J. W. (1989). Plasmodium vivax interaction with the human Duffy blood group glycoprotein: identification of a parasite receptor-like protein. Exp. Parasitol. 69, 340–50CrossRefGoogle ScholarPubMed
Fang, X. D., Kaslow, D. C., Adams, J. H., and Miller, L. H. (1991). Cloning of the Plasmodium vivax Duffy receptor. Mol. Biochem. Parasitol. 44, 125–32CrossRefGoogle ScholarPubMed
Adams, J. H., and 5 colleagues (1992). A family of erythrocyte binding proteins of malaria parasites. Proc. Natl. Acad. Sci. USA 89, 7085–9CrossRefGoogle ScholarPubMed
Chitnis, C. E., and Miller, L. H. (1994). Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J. Exp. Med. 180, 497–506CrossRefGoogle ScholarPubMed
Ranjan, A., and Chitnis, C. E. (1999). Mapping regions containing binding residues within functional domains of Plasmodium vivax and Plasmodium knowlesi erythrocyte-binding proteins. Proc. Natl. Acad. Sci. USA 96, 14,067–72CrossRefGoogle ScholarPubMed
Michon, P., and 5 colleagues (2001). Duffy-null promoter heterozygosity reduces DARC expression and abrogates adhesion of the P. vivax ligand required for blood-stage infection. FEBS Lett. 495, 111–4CrossRefGoogle Scholar
Tsuboi, T., and 5 colleagues (1994). Natural variation within the principal adhesion domain of the Plasmodium vivax duffy binding protein. Infect Immun. 62, 5581–6Google ScholarPubMed
Ampudia, E., Patarroyo, M. A., Patarroyo, M. E., and Murillo, I. A. (1996). Genetic polymorphism of the Duffy receptor binding domain of Plasmodium vivax in Colombian wild isolates. Mol. Biochem. Parasitol. 78, 269–72CrossRefGoogle ScholarPubMed
Fraser, T., and 6 colleagues (1997). Expression and serologic activity of a soluble recombinant Plasmodium vivax Duffy binding protein. Infect. Immun. 65, 2772–7Google ScholarPubMed
Michon, P., Arevalo-Herrera, M., Fraser, T., Herrera, S., and Adams, J. H. (1998). Serological responses to recombinant Plasmodium vivax Duffy binding protein in a Colombian village. Am. J. Trop. Med. Hyg. 59, 597–9CrossRefGoogle Scholar
Cole-Tobian, J. L., and 7 colleagues (2002). Age-acquired immunity to a Plasmodium vivax invasion ligand, the Duffy binding protein. J. Infect. Dis. 186, 531–9CrossRefGoogle ScholarPubMed
Palatnik, M., and Rowe, A. W. (1984). Duffy and Duffy-related human antiges in primates. J. Hum. Evol. 13, 173–9CrossRefGoogle Scholar
Jones, S., Martin, R., and Pilbeam, D., Eds. (1992). The Cambridge Encyclopedia of Human Evolution. Cambridge University Press, Cambridge, UK
Okenu, D. M., Malhotra, P., Lalitha, P. V., Chitnis, C. E., and Chauhan, V. S. (1997). Cloning and sequence analysis of a gene encoding an erythrocyte binding protein from Plasmodium cynomolgi. Mol. Biochem. Parasitol. 89, 301–6CrossRefGoogle ScholarPubMed
Eyles, D. E., Coatney, G. R., and Getz, M. E. (1960). Vivax-type malaria parasite of macaques transmissible to man. Science 131, 1812–13CrossRefGoogle Scholar
Butcher, G. A., Mitchell, G. H., and Cohen, S. (1973). Mechanism of host specificity in malarial infection. Nature 244, 40–2CrossRefGoogle ScholarPubMed
Miller, L. H., Dvorak, J. A., Shiroishi, T., and Durocher, J. R. (1973). Influence of erythrocyte membrane components on malaria merozoite invasion. J. Exp. Med. 138, 1597–1601CrossRefGoogle ScholarPubMed
Beye, J. K., Getz, M. E., Coatney, G. R., Elder, H. A., and Eyles, D. E. (1961). Simian malaria in man. Am. J. Trop. Med. Hyg. 10, 311–16CrossRefGoogle Scholar
Escalante, A. A., and Ayala, F. J. (1994). Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proc. Natl. Acad. Sci. USA 91, 11,373–7CrossRefGoogle ScholarPubMed
Escalante, A. A., Barrio, E., and Ayala, F. J. (1995). Evolutionary origin of human and primate malarias: evidence from the circumsporozoite protein gene. Mol. Biol. Evol. 12, 616–26Google ScholarPubMed
Escalante, A. A., Freeland, D. E., Collins, W. E., and Lal, A. A. (1998). The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proc. Natl. Acad. Sci. USA 95, 8124–9CrossRefGoogle ScholarPubMed
Hamblin, M. T., and Di Rienzo, A. (2000). Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. Am. J. Hum. Genet. 66, 1669–79CrossRefGoogle ScholarPubMed
Hamblin, M. T., Thompson, E. E., and Di Rienzo, A. (2002). Complex signatures of natural selection at the Duffy blood group locus. Am. J. Hum. Genet. 70, 369–83CrossRefGoogle ScholarPubMed
Seixas, S., Ferrand, N., and Rocha, J. (2002). Microsatellite variation and evolution of the human Duffy blood group polymorphism. Mol. Biol. Evol. 19, 1802–6CrossRefGoogle ScholarPubMed
Hartl, D. L., and Clark, A. G. (1997). Principles of Population Genetics. Sinauer Associates, Inc., Sunderland, MA
Livingstone, F. B. (1984). The Duffy blood groups, vivax malaria, and malaria selection in human populations: a review. Hum. Biol. 56, 413–25Google ScholarPubMed
Williams, T. N., and colleagues (1996). High incidence of malaria in alpha-thalassaemic children. Nature 383, 522–5CrossRefGoogle ScholarPubMed
Jeffery, G. M. (1966). Epidemiological significance of repeated infections with homologous and heterologous strains and species of Plasmodium. Bull. World Health Org. 35, 873–82Google ScholarPubMed
Voller, A., and Rossan, R. N. (1969). Immunological studies with simian malarias. II. Heterologous immunity in the “cynomolgi” group. Trans. R. Soc. Trop. Med. Hyg. 63, 57–63CrossRefGoogle ScholarPubMed
Luzzi, G. A., and 5 colleagues (1991). Surface antigen expression on Plasmodium falciparum-infected erythrocytes is modified in alpha- and beta-thalassemia. J. Exp. Med. 173, 785–91CrossRefGoogle ScholarPubMed
Mehlotra, R. K., and 7 colleagues (2000). Random distribution of mixed species malaria infections in Papua New Guinea. Am. J. Trop. Med. Hyg. 62, 225–31CrossRefGoogle ScholarPubMed
Oppenheimer, S. J., Higgs, D. R., Weatherall, D. J., Barker, J., and Spark, R. A. (1984). Alpha thalassaemia in Papua New Guinea. Lancet 1, 424–6CrossRefGoogle ScholarPubMed
Flint, J., and 9 colleagues (1986). High frequencies of alpha-thalassaemia are the result of natural selection by malaria. Nature 321, 744–50CrossRefGoogle ScholarPubMed
Allen, S. J., and 6 colleagues (1997). alpha+-Thalassemia protects children against disease caused by other infections as well as malaria. Proc. Natl. Acad. Sci. USA 94, 14,736–41CrossRefGoogle ScholarPubMed
Vulliamy, T., Mason, P., and Luzzatto, L. (1992). The molecular basis of glucose-6-phosphate dehydrogenase deficiency. Trends Genet. 8, 138–43CrossRefGoogle ScholarPubMed
Genton, B., and 6 colleagues (1995). Ovalocytosis and cerebral malaria. Nature 378, 564–5CrossRefGoogle ScholarPubMed
Mgone, C. S., and 7 colleagues (1996). Occurrence of the erythrocyte band 3 (AE1) gene deletion in relation to malaria endemicity in Papua New Guinea. Trans. R. Soc. Trop. Med. Hyg. 90, 228–31CrossRefGoogle ScholarPubMed
Patel, S. S., and colleagues (2001). The association of the glycophorin C exon 3 deletion with ovalocytosis and malaria susceptibility in the Wosera, Papua New Guinea. Blood 98, 3489–91CrossRefGoogle ScholarPubMed
Mayer, D. C., Kaneko, O., Hudson-Taylor, D. E., Reid, M. E., and Miller, L. H. (2001). Characterization of a Plasmodium falciparum erythrocyte–binding protein paralogous to EBA-175. Proc. Natl. Acad. Sci. USA 98, 5222–7CrossRefGoogle ScholarPubMed
Mayer, D. C., Mu, J. B., Feng, X., Su, X. Z., and Miller, L. H. (2002). Polymorphism in a Plasmodium falciparum erythrocyte-binding ligand changes its receptor specificity. J. Exp. Med. 196, 1523–8CrossRefGoogle Scholar
Maier, A. G., and 6 colleagues (2003). Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nat. Med. 9, 87–92CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×